Search results for: ferro alloy furnace
665 Characterization of Martensitic Stainless Steel Japanese Grade AISI 420A
Authors: T. Z. Butt, T. A. Tabish, K. Anjum, H. Hafeez
Abstract:
A study of martensitic stainless steel surgical grade AISI 420A produced in Japan was carried out in this research work. The sample was already annealed at about 898˚C. The sample were subjected to chemical analysis, hardness, tensile and metallographic tests. These tests were performed on as received annealed and heat treated samples. In the annealed condition the sample showed 0HRC. However, on tensile testing, in annealed condition the sample showed maximum elongation. The heat treatment is carried out in vacuum furnace within temperature range 980-1035°C. The quenching of samples was carried out using liquid nitrogen. After hardening, the samples were subjected to tempering, which was carried out in vacuum tempering furnace at a temperature of 220˚C. The hardened samples were subjected to hardness and tensile testing. In hardness testing, the samples showed maximum hardness values. In tensile testing the sample showed minimum elongation. The sample in annealed state showed coarse plates of martensite structure. Therefore, the studied steels can be used as biomaterials.Keywords: biomaterials, martensitic steel, microsrtucture, tensile testing, hardening, tempering, bioinstrumentation
Procedia PDF Downloads 277664 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete
Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir
Abstract:
Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.Keywords: concrete, conductance, deterioration, freezing and thawing
Procedia PDF Downloads 417663 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites
Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci
Abstract:
In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.Keywords: magnesium matrix composite, pressure infiltration, SEM, wear
Procedia PDF Downloads 360662 Microstructure and Hardness Changes on T91 Weld Joint after Heating at 560°C
Authors: Suraya Mohamad Nadzir, Badrol Ahmad, Norlia Berahim
Abstract:
T91 steel has been used as construction material for superheater tubes in sub-critical and super critical boiler. This steel was developed with higher creep strength property as compared to conventional low alloy steel. However, this steel is also susceptible to materials degradation due to its sensitivity to heat treatment especially Post Weld Heat Treatment (PWHT) after weld repair process. Review of PWHT process shows that the holding temperature may different from one batch to other batch of samples depending on the material composition. This issue was reviewed by many researchers and one of the potential solutions is the development of weld repair process without PWHT. This process is possible with the use of temper bead welding technique. However, study has shown the hardness value across the weld joint with exception of PWHT is much higher compare to recommended hardness value. Based on the above findings, a study to evaluate the microstructure and hardness changes of T91 weld joint after heating at 560°C at varying duration was carried out. This study was carried out to evaluate the possibility of self-tempering process during in-service period. In this study, the T91 weld joint was heat-up in air furnace at 560°C for duration of 50 and 150 hours. The heating process was controlled with heating rate of 200°C/hours, and cooling rate about 100°C/hours. Following this process, samples were prepared for the microstructure examination and hardness evaluation. Results have shown full tempered martensite structure and acceptance hardness value was achieved after 50 hours heating. This result shows that the thin component such as T91 superheater tubes is able to self-tempering during service hour.Keywords: T91, weld-joint, tempered martensite, self-tempering
Procedia PDF Downloads 379661 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy
Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda
Abstract:
Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability
Procedia PDF Downloads 249660 Effect of Sulfur on the High-Temperature Oxidation of DIN1.4091
Abstract:
Centrifugal casting is a metal casting method that uses forces make by centripetal acceleration to distribute molten material in mold. Centrifugal cast parts manufactured in industry contain gas pipes and water supply lines, moreover rings, turbocharger, bushings, brake drums. Turbochargers were exposed to exhaust temperatures of 900-1050°C require a material for the corrosion resistance that will withstand such high component temperatures during the entire service life of the vehicle. Hence, the study of corrosion resistance for turbocharger is important for practical application. DIN1.4091 steels were used widely. The DIN1.4091 steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at 900°C for 50-200 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of Cr₂O₃ as the major oxide and Cr₂MnO₄ as the minor one through preferential oxidation of Cr and Mn. Cr formed a thin CrOx oxide film on the surface to prevent further oxidation, and when it is added more than 20%, the sulphide decreased corrosion rate. The high affinity of Mn with S, led to the formation of scattered MnS inclusions, particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance because it deteriorated the scale/alloy adherence so as to accelerate the adherence and compactness of the formed scales. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A2B1013169).Keywords: centrifugal casting, turbocharger, sulfur, oxidation, Fe-34.4Cr-14.5Ni alloy
Procedia PDF Downloads 199659 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries
Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab
Abstract:
The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.Keywords: shape memory alloy, stent, coronary artery, finite element analysis
Procedia PDF Downloads 203658 A Study on the Stabilization of the Swell Behavior of Basic Oxygen Furnace Slag by Using Geopolymer Technology
Authors: K. Y. Lin, W. H. Lee, T. W. Cheng, S. W. Huang
Abstract:
Basic Oxygen Furnace (BOF) Slag is a by-product of iron making. It has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, the main problem for BOF slag is expansion, due to it contains free lime or free magnesium. The purpose of this study was to stabilize the BOF slag by using geopolymeric technology, hoping can prevent BOF slag expansion. Geopolymer processes contain a large amount of free silicon. These free silicon can react with free-lime or free magnesium oxide in BOF slag, and thus to form stable compound, therefore inhibit the expansion of the BOF slag. In this study for the successful preparation of geopolymer mortar with BOF slag, and their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these geopolymer mortar. Finally, the compressive strength of geopolymer mortar with BOF slag can be reached 33MPa in 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can increase to 35MPa. According to the research results can be proved that using geopolymer technology for stabilizing BOF slag is very effective.Keywords: BOF slag, autoclave test, geopolymer, swell behavior
Procedia PDF Downloads 136657 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy
Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah
Abstract:
This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio
Procedia PDF Downloads 286656 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 235655 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material
Authors: S. Nouri
Abstract:
In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.Keywords: Gamma-TiAl alloy, high temperature oxidation, Si-aluminide coating, slurry procedure
Procedia PDF Downloads 178654 Production and Characterization of Sol-Enhanced Zn-Ni-Al2O3 Nano Composite Coating
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Sol-enhanced Zn-Ni-Al2O3 nano-composite coatings were electroplated on mild steel by our newly developed sol-enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The chemical composition, microstructure and mechanical properties of the composite and alloy coatings deposited at two different agitation speed were investigated. The structure of all coatings was single γ-Ni5Zn21 phase. The composite coatings possess refined crystals with higher microhardness compared to Zn-Ni alloy coatings. The wear resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings. Higher agitation speed provided more uniform coatings with smaller grain sized and slightly higher microhardness. Considering composite coatings, high agitation speeds may facilitate co-deposition of alumina in the coatings.Keywords: microhardness, sol-enhanced electroplating, wear resistance, Zn-Ni-Al2O3 composite coatings
Procedia PDF Downloads 501653 Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using P-Methylphenyl Thiourea as a Complexing Agent
Authors: Shashikant R. Kuchekar, Somnath D. Bhumkar, Haribhau R. Aher, Bhaskar H. Zaware, Ponnadurai Ramasami
Abstract:
A precise, sensitive, rapid and selective method for the solvent extraction, spectrophotometric determination of palladium(II) using para-methylphenyl thiourea (PMPT) as an extractant is developed. Palladium(II) forms yellow colored complex with PMPT which shows an absorption maximum at 300 nm. The colored complex obeys Beer’s law up to 7.0 µg ml-1 of palladium. The molar absorptivity and Sandell’s sensitivity were found to be 8.486 x 103 l mol-1cm-1 and 0.0125 μg cm-2 respectively. The optimum conditions for the extraction and determination of palladium have been established by monitoring the various experimental parameters. The precision of the method has been evaluated and the relative standard deviation has been found to be less than 0.53%. The proposed method is free from interference from large number of foreign ions. The method has been successfully applied for the determination of palladium from alloy, synthetic mixtures corresponding to alloy samples.Keywords: solvent extraction, PMPT, Palladium (II), spectrophotometry
Procedia PDF Downloads 461652 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach
Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane
Abstract:
The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation
Procedia PDF Downloads 312651 Development and Characterization of Wear Properties of Aluminum 8011 Hybrid Metal Matrix Composites
Authors: H. K. Shivanand, A. Yogananda
Abstract:
The objective of present investigation is to study the effect of reinforcements on the wear properties of E-Glass short fibers and Flyash reinforced Al 8011 hybrid metal matrix composites. The alloy of Al 8011 reinforced with E-glass and fly ash particulates are prepared by simple stir casting method. The MMC is obtained for different composition of E-glass and flyash particulates (varying E-glass with constant fly ash and varying flyash with constant E-glass percentage). The wear results of ascast hybrid composites with different compositions of reinforcements at varying sliding speeds and different loads are discussed. The results reveals that as the percentage of reinforcement increases wear rate will decrease.Keywords: metal matrix composites, aluminum alloy 8011, stir casting, wear test
Procedia PDF Downloads 350650 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast-Furnace Slag
Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi
Abstract:
Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a supplementary cementitious material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.Keywords: ceramic waste aggregate, chloride diffusion, GGBS, pore size distribution
Procedia PDF Downloads 344649 Statistical Analysis of Failure Cases in Aerospace
Authors: J. H. Lv, W. Z. Wang, S.W. Liu
Abstract:
The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.Keywords: aerospace, disk, failure analysis, fatigue
Procedia PDF Downloads 332648 Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy
Authors: Xingguo Feng, Hui Zhou, Kaifeng Zhang, Zhao Jiang, Hanjun Hu, Jun Zheng, Hong Hao
Abstract:
TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples.Keywords: plasma ion implantation, x-ray photoelectron (XPS), hardness, wear
Procedia PDF Downloads 409647 Self-Organized TiO₂–Nb₂O₅–ZrO₂ Nanotubes on β-Ti Alloy by Anodization
Authors: Muhammad Qadir, Yuncang Li, Cuie Wen
Abstract:
Surface properties such as topography and physicochemistry of metallic implants determine the cell behavior. The surface of titanium (Ti)-based implant can be modified to enhance the bioactivity and biocompatibility. In this study, a self-organized titania–niobium pentoxide–zirconia (TiO₂–Nb₂O₅–ZrO₂) nanotubular layer on β phase Ti35Zr28Nb alloy was fabricated via electrochemical anodization. Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement techniques were used to investigate the nanotubes dimensions (i.e., the inner and outer diameters, and wall thicknesses), microstructural features and evolution of the hydrophilic properties. The in vitro biocompatibility of the TiO₂–Nb₂O₅–ZrO₂ nanotubes (NTs) was assessed by using osteoblast cells (SaOS2). Influence of anodization parameters on the morphology of TiO₂–Nb₂O₅–ZrO₂ NTs has been studied. The results indicated that the average inner diameter, outer diameter and the wall thickness of the TiO₂–Nb₂O₅–ZrO₂ NTs were ranged from 25–70 nm, 45–90 nm and 5–13 nm, respectively, and were directly influenced by the applied voltage during anodization. The average inner and outer diameters of NTs increased with increasing applied voltage, and the length of NTs increased with increasing anodization time and water content of the electrolyte. In addition, the size distribution of the NTs noticeably affected the hydrophilic properties and enhanced the biocompatibility as compared with the uncoated substrate. The results of this study could be considered for developing nano-scale coatings for a wide range of biomedical applications.Keywords: Titanium alloy, TiO₂–Nb₂O₅–ZrO₂ nanotubes, anodization, surface wettability, biocompatibility
Procedia PDF Downloads 155646 Investigation on Corrosion Behavior of Copper Brazed Joints
Authors: A. M. Aminazad, A. M. Hadian, F. Ghasimakbari
Abstract:
DHP (Deoxidized High Phosphorus )copper is widely used in various heat transfer units such as, air conditioners refrigerators, evaporators and condensers. Copper sheets and tubes (ISODHP) were brazed with four different brazing alloys. Corrosion resistances of the joints were examined by polarization and salt spray tests. The selected fillers consisted of three silver-based brazing alloys (hard solder); AWS-BCu5 BAg8, DINLAg30, and a copper-based filler AWS BCuP2. All the joints were brazed utilizing four different brazing processes including furnace brazing under argon, vacuum, air atmosphere and torch brazing. All of the fillers were used with and without flux. The microstructure of the brazed sheets was examined using both optical and scanning electron microscope (SEM). Hardness and leak tests were carried out on all the brazed tubes. In all three silver brazing alloys selective and galvanic corrosion were observed in filler metals, but in copper phosphor alloys the copper adjacent to the joints were noticeably corroded by pitting method. Microstructure of damaged area showed selective attack of copper lamellae as well. Interfacial attack was observed along boundaries as well as copper attack within the filler metal itself. It was found that the samples brazed with BAg5 filler metal using vacuum furnace show a higher resistance to corrosion. They also have a good ductility in the brazed zone.Keywords: copper, brazing, corrosion, filler metal
Procedia PDF Downloads 470645 Using Geopolymer Technology on Stabilization and Reutilization the Expansion Behavior Slag
Authors: W. H. Lee, T. W. Cheng, K. Y. Lin, S. W. Huang, Y. C. Ding
Abstract:
Basic Oxygen Furnace (BOF) Slag and electric arc furnace (EAF) slag is the by-product of iron making and steel making. Each of slag with produced over 100 million tons annually in Taiwan. The type of slag has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, no matter BOF or EAF slag, both have the expansion problem, due to it contains free lime. The purpose of this study was to stabilize the BOF and EAF slag by using geopolymer technology, hoping can prevent and solve the expansion problem. The experimental results showed that using geopolymer technology can successfully solve and prevent the expansion problem. Their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these specimens. Finally, the compressive strength of geopolymer mortar with BOF/FAF slag can be reached over 21MPa after curing for 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can be grown to over 35MPa. In this study have success using these results on ready-mixed concrete plant, and have the same experimental results as laboratory scale. These results gave encouragement that the stabilized and reutilized BOF/EAF slag could be replaced as a feasible natural fine aggregate by using geopolymer technology.Keywords: BOF slag, EAF slag, autoclave test, geopolymer
Procedia PDF Downloads 133644 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test
Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata
Abstract:
The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place duringKeywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test
Procedia PDF Downloads 146643 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints
Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh
Abstract:
Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined.Keywords: aluminium alloys, TIG welding, post weld heat treatment
Procedia PDF Downloads 575642 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels
Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery
Abstract:
The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability
Procedia PDF Downloads 113641 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface
Authors: Amnon Shirizly, Ohad Dolev
Abstract:
In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed
Procedia PDF Downloads 105640 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity
Authors: N. P. Yadav, Deepti Verma
Abstract:
This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid
Procedia PDF Downloads 417639 Friction and Wear Behavior of Zr-Nb Alloy Under Different Conditions
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are generally used for designing the core components of nuclear reactors due to their good mechanical and tribological properties. Some core components are subjected to flow-induced vibrations resulting in wear of these components due to their interaction with one another. To simulate these conditions, low amplitude reciprocating wear tests are conducted at room temperature and high temperature (260 degrees Celsius) between Zr-2.5Nb alloy and SS-410. The tests are conducted at a frequency range of 5 Hz to 25 Hz and an amplitude range of 200 µm to 600 µm. Friction and wear responses were recorded and correlated with the change in parameters. Worn surfaces are analysed using scanning electron microscopy (SEM) and optical profilometer. Elemental changes on the worn surfaces were determined using energy dispersive spectroscopy (EDS). The coefficient of friction (COF) increases with increasing temperature and decreases with increasing frequency. Adhesive wear is found to be the dominant wear mechanism which increases at high temperature.Keywords: nuclear reactor, Zr-2.5Nb, SS-410, friction and wear
Procedia PDF Downloads 82638 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems
Authors: Mohamed Omar
Abstract:
Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing
Procedia PDF Downloads 325637 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography
Procedia PDF Downloads 134636 Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing
Authors: Jaya Prasad Vanam, Vinay Anurag P, Vidya Sravya N S, Kishore Babu Nagamothu
Abstract:
Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs.Keywords: constrained groove pressing, AFDEX, ultra fine grained materials, severe plastic deformation technique
Procedia PDF Downloads 156