Search results for: behavior of soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9111

Search results for: behavior of soil

5301 District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey

Authors: Erdal Akyol, Mutlu Alkan

Abstract:

Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated.

Keywords: GIS, spatial analysis, multi criteria decision analysis, geotechnics

Procedia PDF Downloads 459
5300 Correlation between the Sowing Date and Yield of Maize on Chernozem Soil, in Connection with the Leaf Area Index and Photosynthesis

Authors: Enikő Bene

Abstract:

Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Agricultural Center of University of Debrecen, in 2012-2014. The thesis contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences leaf area index and activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons. The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying effects of each other, develop average yields

Keywords: sowing date, hybrid, leaf area index, photosynthetic capacity

Procedia PDF Downloads 334
5299 Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime

Authors: Pahirangan Sivapatham, , Esser Barbara

Abstract:

The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer’s have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness’s at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences.

Keywords: reclaimed asphalt pavement, quality differences in the bitumen, life time calculation, Asphalt mix with RAP

Procedia PDF Downloads 188
5298 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 264
5297 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 437
5296 The Effect of the Combination of Methotrexate Nanoparticles and TiO2 on Breast Cancer

Authors: Nusaiba Al-Nemrawi, Belal Al-Husein

Abstract:

Methotrexate (MTX) is a stoichiometric inhibitor of dihydrofolate reductase, which is essential for DNA synthesis. MTX is a chemotherapeutic agent used for treating many types of cancer cells. However, cells’ resistant to MTX is very common and its pharmacokinetic behavior is highly problematic. of MTX within tumor cells, we propose encapsulation of antitumor drugs in nanoparticulated systems. Chitosan (CS) is a naturally occurring polymer that is biocompatibe, biodegradable, non-toxic, cationic and bioadhesive. CS nanoparticles (CS-NPs) have been used as drug carrier for targeted delivery. Titanium dioxide (TiO2), a natural mineral oxide, which is used in biomaterials due to its high stability and antimicrobial and anticorrosive properties. TiO2 showed a potential as a tumor suppressor. In this study a new formulation of MTX loaded in CS NPs (CS-MTX NPs) and coated with Titanium oxide (TiO2) was prepared. The mean particle size, zeta potential, polydispersity index were measured. The interaction between CS NPs and TiO2 NPs was confirmed using FTIR and XRD. CS-MTX NPs was studied in vitro using the tumor cell line MCF-7 (human breast cancer). The results showed that CS-MTX has a size around 169 nm and as they were coated with TiO2, the size ranged between and depending on the ratio of CS-MTX to TiO2 ratio used in the preparation. All NPs (uncoated and coated carried positive charges and were monodispersed. The entrapment efficacy was around 65%. Both FTIR and XRD proved that TiO2 interacted with CS-MTX NPs. The drug invitro release was controlled and sustained over days. Finally, the studied in vitro using the tumor cell line MCF-7 suggested that combining nanomaterials with anticancer drugs CS-MTX NPs may be more effective than free MTX for cancer treatment. In conclusion, the combination of CS-MTX NPs and TiO2 NPs showed excellent time-dependent in vitro antitumor behavior, therefore, can be employed as a promising anticancer agent to attain efficient results towards MCF-7 cells.

Keywords: Methotrexate, Titanium dioxide, Chitosan nanoparticles, cancer

Procedia PDF Downloads 95
5295 Comparative Germination Studies in Mature Seeds of Haloxylon Salicornicum

Authors: Laila Almulla

Abstract:

As native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use in landscape projects are gaining popularity. Standardization of seed germination methods and raising the hardened plants of selected native plants for their use in landscape projects will both conserve natural resources and produce sustainable greenery. In the present study, Haloxylon salicornicum, a perennial herb with a potential use for urban greenery was selected for seed germination tests as there is an urgent need to mass multiply them for their large-scale use. Among the nine treatments tried with different concentrations of gibberelic acid (GA3) and dry heat, the seeds responded with treatments when the wings were removed. The control as well as 250 GA3 treatments produced the maximum germination of 86%.

Keywords: dormancy, gibberelic acid, germination trays , vigor index

Procedia PDF Downloads 400
5294 Measure Determination and Zoning of Oil Pollution (TPH) on ‎Costal Sediments of Bandar Abbas (Hormoz Strait) ‎

Authors: Maryam Ehsanpour, Majid Afkhami ‎

Abstract:

This study investigated the presence of hydrocarbon pollution in industrial waste water sediments found in west coast of Bandar Abass (northern part of Hormoz strait). Therefore, six transects from west of the city were selected. Each transect consists of three stations intervals 100, 600 and 1100 meter from the low tide were sampled in both the summer and winter season (July and January 2009). Physical and chemical parameters of water, concentration of total petroleum hydrocarbons (TPH) and soil tissue deposition were evaluated according to standard procedures of MOOPAM. Average results of dissolved oxygen were 6.42 mg/l, temperature 26.31°C, pH 8.55, EC 54.47 ms/cm and salinity 35.98 g/l respectively. Results indicate that minimum, maximum and average concentration of total petroleum hydrocarbons (TPH) in sediments were, 60.18, 751.83, and 229.21 µg/kg respectively which are less than comparable studies in other parts of Persian Gulf.

Keywords: oil pollution, Bandar Abbas, costal sediments, TPH ‎

Procedia PDF Downloads 718
5293 Punishment on top of Punishment - Impact of Inmate Misconduct

Authors: Nazirah Hassan, Andrew Kendrick

Abstract:

Punishment inside the penal institution has always been practiced in order to maintain discipline and keep order. Nonetheless, criminologists have long debated that the enforcement of discipline by punishing inmates is often ineffective and has a detrimental impact on inmates’ conduct. This paper uses data from a sample of 289 incarcerated young offenders to investigate the prevalence of institutional misconduct. It explores punitive cultural practices inside institutions and how this culture affects the inmates’ conduct during confinement. The project focused on male and female young offenders aged 12 to 21 years old, in eight juvenile justice institutions. The research collected quantitative and qualitative data using a mixed-method approach. All participants completed the Direct and Indirect Prisoner behavior Checklist-Scaled Version Revised (DIPC-SCALED-R). In addition, exploratory interviews were carried out with sixteen inmates and eight institutional staff. Results of the questionnaire survey show that almost half of the inmates reported a higher level of involvement in perpetration. It demonstrates a remarkable convergence of direct, rather than indirect, perpetration. Also, inmates reported a higher level of tobacco used and behavior associated with negative attitudes towards staff and institutional rules. In addition to this, the qualitative data suggests that the punitive culture encourages the onset of misconduct by increasing the stressful and oppressive conditions within the institution. In general, physical exercise and locking up inmates are two forms of punishment that were ubiquitous throughout the institutions. Interestingly, physical exercise is not only enforced by institutional staff but also inmates. These findings are discussed in terms of existing literature and their practical implications are considered.

Keywords: institutional punishment, incarcerated young offenders, punitive culture, institutional misconduct

Procedia PDF Downloads 242
5292 Factors Associated with Risky Sexual Behaviour in Adolescent Girls and Young Women in Cambodia: A Systematic Review

Authors: Farwa Rizvi, Joanne Williams, Humaira Maheen, Elizabeth Hoban

Abstract:

There is an increase in risky sexual behavior and unsafe sex in adolescent girls and young women aged 15 to 24 years in Cambodia, which negatively affects their reproductive health by increasing the risk of contracting sexually transmitted infections and unintended pregnancies. Risky sexual behavior includes ‘having sex at an early age, having multiple sexual partners, having sex while under the influence of alcohol or drugs, and unprotected sexual behaviors’. A systematic review of quantitative research conducted in Cambodia was undertaken, using the theoretical framework of the Social Ecological Model to identify the personal, social and cultural factors associated with risky sexual behavior and unsafe sex in young Cambodian women. PRISMA guidelines were used to search databases including Medline Complete, PsycINFO, CINAHL Complete, Academic Search Complete, Global Health, and Social Work Abstracts. Additional searches were conducted in Science Direct, Google Scholar and in the grey literature sources. A risk-of-bias tool developed explicitly for the systematic review of cross-sectional studies was used. Summary item on the overall risk of study bias after the inter-rater response showed that the risk-of-bias was high in two studies, moderate in one study and low in one study. The search strategy included a combination of subject terms and free text terms. The medical subject headings (MeSH) terms included were; contracept* or ‘birth control’ or ‘family planning’ or pregnan* or ‘safe sex’ or ‘protected intercourse’ or ‘unprotected intercourse’ or ‘protected sex’ or ‘unprotected sex’ or ‘risky sexual behaviour*’ or ‘abort*’ or ‘planned parenthood’ or ‘unplanned pregnancy’ AND ( barrier* or obstacle* or challenge* or knowledge or attitude* or factor* or determinant* or choic* or uptake or discontinu* or acceptance or satisfaction or ‘needs assessment’ or ‘non-use’ or ‘unmet need’ or ‘decision making’ ) AND Cambodia*. Initially, 300 studies were identified by using key words and finally, four quantitative studies were selected based on the inclusion criteria. The four studies were published between 2010 and 2016. The study participants ranged in age from 10-24 years, single or married, with 3 to 10 completed years of education. The mean age at sexual debut was reported to be 18 years. Using the perspective of the Social Ecological Model, risky sexual behavior was associated with individual-level factors including young age at sexual debut, low education, unsafe sex under the influence of alcohol and substance abuse, multiple sexual partners or transactional sex. Family level factors included living away from parents, orphan status and low levels of family support. Peer and partner level factors included peer delinquency and lack of condom use. Low socioeconomic status at the society level was also associated with risky sexual behaviour. There is scant research on sexual and reproductive health of adolescent girls and young women in Cambodia. Individual, family and social factors were significantly associated with risky sexual behaviour. More research is required to inform potential preventive strategies and policies that address young women’s sexual and reproductive health.

Keywords: adolescents, high-risk sex, sexual activity, unplanned pregnancies

Procedia PDF Downloads 245
5291 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair

Authors: Dafna Knani, Sarit S. Sivan

Abstract:

Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.

Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling

Procedia PDF Downloads 75
5290 Study of Pathogenicity and Characterization of Fusarium oxysporum f.sp. albedinis by Isozymes Systemes

Authors: Abouamama Sidaoui, Noureddine Karkachi, Mebrouk Kihal

Abstract:

The characteristics of Fusarium oxysporium f.sp. albedinis (Foa) isolates were investigated using electrophoretic studies of isozymes systems (esterase and phosphatase). All the (F.o.a) isolates were pathogenic to the date palm seedlings cultivar Deglet Nour, but they did not induce any disease symptoms on control plants. Fusarium sp. isolated from soil did not show aggression against these seedlings. The isoenzymes profiles revealed polymorphic bands. The data were subjected to analysis with the JMP method. The isolates were delineated into two main groups A and B which were divided into sub-groups. 19 isolates create the group A, and four isolates (E1, E2, E3 and M15A) formed the group B. Analysis of isozyme banding patterns was found to be a reliable marker technology, efficient, and effective tools to find the genetic variability among isolates isolated in different geographical areas.

Keywords: genetic diversity, Fusarium oxysporium f. sp. albedinis, isozyme analysis, pathogenicity

Procedia PDF Downloads 218
5289 Experiment on Artificial Recharge of Groundwater Implemented Project: Effect on the Infiltration Velocity by Vegetation Mulch

Authors: Cheh-Shyh Ting, Jiin-Liang Lin

Abstract:

This study was conducted at the Wanglung Farm in Pingtung County to test the groundwater seepage influences on the implemented project for artificial groundwater recharge. The study was divided into three phases. The first phase, conducted on natural groundwater that was recharged through the local climate and growing conditions, observed the natural form of vegetation species. The original plants were flooded, and after 60 days it was observed that of the original plants only Goosegrass (Eleusine indica) and Black heart (Polygonum lapathifolium Linn.) remained. Direct infiltration tests were carried out, and calculations for the effect of vegetation on infiltration velocity of the recharge pool were noted. The second phase was an indoor test. Bahia grass and wild amaranth were selected as vegetation roots. After growth, the distribution of different grassroots was observed in order to facilitate a comparison permeability coefficient calculated by the amount of penetration and to explore the relationship between density and the efficiency to groundwater recharge. The third phase was the root tomography analysis, further observation of the development of plant roots using computed tomography technology. Computed Tomography, also known as (CT), is a diagnostic imaging examination, normally used in the medical field. In the first phase of the feasibility study, most non-aquatic plants wilted and died within seven days. In seven days, the remaining plants were used for experimental infiltration analysis. Results showed that in eight hours of infiltration test, Eleusine indica stems averaged 0.466 m/day and wild amaranth averaged 0.014 m/day. The second phase of the experiment was conducted on the remains of the plant a week in it had died and rotted, and the infiltration experiment was performed under these conditions. The results showed eight hours in end of the infiltration test, Eleusine indica stems averaged 0.033 m/day, and wild amaranth averaged 0.098 m/day. Non-aquatic plants died within two weeks, and their rotted remains clogged the pores of bottom soil particles, causing obstruction of recharge pool infiltration. Experiment results showed that eight hours in the test the average infiltration velocity for Eleusine indica stems was 0.0229 m/day and wild amaranth averaged 0.0117 m/day. Since the rotted roots of the plants blocked the pores of the soil in the recharge pool, which resulted in the obstruction of the artificial infiltration pond and showed an immediate impact on recharge efficiency. In order to observe the development of plant roots, the third phase used computed tomography imaging. Iodine developer was injected into the Black heart, allowing its cross-sectional images to be shown on CT and to be used to observe root development.

Keywords: artificial recharge of groundwater, computed tomography, infiltration velocity, vegetation root system

Procedia PDF Downloads 310
5288 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 109
5287 Disadvantages and Drawbacks of Concrete Blocks and Fix Their Defects

Authors: Ehsan Sadie

Abstract:

Today, the cost of repair and maintenance of structures is very important and by studying the behavior of reinforced concrete structures Will become specified several factors such as : Design and calculation errors, lack of proper implementation of structural changes, the damage caused by the introduction of random loads, concrete corrosion and environmental conditions reduce durability of the structures . Meanwhile building codes alteration also cause changes in the assessment and review of the design and structure rather if necessary will be improved and strengthened in the future.

Keywords: concrete building , expandable cement, honeycombed surface , reinforcement corrosion

Procedia PDF Downloads 441
5286 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition

Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria

Abstract:

Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.

Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses

Procedia PDF Downloads 154
5285 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading

Authors: Reza E. Sedgh, Rajesh P. Dhakal

Abstract:

Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.

Keywords: analytical model, nonlinear shell element, structural wall, shear behavior

Procedia PDF Downloads 404
5284 A Study on the Response of Vacuum Consolidation on Soft Clay in Combination with Prefabricated Vertical Drain (PVD), Embankment and Surcharge Preloading

Authors: Sharmeelee Subramaniam, Muhd Harris Ramli, Fauziah Ahmad

Abstract:

The application of vacuum pressure to accelerate ground consolidation has been growing significantly in recent years. This ground improvement technique has its advantages, especially in areas where suitable fill is scarce, as it minimizes the surcharge fill height required for the preloading. A study was carried out to examine the response of soft subsoil subjected to vacuum consolidation in combination with embankment loading, surcharge preloading and PVD with two-way drainage. This paper shall describe a procedure to determine the optimum surcharge height and penetration depth of prefabricated vertical drains (PVD) where vacuum consolidation is combined with the use of PVD in soft clay deposits with two-way drainage.

Keywords: prefabricated vertical drain, soft soil, surcharge preload, vacuum consolidation

Procedia PDF Downloads 83
5283 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing

Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang

Abstract:

Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.

Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment

Procedia PDF Downloads 168
5282 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India

Authors: Anupama Singh, Papia Raj

Abstract:

Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.

Keywords: municipal solid waste, Patna, public health, sustainable recycling

Procedia PDF Downloads 323
5281 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block

Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar

Abstract:

Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.

Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent

Procedia PDF Downloads 252
5280 Influence of Esports Marketing Strategies on Consumer Behavior: A Case Study of Valorant

Authors: Alex Arghya Adhikari

Abstract:

Gaming and esports industry is one of the biggest and fastest growing industries in the world. Globally people have started investing more in this industry since now people believe just like traditional sports, esports can also sustain their future. Last year in the month of December, the Indian government also recognised esports as an official sport but there has not been any positive initiative by the government in encouraging people to enter esports. This is a problem which cannot be overlooked since we are already in the digital age and gaming and esports is the future industry. There is a need for multiple effective marketing strategies by the game publishers to stabilize the esports in the country. Purpose: To observe the marketing-communication strategies that are implemented by Riot Games’ Valorant and how those strategies influence the consumer behavior and the esports of the game. Methodology: Activities over the internet related to the game like livestreams, discord chats, Instagram posts and YouTube videos over a period of two months have been collected through the Digital Ethnography. To support and validate the observations of the data collected, in-depth online interviews have been conducted which includes streamers, journalists, LAN experienced players and casual players. Findings: The game publisher through its Dynamic Competitive Gaming Experience and Community-Engaged Ecosystem succeeded in making the game a Recreational activity and a Community which goes beyond the In-game experiences which helped in understanding the impact of audience engagement on esports and the loopholes and setbacks of Indian esports. Conclusion: The study provides a comprehensive analysis of how Valorant's successful marketing and community engagement strategies have contributed to its global popularity and competitive esports environment. It highlights the various strategies employed by Riot Games to keep players engaged and connected, and also the challenges in the Indian esports landscape which differentiates it from the global competition.

Keywords: esports, valorant, marketing, consumer behaviour

Procedia PDF Downloads 69
5279 Effectiveness of Cold Calling on Students’ Behavior and Participation during Class Discussions: Punishment or Opportunity to Shine

Authors: Maimuna Akram, Khadija Zia, Sohaib Naseer

Abstract:

Pedagogical objectives and the nature of the course content may lead instructors to take varied approaches to selecting a student for the cold call, specifically in a studio setup where students work on different projects independently and show progress work time to time at scheduled critiques. Cold-calling often proves to be an effective tool in eliciting a response without enforcing judgment onto the recipients. While there is a mixed range of behavior exhibited by students who are cold-called, a classification of responses from anxiety-provoking to inspiring may be elicited; there is a need for a greater understanding of utilizing the exchanges in bringing about fruitful and engaging outcomes of studio discussions. This study aims to unravel the dimensions of utilizing the cold-call approach in a didactic exchange within studio pedagogy. A questionnaire survey was conducted in an undergraduate class at Arts and Design School. The impact of cold calling on students’ participation was determined through various parameters, including course choice, participation frequency, students’ comfortability, and teaching methodology. After analyzing the surveys, specific classroom teachers were interviewed to provide a qualitative perspective of the faculty. It was concluded that cold-calling increases students’ participation frequency and also increases preparation for class. Around 67% of students responded that teaching methods play an important role in learning activities and students’ participation during class discussions. 84% of participants agreed that cold calling is an effective way of learning. According to research, cold-calling can be done in large numbers without making students uncomfortable. As a result, the findings of this study support the use of this instructional method to encourage more students to participate in class discussions.

Keywords: active learning, class discussion, class participation, cold calling, pedagogical methods, student engagement

Procedia PDF Downloads 36
5278 Energy Resilience in the Sustainable Built Environment: the Use of Biogas to Reduce Vulnerabilities and Risks

Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik

Abstract:

The built environment is considered as a key element in transitioning to clean energy, needed to create resilient buildings and cities, enhance their adaptability to changes, and pursue energy saving. For such energy transition, this paper presents biogas as one of the sustainable sources of energy, as it is produced from organic materials often available in both urban and rural areas and can be converted into electrical and thermal energy, or into vehicular energies fuel. The resilience benefits of this fuel is being a localized alternative energy, and also provides tangible benefits for water, air, and soil quality. Through bibliographic and empirical research, this study analyzed the biogas potential and applications in Brazil and in the U.S. The results indicated that biogas emits 85% less CO2 to the atmosphere compared to diesel and could supply 40% of domestic electricity demand and 70% of diesel consumption in Brazil, with a similar scenario for the U.S.

Keywords: resilience, sustainability, built environment, energy transition, biogas.

Procedia PDF Downloads 92
5277 Cultural Heritage, Urban Planning and the Smart City in Indian Context

Authors: Paritosh Goel

Abstract:

The conservation of historic buildings and historic Centre’s over recent years has become fully encompassed in the planning of built-up areas and their management following climate changes. The approach of the world of restoration, in the Indian context on integrated urban regeneration and its strategic potential for a smarter, more sustainable and socially inclusive urban development introduces, for urban transformations in general (historical centers and otherwise), the theme of sustainability. From this viewpoint, it envisages, as a primary objective, a real “green, ecological or environmental” requalification of the city through interventions within the main categories of sustainability: mobility, energy efficiency, use of sources of renewable energy, urban metabolism (waste, water, territory, etc.) and natural environment. With this the concept of a “resilient city” is also introduced, which can adapt through progressive transformations to situations of change which may not be predictable, behavior that the historical city has always been able to express. Urban planning on the other hand, has increasingly focused on analyses oriented towards the taxonomic description of social/economic and perceptive parameters. It is connected with human behavior, mobility and the characterization of the consumption of resources, in terms of quantity even before quality to inform the city design process, which for ancient fabrics, and mainly affects the public space also in its social dimension. An exact definition of the term “smart city” is still essentially elusive, since we can attribute three dimensions to the term: a) That of a virtual city, evolved based on digital networks and web networks b) That of a physical construction determined by urban planning based on infrastructural innovation, which in the case of historic Centre’s implies regeneration that stimulates and sometimes changes the existing fabric; c) That of a political and social/economic project guided by a dynamic process that provides new behavior and requirements of the city communities that orients the future planning of cities also through participation in their management. This paper is a preliminary research into the connections between these three dimensions applied to the specific case of the fabric of ancient cities with the aim of obtaining a scientific theory and methodology to apply to the regeneration of Indian historical Centre’s. The Smart city scheme if contextualize with heritage of the city it can be an initiative which intends to provide a transdisciplinary approach between various research networks (natural sciences, socio-economics sciences and humanities, technological disciplines, digital infrastructures) which are united in order to improve the design, livability and understanding of urban environment and high historical/cultural performance levels.

Keywords: historical cities regeneration, sustainable restoration, urban planning, smart cities, cultural heritage development strategies

Procedia PDF Downloads 281
5276 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales

Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng

Abstract:

Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.

Keywords: landslides, modelling, rainfall, suction

Procedia PDF Downloads 179
5275 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis

Procedia PDF Downloads 161
5274 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia

Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez

Abstract:

Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.

Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium

Procedia PDF Downloads 289
5273 Modelization of Land Degradation by Desertification Using Medalus Method, Case Study of the Wilaya of Saida, Algeria

Authors: Fekir Youcef, Mederbal Khalladi, M. A. Hamadouche, D. Anteur

Abstract:

Algeria is one of the countries that are highly affected by desertification which is the consequence of several factors. For this purpose, there is a need to study this problem by quantitative approaches. In this study, we apply the MEDALUS method (Mediterranean Desertification and Land Use) to a watershed located in Saida town in semi-arid environment in the south west of Algeria. The method is based on sensitive areas identification by making use of the different parameters that may affect the desertification process such as vegetation, soil, climate and management. Spatial analyses are strong tools that allow modelization of each indicator. Results show that according to European standards, a large scale of the watershed falls into critical classes. And therefore, the modelization approach can be an effective way to study and understand the desertification showing an example of the project of the green dam that limits the desertification process to affect the north areas off Algeria.

Keywords: Algeria, desertification, MEDALUS, modelization

Procedia PDF Downloads 389
5272 Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type.

Keywords: downhole, geophysics, shear wave velocity, case-study

Procedia PDF Downloads 138