Search results for: radial installation limit error
602 Sorting Maize Haploids from Hybrids Using Single-Kernel Near-Infrared Spectroscopy
Authors: Paul R Armstrong
Abstract:
Doubled haploids (DHs) have become an important breeding tool for creating maize inbred lines, although several bottlenecks in the DH production process limit wider development, application, and adoption of the technique. DH kernels are typically sorted manually and represent about 10% of the seeds in a much larger pool where the remaining 90% are hybrid siblings. This introduces time constraints on DH production and manual sorting is often not accurate. Automated sorting based on the chemical composition of the kernel can be effective, but devices, namely NMR, have not achieved the sorting speed to be a cost-effective replacement to manual sorting. This study evaluated a single kernel near-infrared reflectance spectroscopy (skNIR) platform to accurately identify DH kernels based on oil content. The skNIR platform is a higher-throughput device, approximately 3 seeds/s, that uses spectra to predict oil content of each kernel from maize crosses intentionally developed to create larger than normal oil differences, 1.5%-2%, between DH and hybrid kernels. Spectra from the skNIR were used to construct a partial least squares regression (PLS) model for oil and for a categorical reference model of 1 (DH kernel) or 2 (hybrid kernel) and then used to sort several crosses to evaluate performance. Two approaches were used for sorting. The first used a general PLS model developed from all crosses to predict oil content and then used for sorting each induction cross, the second was the development of a specific model from a single induction cross where approximately fifty DH and one hundred hybrid kernels used. This second approach used a categorical reference value of 1 and 2, instead of oil content, for the PLS model and kernels selected for the calibration set were manually referenced based on traditional commercial methods using coloration of the tip cap and germ areas. The generalized PLS oil model statistics were R2 = 0.94 and RMSE = .93% for kernels spanning an oil content of 2.7% to 19.3%. Sorting by this model resulted in extracting 55% to 85% of haploid kernels from the four induction crosses. Using the second method of generating a model for each cross yielded model statistics ranging from R2s = 0.96 to 0.98 and RMSEs from 0.08 to 0.10. Sorting in this case resulted in 100% correct classification but required models that were cross. In summary, the first generalized model oil method could be used to sort a significant number of kernels from a kernel pool but was not close to the accuracy of developing a sorting model from a single cross. The penalty for the second method is that a PLS model would need to be developed for each individual cross. In conclusion both methods could find useful application in the sorting of DH from hybrid kernels.Keywords: NIR, haploids, maize, sorting
Procedia PDF Downloads 302601 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 159600 Impact of COVID-19 Disease on Reproductive Health in Women
Authors: Mikailzade Parvin, Gurbanova Jamila, Alizade Samaya, Hasanova Afat
Abstract:
It is known that in March 2020, the World Health Organization (WHO) declared a global pandemic of the 2019 coronovirus disease COVID-19, caused by the severe acute respiratory syndrome coronovirus (SARS-CoV-2). In this period, ensuring the safety of pregnancy and childbirth has become one of the necessary issues. The measures taken in this direction naturally consisted of strengthening and improving preventive measures among pregnant women. It should be noted that the lethality of SARS-CoV-2 infection among women reached 25%. The relevance of studying the effect of COVID-19 on reproductive health in women is due to its wide spread worldwide, severe clinical course, and the occurrence of numerous complications or lethality. It is of urgent importance to study the impact of the mentioned coronavirus infection on the health of pregnant women and the serious complications caused by it.Taking these into account, 230 pregnant women infected with the COVID-19 virus infection were registered. The average age of the pregnant women included in the study was: 29.24±6.0. The diagnosis of corona virus infection was made on the basis of polymerase chain reaction (PCR), serological tests (IgG, IgM). In 57.4% of cases, bilateral pneumonia was recorded in pregnant women and confirmed on the basis of radiological (RH) examination. RH examination revealed pneumonia with infiltrate in the lungs. Among clinical symptoms in pregnant women infected with COVID-19 virus infection: in 86 (37.4%) cases, symptoms such as high fever (t-39.0oC), shortness of breath, fatigue, and hypoxia were noted in pregnant women. A decrease in SpO2 to a minimal level was recorded. Laboratory-instrumental examinations were carried out. The obtained results showed: the average limit of D-dimer was 0.8±0.5; prothrombin time 13.2±1.1 seconds; INR 0.98±0.08, prothrombin index 104.3±19.5%, EHS - 34.8±13.6 mm/s. It should be noted that respiratory distress syndrome (RDS), premature birth, malformed and extremely malformed newborns, asphyxia or hypoxia have been reported in infants born to pregnant women infected with the coronavirus disease.Thus, from the obtained indicators, it is known that pregnant women infected with the virus have a high risk of serious illness and death for both themselves and their babies. It has been proven that the majority of babies born to SARS-CoV-2 positive mothers have a negative impact on their health.Keywords: Covid 19, reproductive health, preqnancy, premature birth
Procedia PDF Downloads 87599 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 280598 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II
Authors: Heerak Banerjee, Sourov Roy
Abstract:
Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry
Procedia PDF Downloads 127597 Entrepreneurship Education: A Panacea for Entrepreneurial Intention of University Undergraduates in Ogun State, Nigeria
Authors: Adedayo Racheal Agbonna
Abstract:
The rising level of graduate unemployment in Nigeria has brought about the introduction of entrepreneurship education as a career option for self–reliance and self-employment. Sequel to this, it is important to have an understanding of the determining factors of entrepreneurial intention. Therefore this research empirically investigated the influence of entrepreneurship education on entrepreneurial intention of undergraduate students of selected universities in Ogun State, Nigeria. The study is significant to researchers, university policy makers, and the government. Survey research design was adopted in the study. The population consisted of 17,659 final year undergraduate students universities in Ogun State. The study adopted stratified and random sampling technique. The table of sample size determination was used to determine the sample size for this study at 95% confidence level and 5% margin error to arrive at a sample size of 1877 respondents. The elements of population were 400 level students of the selected universities. A structured questionnaire titled 'Entrepreneurship Education and students’ Entrepreneurial intention' was administered. The result of the reliability test had the following values 0.716, 0.907 and 0.949 for infrastructure, perceived university support, and entrepreneurial intention respectively. In the same vein, from the construct validity test, the following values were obtained 0.711, 0.663 and 0.759 for infrastructure, perceived university support and entrepreneurial intention respectively. Findings of this study revealed that each of the entrepreneurship education variables significantly affected intention University infrastructure B= -1.200, R²=0.679, F (₁,₁₈₇₅) = 3958.345, P < 0.05) Perceived University Support B= -1.027, R²=0.502, F(₁,₁₈₇₅) = 1924.612, P < 0.05). The perception of respondents in public university and private university on entrepreneurship education have a statistically significant difference [F(₁,₁₈₇₅) = 134.614, p < 0.05) α F(₁,₁₈₇₅) = 363.439]. The study concluded that entrepreneurship education positively influenced entrepreneurial intention of undergraduate students in Ogun State, Nigeria. Also, university infrastructure and perceived university support have negative and significant effect on entrepreneurial intention. The study recommended that to promote entrepreneurial intention of university undergraduate students, infrastructures and the university support that can arouse entrepreneurial intention of students should be put in place.Keywords: entrepreneurship education, entrepreneurial intention, perceived university support, university infrastructure
Procedia PDF Downloads 235596 Fully Coupled Porous Media Model
Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li
Abstract:
This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.Keywords: coupled, implicit, monolithic, porous media
Procedia PDF Downloads 138595 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors
Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub
Abstract:
Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance
Procedia PDF Downloads 271594 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan
Authors: Yichin Chen
Abstract:
Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.Keywords: aerial photogrammetry, landslide, landform change, Taiwan
Procedia PDF Downloads 157593 Development of an Optimised, Automated Multidimensional Model for Supply Chains
Authors: Safaa H. Sindi, Michael Roe
Abstract:
This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.Keywords: Leagile, automation, heuristic learning, supply chain models
Procedia PDF Downloads 389592 Frustration Measure for Dipolar Spin Ice and Spin Glass
Authors: Konstantin Nefedev, Petr Andriushchenko
Abstract:
Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.Keywords: frustrations, parameter of order, statistical physics, magnetism
Procedia PDF Downloads 169591 Agronomic Test to Determine the Efficiency of Hydrothermally Treated Alkaline Igneous Rocks and Their Potassium Fertilizing Capacity
Authors: Aaron Herve Mbwe Mbissik, Lotfi Khiari, Otmane Raji, Abdellatif Elghali, Abdelkarim Lajili, Muhammad Ouabid, Martin Jemo, Jean-Louis Bodinier
Abstract:
Potassium (K) is an essential macronutrient for plant growth, helping to regulate several physiological and metabolic processes. Evaporite-related potash salts, mainly sylvite minerals (K chloride or KCl), are the principal source of K for the fertilizer industry. However, due to the high potash-supply risk associated with its considerable price fluctuations and uneven geographic distribution for most agriculture-based developing countries, the development of alternative sources of fertilizer K is imperative to maintain adequate crop yield, reduce yield gaps, and food security. Alkaline Igneous rocks containing significant K-rich silicate minerals such as K feldspar are increasingly seen as the best alternative available. However, these rocks may require to be hydrothermally treatment to enhance the release of potassium. In this study, we evaluate the fertilizing capacity of raw and hydrothermally treated K-bearing silicate rocks from different areas in Morocco. The effectiveness of rock powders was tested in a greenhouse experiment using ryegrass (Lolium multiflorum) by comparing them to a control (no K added) and to a conventional fertilizer (muriate of potash: MOP or KCl). The trial was conducted in a randomized complete block design with three replications, and plants were grown on K-depleted soils for three growing cycles. To achieve our objective, in addition to the analysis of the muriate response curve and the different biomasses, we also examined three necessary coefficients, namely: the K uptake, then apparent K recovery (AKR), and the relative K efficiency (RKE). The results showed that based on the optimum economic rate of MOP (230 kg.K.ha⁻¹) and the optimum yield (44 000 kg.K.ha⁻¹), the efficiency of K silicate rocks was as high as that of MOP. Although the plants took up only half of the K supplied by the powdered rock, the hydrothermal material was found to be satisfactory, with a biomass value reaching the optimum economic limit until the second crop cycle. In comparison, the AKR of the MOP (98.6%) and its RKE in the 1st cycle were higher than our materials: 39% and 38%, respectively. Therefore, the raw and hydrothermal materials mixture could be an appropriate solution for long-term agronomic use based on the obtained results.Keywords: K-uptake, AKR, RKE, K-bearing silicate rock, MOP
Procedia PDF Downloads 90590 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 460589 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics
Authors: Namasivayam Navaranjan, Eric Dimla
Abstract:
The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.Keywords: bioplastics, plastics, renewable resources, biomass
Procedia PDF Downloads 308588 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 185587 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 113586 Levels of CTX1 in Premenopausal Osteoporotic Women Study Conducted in Khyberpuktoonkhwa Province, Pakistan
Authors: Mehwish Durrani, Rubina Nazli, Muhammad Abubakr, Muhammad Shafiq
Abstract:
Objectives: To evaluate the high socio-economic status, urbanization, and decrease ambulation can lead to early osteoporosis in women reporting from Peshawar region. Study Design: Descriptive cross-sectional study was done. Sample size was 100 subjects, using 30% proportion of osteoporosis, 95% confidence level, and 9% margin of error under WHO software for sample size determination. Place and Duration of study: This study was carried out in the tertiary referral health care facilities of Peshawar viz PGMI Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa Province, Pakistan. Ethical approval for the study was taken from the Institutional Ethical Research board (IERD) at Post Graduate Medical Institute, Hayatabad Medical Complex, and Peshawar.The study was done in six months time period. Patients and Methods: Levels of CTX1 as a marker of bone degradation in radiographically assessed perimenopausal women was determined. These females were randomly selected and screened for osteoporosis. Hemoglobin in gm/dl, ESR by Westergren method as millimeter in 1 hour, Serum Ca mg/dl, Serum alkaline Phosphatase international units per liter radiographic grade of osteoporosis according to Singh index as 1-6 and CTX 1 level in pg/ml. Results: High levels of CTX1 was observed in perimenopausal osteoporotic women which were radiographically diagnosed as osteoporotic patients. The High socio-economic class also predispose to osteoporosis. Decrease ambulation another risk factor showed significant association with the increased levels of CTX1. Conclusion: The results of this study propose that minimum ambulation and high socioeconomic class both had significance association with the increase levels of serum CTX1, which in turn will lead to osteoporosis and to its complications.Keywords: osteoporosis, CTX1, perimenopausal women, Hayatabad Medical Complex, Khyberpuktoonkhwa
Procedia PDF Downloads 331585 Moderate Electric Field Influence on Carotenoids Extraction Time from Heterochlorella luteoviridis
Authors: Débora P. Jaeschke, Eduardo A. Merlo, Rosane Rech, Giovana D. Mercali, Ligia D. F. Marczak
Abstract:
Carotenoids are high value added pigments that can be alternatively extracted from some microalgae species. However, the application of carotenoids synthetized by microalgae is still limited due to the utilization of organic toxic solvents. In this context, studies involving alternative extraction methods have been conducted with more sustainable solvents to replace and reduce the solvent volume and the extraction time. The aim of the present work was to evaluate the extraction time of carotenoids from the microalgae Heterochlorella luteoviridis using moderate electric field (MEF) as a pre-treatment to the extraction. The extraction methodology consisted of a pre-treatment in the presence of MEF (180 V) and ethanol (25 %, v/v) for 10 min, followed by a diffusive step performed for 50 min using a higher ethanol concentration (75 %, v/v). The extraction experiments were conducted at 30 °C and, to keep the temperature at this value, it was used an extraction cell with a water jacket that was connected to a water bath. Also, to enable the evaluation of MEF effect on the extraction, control experiments were performed using the same cell and conditions without voltage application. During the extraction experiments, samples were withdrawn at 1, 5 and 10 min of the pre-treatment and at 1, 5, 30, 40 and 50 min of the diffusive step. Samples were, then, centrifuged and carotenoids analyses were performed in the supernatant. Furthermore, an exhaustive extraction with ethyl acetate and methanol was performed, and the carotenoids content found for this analyses was considered as the total carotenoids content of the microalgae. The results showed that the application of MEF as a pre-treatment to the extraction influenced the extraction yield and the extraction time during the diffusive step; after the MEF pre-treatment and 50 min of the diffusive step, it was possible to extract up to 60 % of the total carotenoids content. Also, results found for carotenoids concentration of the extracts withdrawn at 5 and 30 min of the diffusive step did not presented statistical difference, meaning that carotenoids diffusion occurs mainly in the very beginning of the extraction. On the other hand, the results for control experiments showed that carotenoids diffusion occurs mostly during 30 min of the diffusive step, which evidenced MEF effect on the extraction time. Moreover, carotenoids concentration on samples withdrawn during the pre-treatment (1, 5 and 10 min) were below the quantification limit of the analyses, indicating that the extraction occurred in the diffusive step, when ethanol (75 %, v/v) was added to the medium. It is possible that MEF promoted cell membrane permeabilization and, when ethanol (75 %) was added, carotenoids interacted with the solvent and the diffusion occurred easily. Based on the results, it is possible to infer that MEF promoted the decrease of carotenoids extraction time due to the increasing of the permeability of the cell membrane which facilitates the diffusion from the cell to the medium.Keywords: moderate electric field (MEF), pigments, microalgae, ethanol
Procedia PDF Downloads 463584 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid Onaizah
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 79583 Records of Lepidopteron Borers (Lepidoptera) on Stored Seeds of Indian Himalayan Conifers
Authors: Pawan Kumar, Pitamber Singh Negi
Abstract:
Many of the regeneration failures in conifers are often being attributed to heavy insect attack and pathogens during the period of seed formation and under storage conditions. Conifer berries and seed insects occur throughout the known range of the hosts and also limit the production of seed for nursery stock. On occasion, even entire seed crops are lost due to insect attacks. The berry and seeds of both the species have been found to be infected with insects. Recently, heavy damage to the berry and seeds of Juniper and Chilgoza Pine was observed in the field as well as in stored conditions, leading to reduction in the viability of seeds to germinate. Both the species are under great threat and regeneration of the species is very low. Due to lack of adequate literature, the study on the damage potential of seed insects was urgently required to know the exact status of the insect-pests attacking seeds/berries of both the pine species so as to develop pest management practices against the insect pests attack. As both the species are also under threat and are fighting for survival, so the study is important to develop management practices for the insect-pests of seeds/berries of Juniper and Chilgoza pine so as to evaluate in the nursery, as these species form major vegetation of their distribution zones. A six-year study on the management of insect pests of seeds of Chilgoza revealed that seeds of this species are prone to insect pests mainly borers. During present investigations, it was recorded that cones of are heavily attacked only by Dioryctria abietella (Lepidoptera: Pyralidae) in natural conditions, but seeds which are economically important are heavily infected, (sometimes up to 100% damage was also recorded) by insect borer, Plodia interpunctella (Lepidoptera: Pyralidae) and is recorded for the first time ‘to author’s best knowledge’ infesting the stored Chilgoza seeds. Similarly, Juniper berries and seeds were heavily attacked only by a single borer, Homaloxestis cholopis (Lepidoptera: Lecithoceridae) recorded as a new report in natural habitat as well as in stored conditions. During the present investigation details of insect pest attack on Juniper and Chilgoza pine seeds and berries was observed and suitable management practices were also developed to contain the insect-pests attack.Keywords: borer, chilgozapine, cones, conifer, Lepidoptera, juniper, management, seed
Procedia PDF Downloads 148582 Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks
Authors: Vishal Pareek, Shubham Gupta, Sushil Chandra Jain
Abstract:
With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits.Keywords: parity preserving gate, quantum computing, fault tolerance, flip-flop, sequential reversible logic
Procedia PDF Downloads 545581 Copyright Infringement for Academic Authorship in Uganda: Implications on Exemptions of Fair Use for Educational Purposes in Universities
Authors: Elisam Magara
Abstract:
Like any other property, Intellectual Property (IP) must be regarded, respected, and remunerated to address the historical, ethical, economical and informational needs of society. Article 26 of the Constitution of the Republic of Uganda 1995, the Copyright and Neighbouring Rights (CNR) Act 2006 and CNR Regulations 2010 guide copyright protection in Uganda. However, an unpredictable environment has negatively impact on certain author/intellectual freedoms; and the infringements on academic works that affect the economic rights of authors that limit authors from fully enjoying the benefits of authorship. Notwithstanding the different licensing systems and copyright protection avenues, educational institutions and custodians of copyright works (libraries, archives) have continued to advocate for open access to information resources, under the legal exceptions of fair use for educational purposes. Thus, a study was conducted in educational institutions, libraries and archives in Uganda to assess the state of copyright infringement in Uganda in an increased use of academic authored works. The study attempted to establish the nature and forms of Copyright Infringement, the circumstances for copyright infringement, assessed the opinions from the custodians on strategies for balancing copyright protection for economic and moral gains by authors and increased access to information for educational purposes and fair-use. Through a survey, using a self-administered questionnaire, interviews and physical visits, the study was conducted in higher education institutions, libraries and archives among the officers that manage and keep copyright works. It established that the uncontrolled reproduction of copyright works in educational institutions and information institutions, have contributed copyright infringement robbing authors of their potential economic earnings and limiting their academic innovativeness and creativity. The study also established that lack of consciousness and awareness on copyright issues by lecturers, universities and libraries has made copyright works in Universities highly susceptible to copyright infringement. Thus the increased access to materials without restrictions has resulted in copyright infringement among the educational institutions, libraries and archives. A strategic alliance by the collecting Society (Uganda Reproduction Rights Organisation (URRO), government, Universities and right holders organisations (UTANA) to work together and institute a programme to address copyright protection and access to information is pertinently required.Keywords: access to information, academic Writing, copyright, copyright infringement, copyright protection, exemptions of fair use, intellectual property rights
Procedia PDF Downloads 453580 The Anesthesia Considerations in Robotic Mastectomies
Authors: Amrit Vasdev, Edwin Rho, Gurinder Vasdev
Abstract:
Robotic surgery has enabled a new spectrum of minimally invasive breast reconstruction by improving visualization, surgeon posturing, and improved patient outcomes.1 The DaVinci robot system can be utilized in nipple sparing mastectomies and reconstructions. The process involves the insufflation of the subglandular space and a dissection of the mammary gland with a combination of cautery and blunt dissection. This case outlines a 35-year-old woman who has a long-standing family history of breast cancer and a diagnosis of a deleterious BRCA2 genetic mutation. She has decided to proceed with bilateral nipple sparing mastectomies with implants. Her perioperative mammogram and MRI were negative for masses, however, her left internal mammary lymph node was enlarged. She has taken oral contraceptive pills for 3-5 years and denies DES exposure, radiation therapy, human replacement therapy, or prior breast surgery. She does not smoke and rarely consumes alcohol. During the procedure, the patient received a standardized anesthetic for out-patient surgery of propofol infusion, succinylcholine, sevoflurane, and fentanyl. Aprepitant was given as an antiemetic and preoperative Tylenol and gabapentin for pain management. Concerns for the patient during the procedure included CO2 insufflation into the subcutaneous space. With CO2 insufflation, there is a potential for rapid uptake leading to severe acidosis, embolism, and subcutaneous emphysema.2To mitigate this, it is important to hyperventilate the patient and reduce both the insufflation pressure and the CO2 flow rate to the minimal acceptable by the surgeon. For intraoperative monitoring during this 6-9 hour long procedure, it has been suggested to utilize an Arterial-Line for end-tidal CO2 monitoring. However, in this case, it was not necessary as the patient had excellent cardiovascular reserve, and end-tidal CO2 was within normal limits for the duration of the procedure. A BIS monitor was also utilized to reduce anesthesia burden and to facilitate a prompt discharge from the PACU. Minimal Invasive Robotic Surgery will continue to evolve, and anesthesiologists need to be prepared for the new challenges ahead. Based on our limit number of patients, robotic mastectomy appears to be a safe alternative to open surgery with the promise of clearer tissue demarcation and better cosmetic results.Keywords: anesthesia, mastectomies, robotic, hypercarbia
Procedia PDF Downloads 112579 Early Prediction of Diseases in a Cow for Cattle Industry
Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan
Abstract:
In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.Keywords: IoT, machine learning, health care, dairy cows
Procedia PDF Downloads 71578 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 241577 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 91576 Computer-Aided Ship Design Approach for Non-Uniform Rational Basis Spline Based Ship Hull Surface Geometry
Authors: Anu S. Nair, V. Anantha Subramanian
Abstract:
This paper presents a surface development and fairing technique combining the features of a modern computer-aided design tool namely the Non-Uniform Rational Basis Spline (NURBS) with an algorithm to obtain a rapidly faired hull form. Some of the older series based designs give sectional area distribution such as in the Wageningen-Lap Series. Others such as the FORMDATA give more comprehensive offset data points. Nevertheless, this basic data still requires fairing to obtain an acceptable faired hull form. This method uses the input of sectional area distribution as an example and arrives at the faired form. Characteristic section shapes define any general ship hull form in the entrance, parallel mid-body and run regions. The method defines a minimum of control points at each section and using the Golden search method or the bisection method; the section shape converges to the one with the prescribed sectional area with a minimized error in the area fit. The section shapes combine into evolving the faired surface by NURBS and typically takes 20 iterations. The advantage of the method is that it is fast, robust and evolves the faired hull form through minimal iterations. The curvature criterion check for the hull lines shows the evolution of the smooth faired surface. The method is applicable to hull form from any parent series and the evolved form can be evaluated for hydrodynamic performance as is done in more modern design practice. The method can handle complex shape such as that of the bulbous bow. Surface patches developed fit together at their common boundaries with curvature continuity and fairness check. The development is coded in MATLAB and the example illustrates the development of the method. The most important advantage is quick time, the rapid iterative fairing of the hull form.Keywords: computer-aided design, methodical series, NURBS, ship design
Procedia PDF Downloads 169575 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics
Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García
Abstract:
Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics
Procedia PDF Downloads 300574 The Comparative Analysis on Pre-Trial in Relation to the Reform of Pre-Trial in Indonesian Criminal Procedural Code
Authors: Muhammad Fatahillah Akbar
Abstract:
Criminal Procedural Law is established to protect the society from the abuse of authority. To achieve that purpose, the criminal procedural law shall be established in accordance with the laws of human right and the protection of the society. One of the mechanisms to protect human rights and to ensure the compliance of authorities in criminal procedural law is pre-trial mechanism. In many countries, there are various mechanisms of pre-trial. In the recent cases in Indonesia, pre-trial has been an interesting issue. The issue is also addressed by the Constitutional Court Decision Number 21/PUU-XII/2014 which enhance the competence of pre-trial which includes the suspect determination and the legality of seizure and search. Before that decision, some pre-trial decisions have made landmark decision by enhancing the competence of pre-trial, such as the suspect determination case in Budi Gunawan Case and legality of the investigation in Hadi Purnomo Case. These pre-trial cases occurred because the society needs protection even though it is not provided by written legislations, in this matter, The Indonesian Criminal Procedural Code (KUHAP). For instance, a person can be a suspect for unlimited time because the Criminal Procedural Code does not regulate the limit of investigation, so the suspect enactment shall be able to be challenged to protect human rights. Before the Constitutional Court Decision Suspect Determination cannot be challenged so that the society is not fully protected. The Constitutional Court Decision has provided more protections. Nowadays, investigators shall be more careful in conducting the investigation. However, those decisions, including the Constitutional Court Decision are not sufficient for society to be protected by abuse of authority. For example, on 7 March 2017, a single judge, in a Pre-Trial, at the Surabaya District Court, decided that the investigation was unlawful and shall be terminated. This is not regulated according to the Code and also any decisions in pre-trial. It can be seen that the reform of pre-trial is necessary. Hence, this paper aims to examine how pre-trial shall be developed in the future to provide wide access for society to have social justice in criminal justice system. The question will be answered by normative, historical, and comparative approaches. Firstly, the paper will examine the history of pre-trial in Indonesia and also landmark decisions on pre-trial. Then, the lessons learned from other countries regarding to the pre-trial mechanism will be elaborated to show how pre-trial shall be developed and what the competences of a pre-trial are. The focus of all discussions shall be on how the society is protected and provided access to legally complain to the authority. At the end of the paper, the recommendation to reform the pre-trial mechanism will be suggested.Keywords: pre-trial, criminal procedural law, society
Procedia PDF Downloads 168573 Prediction of Fillet Weight and Fillet Yield from Body Measurements and Genetic Parameters in a Complete Diallel Cross of Three Nile Tilapia (Oreochromis niloticus) Strains
Authors: Kassaye Balkew Workagegn, Gunnar Klemetsdal, Hans Magnus Gjøen
Abstract:
In this study, the first objective was to investigate whether non-lethal or non-invasive methods, utilizing body measurements, could be used to efficiently predict fillet weight and fillet yield for a complete diallel cross of three Nile tilapia (Oreochromis niloticus) strains collected from three Ethiopian Rift Valley lakes, Lakes Ziway, Koka and Chamo. The second objective was to estimate heritability of body weight, actual and predicted fillet traits, as well as genetic correlations between these traits. A third goal was to estimate additive, reciprocal, and heterosis effects for body weight and the various fillet traits. As in females, early sexual maturation was widespread, only 958 male fish from 81 full-sib families were used, both for the prediction of fillet traits and in genetic analysis. The prediction equations from body measurements were established by forward regression analysis, choosing models with the least predicted residual error sums of squares (PRESS). The results revealed that body measurements on live Nile tilapia is well suited to predict fillet weight but not fillet yield (R²= 0.945 and 0.209, respectively), but both models were seemingly unbiased. The genetic analyses were carried out with bivariate, multibreed models. Body weight, fillet weight, and predicted fillet weight were all estimated with a heritability ranged from 0.23 to 0.28, and with genetic correlations close to one. Contrary, fillet yield was only to a minor degree heritable (0.05), while predicted fillet yield obtained a heritability of 0.19, being a resultant of two body weight variables known to have high heritability. The latter trait was estimated with genetic correlations to body weight and fillet weight traits larger than 0.82. No significant differences among strains were found for their additive genetic, reciprocal, or heterosis effects, while total heterosis effects were estimated as positive and significant (P < 0.05). As a conclusion, prediction of prediction of fillet weight based on body measurements is possible, but not for fillet yield.Keywords: additive, fillet traits, genetic correlation, heritability, heterosis, prediction, reciprocal
Procedia PDF Downloads 188