Search results for: inclusive business models
6446 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model
Authors: Yaseri Dahlia Apritasari
Abstract:
Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.Keywords: aluminium material, Facade, second skin, visual comfort
Procedia PDF Downloads 3526445 Collaborative Planning and Forecasting
Authors: Neha Asthana, Vishal Krishna Prasad
Abstract:
Collaborative planning and forecasting are the innovative and systematic approaches towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate collaborative planning and forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.Keywords: information transfer, forecasting, optimization, supply chain management
Procedia PDF Downloads 4356444 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions
Authors: Saif Alomari
Abstract:
The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters
Procedia PDF Downloads 1426443 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 4736442 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate
Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar
Abstract:
Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis
Procedia PDF Downloads 1986441 The Relational Approach under the Angle of the CSR
Authors: Fatima El Kandoussi, Hind Benouakrim, Afafe El Amrani El Hassani
Abstract:
CSR in the relational approach is imposed today as a matter of concerns lighthouses in the academic environment and managerial. This study presents the issues of the CSR dimension in the field of relationship marketing. This exploratory research was conducted with two groups of Moroccan enterprises having the label of the CSR /CGEM. It presents a better understanding of the approaches taken by the companies interviewed in a CSR and contributed to understand the reasons that lead them to adopt the process of CSR and also allows explaining how these enterprises maintain their relationship with the most important customers in a context of CSR.Keywords: relationship marketing, CSR, stakeholders, business
Procedia PDF Downloads 4476440 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods
Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne
Abstract:
The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.
Procedia PDF Downloads 236439 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 666438 An Application of Quantile Regression to Large-Scale Disaster Research
Authors: Katarzyna Wyka, Dana Sylvan, JoAnn Difede
Abstract:
Background and significance: The following disaster, population-based screening programs are routinely established to assess physical and psychological consequences of exposure. These data sets are highly skewed as only a small percentage of trauma-exposed individuals develop health issues. Commonly used statistical methodology in post-disaster mental health generally involves population-averaged models. Such models aim to capture the overall response to the disaster and its aftermath; however, they may not be sensitive enough to accommodate population heterogeneity in symptomatology, such as post-traumatic stress or depressive symptoms. Methods: We use an archival longitudinal data set from Weill-Cornell 9/11 Mental Health Screening Program established following the World Trade Center (WTC) terrorist attacks in New York in 2001. Participants are rescue and recovery workers who participated in the site cleanup and restoration (n=2960). The main outcome is the post-traumatic stress symptoms (PTSD) severity score assessed via clinician interviews (CAPS). For a detailed understanding of response to the disaster and its aftermath, we are adapting quantile regression methodology with particular focus on predictors of extreme distress and resilience to trauma. Results: The response variable was defined as the quantile of the CAPS score for each individual under two different scenarios specifying the unconditional quantiles based on: 1) clinically meaningful CAPS cutoff values and 2) CAPS distribution in the population. We present graphical summaries of the differential effects. For instance, we found that the effect of the WTC exposures, namely seeing bodies and feeling that life was in danger during rescue/recovery work was associated with very high PTSD symptoms. A similar effect was apparent in individuals with prior psychiatric history. Differential effects were also present for age and education level of the individuals. Conclusion: We evaluate the utility of quantile regression in disaster research in contrast to the commonly used population-averaged models. We focused on assessing the distribution of risk factors for post-traumatic stress symptoms across quantiles. This innovative approach provides a comprehensive understanding of the relationship between dependent and independent variables and could be used for developing tailored training programs and response plans for different vulnerability groups.Keywords: disaster workers, post traumatic stress, PTSD, quantile regression
Procedia PDF Downloads 2846437 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 716436 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 2456435 An Experimental Investigation on Productivity and Performance of an Improved Design of Basin Type Solar Still
Authors: Mahmoud S. El-Sebaey, Asko Ellman, Ahmed Hegazy, Tarek Ghonim
Abstract:
Due to population growth, the need for drinkable healthy water is highly increased. Consequently, and since the conventional sources of water are limited, researchers devoted their efforts to oceans and seas for obtaining fresh drinkable water by thermal distillation. The current work is dedicated to the design and fabrication of modified solar still model, as well as conventional solar still for the sake of comparison. The modified still is single slope double basin solar still. The still consists of a lower basin with a dimension of 1000 mm x 1000 mm which contains the sea water, as well as the top basin that made with 4 mm acrylic, was temporarily kept on the supporting strips permanently fixed with the side walls. Equally ten spaced vertical glass strips of 50 mm height and 3 mm thickness were provided at the upper basin for the stagnancy of the water. Window glass of 3 mm was used as the transparent cover with 23° inclination at the top of the still. Furthermore, the performance evaluation and comparison of these two models in converting salty seawater into drinkable freshwater are introduced, analyzed and discussed. The experiments were performed during the period from June to July 2018 at seawater depths of 2, 3, 4 and 5 cm. Additionally, the solar still models were operated simultaneously in the same climatic conditions to analyze the influence of the modifications on the freshwater output. It can be concluded that the modified design of double basin single slope solar still shows the maximum freshwater output at all water depths tested. The results showed that the daily productivity for modified and conventional solar still was 2.9 and 1.8 dm³/m² day, indicating an increase of 60% in fresh water production.Keywords: freshwater output, solar still, solar energy, thermal desalination
Procedia PDF Downloads 1356434 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan
Authors: Dina Ahmad Alkhodary
Abstract:
This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.Keywords: data, mining, development, business
Procedia PDF Downloads 4976433 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images
Authors: Sophia Shi
Abstract:
Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG
Procedia PDF Downloads 1316432 Multi-Criteria Bid/No Bid Decision Support Framework for General Contractors: A Case of Pakistan
Authors: Nida Iftikhar, Jamaluddin Thaheem, Bilal Iftikhar
Abstract:
In the construction industry, adequate and effective decision-making can mean the difference between success and failure. Bidding is the most important element of the construction business since it is a mean by which contractors obtain work. This is probably the only option for any contractor firm to sustain in the market and achieve its objective of earning the profits by winning tenders. The capability to select most appropriate ventures not only defines the success and wellbeing of contractor firms but also their survival and sustainability in the industry. The construction practitioners are usually on their own when it comes to deciding on bidding for a project or not. Usually, experience-based solutions are offered where a lot of subjectivity is involved. This research has been opted considering the local construction industry of Pakistan in order to examine the critical success factors from contractors’ perspective while making bidding decisions, listing and evaluating critical factors in order of their importance, categorization of these factors into decision support & decision oppose groups and to develop a framework to help contractors in the decision-making process. Literature review, questionnaires, and structured interviews are used for identification and quantification of factors affecting bid/no bid decision-making. Statistical methods of ranking analysis and analytical hierarchy process of multi-criteria decision-making method are used for analysis. It is found that profitability, need for work and financial health of client are the most decisive factors in bid/no bid decision-making while project size, project type, fulfilling the tender conditions imposed by the client and relationship, identity & reputation of the client are least impact factors in bid/no bid decision-making. Further, to verify the developed framework, case studies have been conducted to evaluate the bid/no bid decision-making in building procurement. This is the first of its nature study in the context of the local construction industry and recommends using a holistic decision-making framework for such business-critical deliberations.Keywords: bidding, bid decision-making, construction procurement, contractor
Procedia PDF Downloads 1916431 Health Care using Queuing Theory
Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj
Abstract:
The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis
Procedia PDF Downloads 3006430 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India
Authors: Aayushi Lyngwa, Bimal Kishore Sahoo
Abstract:
The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.
Procedia PDF Downloads 1106429 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 816428 The Strategic Roles of Women in Small Family Businesses: Evidence from Two Emerging Economies in West Africa
Authors: Bamidele Wale-Oshinowo, Doris Akyere Boateng, Lebura Sorbarikor
Abstract:
Women play significant roles when it comes to the survival of family businesses; however, their efforts are less acknowledged across the developing world. In the case where these businesses are started by husbands, women in many instances work as hard as the men to build up the business. In spite of this, the benefits women receive are not equal to their inputs. For instance, the profits accruing from ownership of these businesses are mainly enjoyed by husbands, as they are deemed to be the legal owners of family businesses in most developing economies. Though the number of women involvement in the ownership, management, and direction of family businesses keeps increasing over the years, their efforts sometimes are ‘invisible’ and not rewarded. Using a phenomenological approach, this study purposively selected 20 businesswomen each from Ghana and Nigeria for in-depth interviews on the different roles they play in ensuring the success of their family businesses (FBs). This study also explored the challenges and opportunities that these women have within their family businesses. Among the major findings of this study is the important strategic direction that women give in terms of providing both tangible and intangible resources such as transfer of transit knowledge to the next generation. Women were also found to play a significant role in the implementation of entrepreneurial orientation within small family businesses in Ghana and Nigeria. However, the study revealed that women experience various challenges as stakeholders in family businesses, among which are: work-life balance issues, succession issues, and culture-related presuppositions about gender roles both within the business and in their families. In the light of the study’s findings, critical recommendations made include encouraging founders and/or owners of family businesses to create a conducive and viable platform for women to grow into key leadership positions within Family businesses; doing this would impact strongly on the growth rate of these form of businesses within the African Region.Keywords: emerging economies, control, management, resources, strategy, women
Procedia PDF Downloads 3596427 Empowering Transformers for Evidence-Based Medicine
Authors: Jinan Fiaidhi, Hashmath Shaik
Abstract:
Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers
Procedia PDF Downloads 436426 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 2736425 The Impact of Access to Finances on Survival of Small and Medium Enterprises: The South African Perspective in an Covid-19 Era
Authors: Thabiso Sthembiso Msomi
Abstract:
SMEs are the main engine of growth in most developing economies. One of the main factors that hinder the development of SME is access to finance. In this study, we explored the factors that hinder the growth and survival of SMEs in South Africa. The capital structure theory formed the theoretical underpinning for the study. The quantitative research design was adopted and data was collected from retail, construction, manufacturing and agriculture sectors of SMEs within the KwaZulu-Natal province of South Africa. The modified version of the Cochran formula was used to determine the sample size as 321 SMEs and analysed using the five-point Likert scale. The purposive sampling technique was used to select owners of SME. Statistical Package for the Social Sciences (SPSS) was used for the data analysis through Exploratory Factor Analysis (EFA) to determine the factor structures of items employed to measure each of the constructs in this study. Then, the Cronbach’s alpha test was conducted to determine the reliability of each construct. Kaiser-Meyer-Olkin (KMO) was used to determine the adequacy of the sample size. Linear regression was done to determine the effect of the independent variables on the dependent variable. The findings suggest that the main constraints facing South African SMEs were the lack of experienced management. Furthermore, the SMEs would fail to raise customer awareness of their products and services, which in turn affects their market access and monthly turnover. The study recommends that SMEs keep up-to-date records of business transactions to enable the business to keep track of its operations. The study recommends that South African banks adopt an SME accounting and bookkeeping program. The finding of this study benefits policymakers in both the private and public sectors.Keywords: small businesses, access to finances, COVID-19, SMEs survival
Procedia PDF Downloads 1766424 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 1126423 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid
Authors: Houda Jalali, Hassan Abbassi
Abstract:
In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.Keywords: entropy generation, heat transfer, nanofluid, natural convection
Procedia PDF Downloads 2776422 Research the Causes of Defects and Injuries of Reinforced Concrete and Stone Construction
Authors: Akaki Qatamidze
Abstract:
Implementation of the project will be a step forward in terms of reliability in Georgia and the improvement of the construction and the development of construction. Completion of the project is expected to result in a complete knowledge, which is expressed in concrete and stone structures of assessing the technical condition of the processing. This method is based on a detailed examination of the structure, in order to establish the injuries and the elimination of the possibility of changing the structural scheme of the new requirements and architectural preservationists. Reinforced concrete and stone structures research project carried out in a systematic analysis of the important approach is to optimize the process of research and development of new knowledge in the neighboring areas. In addition, the problem of physical and mathematical models of rational consent, the main pillar of the physical (in-situ) data and mathematical calculation models and physical experiments are used only for the calculation model specification and verification. Reinforced concrete and stone construction defects and failures the causes of the proposed research to enhance the effectiveness of their maximum automation capabilities and expenditure of resources to reduce the recommended system analysis of the methodological concept-based approach, as modern science and technology major particularity of one, it will allow all family structures to be identified for the same work stages and procedures, which makes it possible to exclude subjectivity and addresses the problem of the optimal direction. It discussed the methodology of the project and to establish a major step forward in the construction trades and practical assistance to engineers, supervisors, and technical experts in the construction of the settlement of the problem.Keywords: building, reinforced concrete, expertise, stone structures
Procedia PDF Downloads 3366421 Investigate the Current Performance of Burger King Ho Chi Minh City in Terms of the Controllable Variables of the Overall Retail Strategy
Authors: Nhi Ngoc Thien
Abstract:
Franchising is a popular trend in Vietnam retail industry, especially in fast food industry. Several famous foreign fast food brands such as KFC, Lotteria, Jollibee or Pizza Hut invested on this potential market since the 1990s. Following this trend, in 2011, Burger King - the second largest fast food hamburger chain all over the world - entered Vietnam with its first store located in Tan Son Nhat International Airport, with the expectation to become the leading brand in the country. However, the business performance of Burger King was not going well in the first few years making it questioned about its strategy. The given assumption was that its business performance was affected negatively by its store location selection strategy. This research aims to investigate the current performance of Burger King Vietnam in terms of the controllable variables like store location as well as to explore the key factors influencing customer decision to choose Burger King. Therefore, a case study research method was conducted to approach deeply on the opinions and evaluations of 10 Burger King’s customers, Burger King's staffs and other fast food experts on Burger King’s performance through in-depth interview, direct observation and documentary analysis. Findings show that there are 8 determinants affecting the decision-making of Burger King’s customers, which are store location, quality of food, service quality, store atmosphere, price, promotion, menu and brand reputation. Moreover, findings present that Burger King’s staffs and fast food experts also mentioned the main problems of Burger King, which are about store location and food quality. As a result, there are some recommendations for Burger King Vietnam to improve its performance in the market and attract more Vietnamese target customers by giving suitable promotional activities among its customers and being differentiated itself from other fast food brands.Keywords: overall retail strategy, controllable variables, store location, quality of food
Procedia PDF Downloads 3446420 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method
Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren
Abstract:
In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.Keywords: floating body, fluid structure interaction, MPS, particle method, waves
Procedia PDF Downloads 756419 Companies’ Internationalization: Multi-Criteria-Based Prioritization Using Fuzzy Logic
Authors: Jorge Anibal Restrepo Morales, Sonia Martín Gómez
Abstract:
A model based on a logical framework was developed to quantify SMEs' internationalization capacity. To do so, linguistic variables, such as human talent, infrastructure, innovation strategies, FTAs, marketing strategies, finance, etc. were integrated. It is argued that a company’s management of international markets depends on internal factors, especially capabilities and resources available. This study considers internal factors as the biggest business challenge because they force companies to develop an adequate set of capabilities. At this stage, importance and strategic relevance have to be defined in order to build competitive advantages. A fuzzy inference system is proposed to model the resources, skills, and capabilities that determine the success of internationalization. Data: 157 linguistic variables were used. These variables were defined by international trade entrepreneurs, experts, consultants, and researchers. Using expert judgment, the variables were condensed into18 factors that explain SMEs’ export capacity. The proposed model is applied by means of a case study of the textile and clothing cluster in Medellin, Colombia. In the model implementation, a general index of 28.2 was obtained for internationalization capabilities. The result confirms that the sector’s current capabilities and resources are not sufficient for a successful integration into the international market. The model specifies the factors and variables, which need to be worked on in order to improve export capability. In the case of textile companies, the lack of a continuous recording of information stands out. Likewise, there are very few studies directed towards developing long-term plans, and., there is little consistency in exports criteria. This method emerges as an innovative management tool linked to internal organizational spheres and their different abilities.Keywords: business strategy, exports, internationalization, fuzzy set methods
Procedia PDF Downloads 2946418 Chronic Hypertension, Aquaporin and Hydraulic Conductivity: A Perspective on Pathological Connections
Authors: Chirag Raval, Jimmy Toussaint, Tieuvi Nguyen, Hadi Fadaifard, George Wolberg, Steven Quarfordt, Kung-ming Jan, David S. Rumschitzki
Abstract:
Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis.Keywords: acute hypertension, aquaporin-1, hydraulic conductivity, hydrostatic pressure, aortic endothelial cells, transcellular flow
Procedia PDF Downloads 2326417 An Overview of Informal Settlement Upgrading Strategies in Kabul City and the Need for an Integrated Multi-Sector Upgrading Model
Authors: Bashir Ahmad Amiri, Nsenda Lukumwena
Abstract:
The developing economies are experiencing an unprecedented rate of urbanization, mainly the urbanization of poverty which is leading to sprawling of slums and informal settlement. Kabul, being the capital and primate city of Afghanistan is grossly encountered to the informal settlement where the majority of the people consider to be informal. Despite all efforts to upgrade and minimize the growth of these settlements, they are growing rapidly. Various interventions have been taken by the government and some international organizations from physical upgrading to urban renewal, but none of them have succeeded to solve the issue of informal settlement. The magnitude of the urbanization and the complexity of informal settlement in Kabul city, and the institutional and capital constraint of the government calls for integration and optimization of currently practiced strategies. This paper provides an overview of informal settlement formation and the conventional upgrading strategies in Kabul city to identify the dominant/successful practices and rationalize the conventional upgrading modes. For this purpose, Hothkhel has been selected as the case study, since it represents the same situation of major informal settlements of the city. Considering the existing potential and features of the Hothkhel and proposed land use by master plan this paper intends to find a suitable upgrading mode for the study area and finally to scale up the model for the city level upgrading. The result highlights that the informal settlements of Kabul city have high (re)development capacity for accepting the additional room without converting the available agricultural area to built-up. The result also indicates that the integrated multi-sector upgrading has the scale-up potential to increase the reach of beneficiaries and to ensure an inclusive and efficient urbanization.Keywords: informal settlement, upgrading strategies, Kabul city, urban expansion, integrated multi-sector, scale-up
Procedia PDF Downloads 174