Search results for: image correlation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6522

Search results for: image correlation

2862 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 260
2861 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
2860 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma

Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim

Abstract:

Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.

Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave

Procedia PDF Downloads 340
2859 Relation between Pavement Roughness and Distress Parameters for Highways

Authors: Suryapeta Harini

Abstract:

Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.

Keywords: roughness index, network survey vehicle, regression, correlation

Procedia PDF Downloads 176
2858 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 184
2857 Employing QR Code as an Effective Educational Tool for Quick Access to Sources of Kindergarten Concepts

Authors: Ahmed Amin Mousa, M. Abd El-Salam

Abstract:

This study discusses a simple solution for the problem of shortage in learning resources for kindergarten teachers. Occasionally, kindergarten teachers cannot access proper resources by usual search methods as libraries or search engines. Furthermore, these methods require a long time and efforts for preparing. The study is expected to facilitate accessing learning resources. Moreover, it suggests a potential direction for using QR code inside the classroom. The present work proposes that QR code can be used for digitizing kindergarten curriculums and accessing various learning resources. It investigates using QR code for saving information related to the concepts which kindergarten teachers use in the current educational situation. The researchers have established a guide for kindergarten teachers based on the Egyptian official curriculum. The guide provides different learning resources for each scientific and mathematical concept in the curriculum, and each learning resource is represented as a QR code image that contains its URL. Therefore, kindergarten teachers can use smartphone applications for reading QR codes and displaying the related learning resources for students immediately. The guide has been provided to a group of 108 teachers for using inside their classrooms. The results showed that the teachers approved the guide, and gave a good response.

Keywords: kindergarten, child, learning resources, QR code, smart phone, mobile

Procedia PDF Downloads 289
2856 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 434
2855 Psychological Factors as Predictor of Sports Violence among Tertiary Institutions

Authors: Oluwasgun Moses Jolayemi

Abstract:

Violence has become a fairly often occurrence in sports (within our tertiary institutions), a development that is giving every society in the world sleepless night. School violence is part of youth violence, a broader salient public health problem. This study employing a questionnaire-based survey strategy aimed at investigates psychological factors as predictors of sports violence among Oyo state tertiary institution. A sample of Two hundred athletes and three tertiary institutions were selected through purposive sampling from the Oyo State tertiary institution. The estimated reliability co-efficient of the instrument was found to be 0.89 using cronbach Alpha technique. Data were analyzed at 0.05 level of significance using Statistical Package for the Social Sciences (SPSS) software, version 20.0. Five hypotheses were tested using Pearson Correlation. Result revealed that personality, anxiety, mental health has no significant influence on sports violence; mental stress has a significant influence on sports violence. Based on the findings, it was recommended that sport management should reduce work overload and that they should organized seminars and social activities to help athletes lose up.

Keywords: Ibadan, mental health, personality, psychology, violence

Procedia PDF Downloads 303
2854 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels

Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila

Abstract:

Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.

Keywords: alternative fuels, cement clinker, microstructure, SEM

Procedia PDF Downloads 365
2853 Leadership Style and Organizational Culture on Unethical Work Behaviour among Employees

Authors: Ojo Adeshina Akinwumi

Abstract:

This study investigated leadership style and organizational culture as predictors of unethical work behaviour among employees in corporate organizations. This study adopted an expo facto research design. Two Hundred and Seventy-Four (274) employees (149 males, 125 females) sampled from the organization participated in the study. Their ages ranged from 19 to 65, with a mean of 36.36 years and a standard deviation of 10.43. Unethical Work Behaviour was measured using Unethical Work Behaviour Scale (UWBC), Organizational Culture was measured using Organizational Culture Scale, (and OCS and Leadership Styles were measured using Multifactor Leadership Questionnaire (LSMLQ). Two hypotheses were formulated and tested using Pearson Product Moment Correlation and Multiple Regressions Analysis. Results indicated that leadership styles had no significant relationship with unethical work behaviour (r(274)=.09;>0.05). However, organizational culture had a significant relationship with unethical work behaviour (r(274)=.15;p,0.05). Lastly, leadership style and organizational culture jointly predicted unethical work behaviour among employees. [F (2, 273) =3.65, p<0.05). Findings from this study were discussed in line with existing literature. It was also recommended that leadership styles and organizational culture should be improved upon in order to reduce unethical work behaviour by employees.

Keywords: leadership style, organizational culture, unethical work behavior, employees in corporate organisations in Nigeria

Procedia PDF Downloads 111
2852 3D Vision Transformer for Cervical Spine Fracture Detection and Classification

Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi

Abstract:

In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.

Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score

Procedia PDF Downloads 114
2851 The Role of Vocabulary in Reading Comprehension

Authors: Engku Haliza Engku Ibrahim, Isarji Sarudin, Ainon Jariah Muhamad

Abstract:

It is generally agreed that many factors contribute to one’s reading comprehension and there is consensus that vocabulary size one of the main factors. This study explores the relationship between second language learners’ vocabulary size and their reading comprehension scores. 130 Malay pre-university students of a public university participated in this study. They were students of an intensive English language programme doing preparatory English courses to pursue bachelors degree in English. A quantitative research method was employed based on the Vocabulary Levels Test by Nation (1990) and the reading comprehension score of the in-house English Proficiency Test. A review of the literature indicates that a somewhat positive correlation is to be expected though findings of this study can only be explicated once the final analysis has been carried out. This is an ongoing study and it is anticipated that results of this research will be finalized in the near future. The findings will help provide beneficial implications for the prediction of reading comprehension performance. It also has implications for the teaching of vocabulary in the ESL context. A better understanding of the relationship between vocabulary size and reading comprehension scores will enhance teachers’ and students’ awareness of the importance of vocabulary acquisition in the L2 classroom.

Keywords: vocabulary size, vocabulary learning, reading comprehension, ESL

Procedia PDF Downloads 448
2850 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime

Authors: Edgar Ochoa, G. Torres-Villasenor

Abstract:

Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.

Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation

Procedia PDF Downloads 169
2849 The Design of a Phase I/II Trial of Neoadjuvant RT with Interdigitated Multiple Fractions of Lattice RT for Large High-grade Soft-Tissue Sarcoma

Authors: Georges F. Hatoum, Thomas H. Temple, Silvio Garcia, Xiaodong Wu

Abstract:

Soft Tissue Sarcomas (STS) represent a diverse group of malignancies with heterogeneous clinical and pathological features. The treatment of extremity STS aims to achieve optimal local tumor control, improved survival, and preservation of limb function. The National Comprehensive Cancer Network guidelines, based on the cumulated clinical data, recommend radiation therapy (RT) in conjunction with limb-sparing surgery for large, high-grade STS measuring greater than 5 cm in size. Such treatment strategy can offer a cure for patients. However, when recurrence occurs (in nearly half of patients), the prognosis is poor, with a median survival of 12 to 15 months and with only palliative treatment options available. The spatially-fractionated-radiotherapy (SFRT), with a long history of treating bulky tumors as a non-mainstream technique, has gained new attention in recent years due to its unconventional therapeutic effects, such as bystander/abscopal effects. Combining single fraction of GRID, the original form of SFRT, with conventional RT was shown to have marginally increased the rate of pathological necrosis, which has been recognized to have a positive correlation to overall survival. In an effort to consistently increase the pathological necrosis rate over 90%, multiple fractions of Lattice RT (LRT), a newer form of 3D SFRT, interdigitated with the standard RT as neoadjuvant therapy was conducted in a preliminary clinical setting. With favorable results of over 95% of necrosis rate in a small cohort of patients, a Phase I/II clinical study was proposed to exam the safety and feasibility of this new strategy. Herein the design of the clinical study is presented. In this single-arm, two-stage phase I/II clinical trial, the primary objectives are >80% of the patients achieving >90% tumor necrosis and to evaluation the toxicity; the secondary objectives are to evaluate the local control, disease free survival and overall survival (OS), as well as the correlation between clinical response and the relevant biomarkers. The study plans to accrue patients over a span of two years. All patient will be treated with the new neoadjuvant RT regimen, in which one of every five fractions of conventional RT is replaced by a LRT fraction with vertices receiving dose ≥10Gy while keeping the tumor periphery at or close to 2 Gy per fraction. Surgical removal of the tumor is planned to occur 6 to 8 weeks following the completion of radiation therapy. The study will employ a Pocock-style early stopping boundary to ensure patient safety. The patients will be followed and monitored for a period of five years. Despite much effort, the rarity of the disease has resulted in limited novel therapeutic breakthroughs. Although a higher rate of treatment-induced tumor necrosis has been associated with improved OS, with the current techniques, only 20% of patients with large, high-grade tumors achieve a tumor necrosis rate exceeding 50%. If this new neoadjuvant strategy is proven effective, an appreciable improvement in clinical outcome without added toxicity can be anticipated. Due to the rarity of the disease, it is hoped that such study could be orchestrated in a multi-institutional setting.

Keywords: lattice RT, necrosis, SFRT, soft tissue sarcoma

Procedia PDF Downloads 60
2848 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 95
2847 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety

Authors: Mohamad Saab, Sidi Souvi

Abstract:

In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.

Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods

Procedia PDF Downloads 189
2846 Intrusiveness, Appraisal and Thought Control Strategies in Patients with Obsessive Compulsive Disorder

Authors: T. Arshad

Abstract:

A correlation study was done to explore the relationship of intrusiveness, appraisal and thought control strategies in patients with Obsessive Compulsive Disorder. Theoretical frame work for the present study was Salkovskis (1985) cognitive model of obsessive compulsive disorder. Sample of 100 patients (men=48, women=52) of age 14-62 years (M=32.13, SD=10.37) was recruited from hospitals of Lahore, Pakistan. Revised Obsessional Intrusion Inventory, Stress Appraisal Measure, Thought Control Questionnaire and Symptoms Checklist-R were self-administered. Findings revealed that intrusiveness is correlated with appraisals (controllable by self, controllable by others, uncontrollable, stressfulness) and thought control strategy (punishment). Furthermore, appraisals (uncontrollable, stressfulness, controllable by others) were emerged as strong predictors for different through control strategies (distraction, punishment and social control). Moreover, men have higher frequency of intrusion, whereas women were frequently using social control as thought control strategy. Results implied that intrusiveness, appraisals (controllable by others, uncontrollable, stressfulness) and thought control strategy (punishment) are related which maintains the disorder.

Keywords: appraisal, intrusiveness, obsessive compulsive disorder, thought control strategies

Procedia PDF Downloads 389
2845 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 454
2844 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator

Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters

Abstract:

Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.

Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation

Procedia PDF Downloads 125
2843 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector

Procedia PDF Downloads 372
2842 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 301
2841 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia

Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim

Abstract:

Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.

Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta

Procedia PDF Downloads 163
2840 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
2839 The Role of Family’s Emotional Climate and Emotional Expression Style in Academic Well-Being of Students with Military Parent

Authors: Ala Rakhshandeh, Zahra Ashkar, Solmaz Dehghani Dolatabadi, Hossein Bayat

Abstract:

The present study has been conducted to investigate the role of family emotional climate and emotional expression style in the academic well-being of students with military parents. Children, including 280 female students of Shahriar police officers, were selected by random sampling method, and they have been investigated through Alfred B. Hillburn's family emotional climate questionnaire (1964), King and Ammon's emotional expression questionnaire (1990), and Pitrinen, Sweeney, and Falto's academic well-being questionnaire (2014). The data were analyzed using statistical methods of correlation coefficient and stepwise multiple regression under the SPSS23 program. The results reveal that the variables of family emotional climate and emotional expression can explain 36.4% of the variance in academic well-being. This finding reveals that with an increase of standard deviation on the scores of family emotional climate and emotional expression, 0.513 and 0.155 standard deviations are added to the scores of academic well-being, respectively. The emotional climate of the family has a superior distinctive role in predicting the educational well-being of female students. Thus, the emotional climate of the family and the style of emotional expression play a meaningful role in the academic well-being of students with the military parent.

Keywords: emotional climate, family, emotional expression style, academic well-being

Procedia PDF Downloads 109
2838 Man Eaters and the Eaten Men: A Study of the Portrayal of Indians in the Writings of Jim Corbett

Authors: Iti Roychowdhury

Abstract:

India to the Colonial mind was a crazy quilt of multicoloured patchwork- a land of untold wealth and bejewelled maharajas, of snake charmers and tight rope walkers. India was also the land that offered unparalled game. Indeed Shikar (hunting) was de rigueur for the Raj experience. Tales of shootings and trophies were told and retold in clubs and in company. Foremost among the writers of this genre is Jim Corbett – tracker, hunter, writer, conservationist. Corbett is best known for the killing of man eating tigers and his best known books are Man eaters of Kumaon, The Temple Tiger, Man eating Leopard of Rudraprayag etc. The stories of Jim Corbett are stories of hunting, with no palpable design, no subtext of hegemony, or white man’s burden. The protagonists are the cats. Nevertheless from his writings emerge a vibrant picture of Indian villages, of men, women and children toiling for a livelihood under the constant shadow of the man eaters. Corbett shared a symbiotic relationship with the villagers. They needed him to kill the predators while Corbett needed the support of the locals as drum beaters, coolies and runners to accomplish his tasks. The aim of the present paper is to study the image of Indians in the writings of Jim Corbett and to examine them in the light of colonial perception of Indians.

Keywords: hegemony, orientalism, Shikar literature, White Man's Burden

Procedia PDF Downloads 277
2837 A Lesson in the Social Welfare System in Mexico: Limited Resources for Unlimited Needs

Authors: Vanessa L. Haro

Abstract:

Beginning with a historical foundation of Mexico, this marks the start of a close examination of this major Latin American country by providing the context needed to understand the reasons for Mexico’s strengths and struggles today, specific to their response to the issue of gender violence. Responding to the challenge of combating gender violence and inequality, Mexico has created social programs and initiatives in hopes of addressing these issues and modernizing their gender norms, which currently disempower and dehumanize women, while simultaneously denying women the necessary tools needed to fight back or bring balance to the gender scales. Nevertheless, women in Mexico have made their voices heard with the most salient image of that of the mothers protesting while holding the photos of their young daughters who lost their lives. This case study on gender issues in Mexico works to acknowledge the diverse forces that contribute to the issue of gender violence, and to make a statement that this is a crisis that requires a more dynamic response within Mexico’s social welfare policies, and should not be allowed to continue to progress as a normative phenomenon. As the advocacy groups and protesters cry out, “Ni una menos! (Not one less), meaning we will not lose one more woman and making the statement that all women’s lives matter.

Keywords: gender issues, Mexico, poverty, social welfare

Procedia PDF Downloads 265
2836 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
2835 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
2834 Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow

Authors: Jaber Masoud Alyami, Abdelsalam H. Alsrkhi

Abstract:

Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated.

Keywords: multiphase flow, gas-liquid flow, slippage, void farction

Procedia PDF Downloads 85
2833 A Bayesian Network Approach to Customer Loyalty Analysis: A Case Study of Home Appliances Industry in Iran

Authors: Azam Abkhiz, Abolghasem Nasir

Abstract:

To achieve sustainable competitive advantage in the market, it is necessary to provide and improve customer satisfaction and Loyalty. To reach this objective, companies need to identify and analyze their customers. Thus, it is critical to measure the level of customer satisfaction and Loyalty very carefully. This study attempts to build a conceptual model to provide clear insights of customer loyalty. Using Bayesian networks (BNs), a model is proposed to evaluate customer loyalty and its consequences, such as repurchase and positive word-of-mouth. BN is a probabilistic approach that predicts the behavior of a system based on observed stochastic events. The most relevant determinants of customer loyalty are identified by the literature review. Perceived value, service quality, trust, corporate image, satisfaction, and switching costs are the most important variables that explain customer loyalty. The data are collected by use of a questionnaire-based survey from 1430 customers of a home appliances manufacturer in Iran. Four scenarios and sensitivity analyses are performed to run and analyze the impact of different determinants on customer loyalty. The proposed model allows businesses to not only set their targets but proactively manage their customer behaviors as well.

Keywords: customer satisfaction, customer loyalty, Bayesian networks, home appliances industry

Procedia PDF Downloads 140