Search results for: different environmental conditions
11567 Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado
Authors: Wesley A. Saltarelli, Nicolas R. Finkler, Adriana C. P. Miwa, Maria C. Calijuri, Davi G. F. Cunha
Abstract:
The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state.Keywords: low-order streams, metabolism, net primary production, trophic state
Procedia PDF Downloads 25811566 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation
Authors: W. Meron Mebrahtu, R. Absi
Abstract:
Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.Keywords: accuracy, eddy viscosity, sewers, velocity profile
Procedia PDF Downloads 11211565 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria
Authors: Lujain Khraiba
Abstract:
Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces
Procedia PDF Downloads 48511564 Numerical Studies on 2D and 3D Boundary Layer Blockage and External Flow Choking at Wing in Ground Effect
Authors: K. Dhanalakshmi, N. Deepak, E. Manikandan, S. Kanagaraj, M. Sulthan Ariff Rahman, P. Chilambarasan C. Abhimanyu, C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar
Abstract:
In this paper using a validated double precision, density-based implicit standard k-ε model, the detailed 2D and 3D numerical studies have been carried out to examine the external flow choking at wing-in-ground (WIG) effect craft. The CFD code is calibrated using the exact solution based on the Sanal flow choking condition for adiabatic flows. We observed that at the identical WIG effect conditions the numerically predicted 2D boundary layer blockage is significantly higher than the 3D case and as a result, the airfoil exhibited an early external flow choking than the corresponding wing, which is corroborated with the exact solution. We concluded that, in lieu of the conventional 2D numerical simulation, it is invariably beneficial to go for a realistic 3D simulation of the wing in ground effect, which is analogous and would have the aspects of a real-time parametric flow. We inferred that under the identical flying conditions the chances of external flow choking at WIG effect is higher for conventional aircraft than an aircraft facilitating a divergent channel effect at the bottom surface of the fuselage as proposed herein. We concluded that the fuselage and wings integrated geometry optimization can improve the overall aerodynamic performance of WIG craft. This study is a pointer to the designers and/or pilots for perceiving the zone of danger a priori due to the anticipated external flow choking at WIG effect craft for safe flying at the close proximity of the terrain and the dynamic surface of the marine.Keywords: boundary layer blockage, chord dominated ground effect, external flow choking, WIG effect
Procedia PDF Downloads 27111563 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde
Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate
Abstract:
Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase
Procedia PDF Downloads 42211562 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea
Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi
Abstract:
Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow
Procedia PDF Downloads 12311561 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt
Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah
Abstract:
With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA
Procedia PDF Downloads 41011560 Determination of the Relative Humidity Profiles in an Internal Micro-Climate Conditioned Using Evaporative Cooling
Authors: M. Bonello, D. Micallef, S. P. Borg
Abstract:
Driven by increased comfort standards, but at the same time high energy consciousness, energy-efficient space cooling has become an essential aspect of building design. Its aims are simple, aiming at providing satisfactory thermal comfort for individuals in an interior space using low energy consumption cooling systems. In this context, evaporative cooling is both an energy-efficient and an eco-friendly cooling process. In the past two decades, several academic studies have been performed to determine the resulting thermal comfort produced by an evaporative cooling system, including studies on temperature profiles, air speed profiles, effect of clothing and personnel activity. To the best knowledge of the authors, no studies have yet considered the analysis of relative humidity (RH) profiles in a space cooled using evaporative cooling. Such a study will determine the effect of different humidity levels on a person's thermal comfort and aid in the consequent improvement designs of such future systems. Under this premise, the research objective is to characterise the resulting different RH profiles in a chamber micro-climate using the evaporative cooling system in which the inlet air speed, temperature and humidity content are varied. The chamber shall be modelled using Computational Fluid Dynamics (CFD) in ANSYS Fluent. Relative humidity shall be modelled using a species transport model while the k-ε RNG formulation is the proposed turbulence model that is to be used. The model shall be validated with measurements taken using an identical test chamber in which tests are to be conducted under the different inlet conditions mentioned above, followed by the verification of the model's mesh and time step. The verified and validated model will then be used to simulate other inlet conditions which would be impractical to conduct in the actual chamber. More details of the modelling and experimental approach will be provided in the full paper The main conclusions from this work are two-fold: the micro-climatic relative humidity spatial distribution within the room is important to consider in the context of investigating comfort at occupant level; and the investigation of a human being's thermal comfort (based on Predicted Mean Vote – Predicted Percentage Dissatisfied [PMV-PPD] values) and its variation with different locations of relative humidity values. The study provides the necessary groundwork for investigating the micro-climatic RH conditions of environments cooled using evaporative cooling. Future work may also target the analysis of ways in which evaporative cooling systems may be improved to better the thermal comfort of human beings, specifically relating to the humidity content around a sedentary person.Keywords: chamber micro-climate, evaporative cooling, relative humidity, thermal comfort
Procedia PDF Downloads 15511559 Simulation Model for Optimizing Energy in Supply Chain Management
Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari
Abstract:
In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.Keywords: supply chain management, green supply chain management, system dynamics, energy consumption
Procedia PDF Downloads 13911558 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach
Authors: M. Taheri Tehrani, H. Ajorloo
Abstract:
In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems
Procedia PDF Downloads 51811557 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India
Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar
Abstract:
With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy
Procedia PDF Downloads 8211556 Effect of Palatal Lift Prosthesis on Speech Clarity in Flaccid Dysarthria
Authors: Firas Alfwaress, Abdelraheem Bebers Abdelhadi Hamasha, Maha Abu Awaad
Abstract:
Objectives: The aim of the present study was to investigate the effect of Palatal Lift Prosthesis (PLP) on speech clarity in patients with Flaccid Dysarthria. Five speech measures were investigated including Nasalance Scores, Diadchokinetic (DDK), Vowel Duration, airflow, and Sound Intensity. Participants: Twelve (7 Males and 5 females) native speakers of Jordanian Arabic with Flaccid Dysarthria following stroke, traumatic brain injury, and amyotrophic lateral sclerosis were included. The age of the participants ranged from 8–65 years with an average of 31.75 years. Design: Nasalance Scores, Diadchokinetic rate, Vowel Duration, and Sound Intensity were obtained using the Nasometer II, Model 6450 in three conditions. The first condition included obtaining the five measures without wearing the customized Palatal Lift Prosthesis. The second and third conditions included obtaining the five measures immediately after wearing the Palatal Lift Prosthesis and three months later. Results: Palatal lift prosthesis was found to be effective in individuals with flaccid dysarthria. Results showed decrease in the Nasalance Scores for the syllable repetition tasks and vowel prolongation tasks when comparing the means in the pre PLP with the post PLP at p≤0.001 except for the /m/ prolongation task. Results showed increased DDK repetition task, airflow amount, and sound intensity, and a decrease in vowel length at p≤0.001. Conclusions: The use of palatal lift prosthesis is effective in improving the speech of patients with flaccid dysarthria.Keywords: palatal lift prosthesis, flaccid dysarthria, hypernasality, speech clarity, diadchokinetic rate
Procedia PDF Downloads 38611555 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 8711554 A Study on Leaching of Toxic Elements of High Strength Concrete Containing Waste Cathode Ray Tube Glass as Coarse Aggregate
Authors: Nurul Noraziemah Mohd Pauzi, Muhammad Fauzi Mohd Zain
Abstract:
The rapid advance in the electronic industry has led to the increase amount of the waste cathode ray tube (CRT) devices. The management of CRT waste upon disposal haves become a major issue of environmental concern as it contains toxic elements (i.e. lead, barium, zinc, etc.) which has a risk of leaching if it is not managed appropriately. Past studies have reported regarding the possible use of CRT glass as a part of aggregate in concrete production. However, incorporating waste CRT glass may present an environmental risk via leachability of toxic elements. Accordingly, the preventive measures for reducing the risk was proposed. The current work presented the experimental results regarding potential leaching of toxic elements from four types of concrete mixed, each compromising waste CRT glass as coarse aggregate with different shape and properties. Concentrations of detected elements are measure in the leachates by using atomic absorption spectrometry (AAS). Results indicate that the concentration of detected elements were found to be below applicable risk, despite the higher content of toxic elements in CRT glass. Therefore, the used of waste CRT glass as coarse aggregate in hardened concrete does not pose any risk of leachate of heavy metals to the environment.Keywords: recycled CRT glass, coarse aggregate, physical properties, leaching, toxic elements
Procedia PDF Downloads 35811553 Localization of Pyrolysis and Burning of Ground Forest Fires
Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov
Abstract:
This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.Keywords: forest fire, barrier water lines, pyrolysis front, flame front
Procedia PDF Downloads 13311552 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software
Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather
Abstract:
As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software
Procedia PDF Downloads 27511551 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil
Authors: William Fuentes, Melany Gil
Abstract:
Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.Keywords: offshore wind turbine, monopile, ISA, hypoplasticity
Procedia PDF Downloads 24611550 Experimental and Numerical Performance Analysis for Steam Jet Ejectors
Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed
Abstract:
The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.Keywords: solar energy, jet ejector, vacuum, evaporating effects
Procedia PDF Downloads 62111549 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption
Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad
Abstract:
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly
Procedia PDF Downloads 7611548 The Effects of Transcranial Direct Current Stimulation on Brain Oxygenation and Pleasure during Exercise
Authors: Alexandre H. Okano, Pedro M. D. Agrícola, Daniel G. Da S. Machado, Luiz I. Do N. Neto, Luiz F. Farias Junior, Paulo H. D. Nascimento, Rickson C. Mesquita, John F. Araujo, Eduardo B. Fontes, Hassan M. Elsangedy, Shinsuke Shimojo, Li M. Li
Abstract:
The prefrontal cortex is involved in the reward system and the insular cortex integrates the afferent inputs arriving from the body’ systems and turns into feelings. Therefore, modulating neuronal activity in these regions may change individuals’ perception in a given situation such as exercise. We tested whether transcranial direct current stimulation (tDCS) change cerebral oxygenation and pleasure during exercise. Fourteen volunteer healthy adult men were assessed into five different sessions. First, subjects underwent to a maximum incremental test on a cycle ergometer. Then, subjects were randomly assigned to a transcranial direct current stimulation (2mA for 15 min) intervention in a cross over design in four different conditions: anode and cathode electrodes on T3 and Fp2 targeting the insular cortex, and Fpz and F4 targeting prefrontal cortex, respectively; and their respective sham. These sessions were followed by 30 min of moderate intensity exercise. Brain oxygenation was measured in prefrontal cortex with a near infrared spectroscopy. Perceived exertion and pleasure were also measured during exercise. The asymmetry in prefrontal cortex oxygenation before the stimulation decreased only when it was applied over this region which did not occur after insular cortex or sham stimulation. Furthermore, pleasure was maintained during exercise only after prefrontal cortex stimulation (P > 0.7), while there was a decrease throughout exercise (P < 0.03) during the other conditions. We conclude that tDCS over the prefrontal cortex changes brain oxygenation in ventromedial prefrontal cortex and maintains perceived pleasure during exercise. Therefore, this technique might be used to enhance effective responses related to exercise.Keywords: affect, brain stimulation, dopamine neuromodulation, pleasure, reward, transcranial direct current stimulation
Procedia PDF Downloads 32611547 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites
Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir
Abstract:
Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management
Procedia PDF Downloads 1411546 Gas Flaring in the Niger Delta Nigeria: An Act of Inhumanity to Man and His Environment
Authors: Okorowo Cyril Agochi
Abstract:
The Niger Delta Region of Nigeria is home to about 20 million people and 40 different ethnic groups. The region has an area of seventy thousand square kilometers (70,000 KM2) of wetlands, formed primarily by sediments deposition and makes up 7.5 percent of Nigeria's total landmass. The notable ecological zones in this region includes: coastal barrier islands; mangrove swamp forests; fresh water swamps; and lowland rainforests. This incredibly naturally-endowed ecosystem region, which contains one of the highest concentrations of biodiversity on the planet, in addition to supporting abundant flora and fauna, is threatened by the inhuman act known as gas flaring. Gas flaring is the combustion of natural gas that is associated with crude oil when it is pumped up from the ground. In petroleum-producing areas such as the Niger Delta region of Nigeria where insufficient investment was made in infrastructure to utilize natural gas, flaring is employed to dispose of this associated gas. This practice has impoverished the communities where it is practiced, with attendant environmental, economic and health challenges. This paper discusses the adverse environmental and health implication associated with the practice, the role of Government, Policy makers, Oil companies and the Local communities aimed at bring this inhuman practice to a prompt end.Keywords: natural combustion, emission, environment, flaring, gas, health, Niger Delta
Procedia PDF Downloads 26311545 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi
Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham
Abstract:
Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.Keywords: dam site, fault, geophysic, investigation, Meskiana
Procedia PDF Downloads 8811544 Evaluation and Risk Assessment of Heavy Metals Pollution Using Edible Crabs, Based on Food Intended for Human Consumption
Authors: Nayab Kanwal, Noor Us Saher
Abstract:
The management and utilization of food resources is becoming a big issue due to rapid urbanization, wastage and non-sustainable use of food, especially in developing countries. Therefore, the use of seafood as alternative sources is strongly promoted worldwide. Marine pollution strongly affects marine organisms, which ultimately decreases their export quality. The monitoring of contamination in marine organisms is a good indicator of the environmental quality as well as seafood quality. Monitoring the accumulation of chemical elements within various tissues of organisms has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this perspective, this study was carried out to compare the previous and current levels (Year 2012 and 2014) of heavy metals (Cd, Pb, Cr, Cu and Zn) in crabs marketed in Karachi and to estimate the toxicological risk associated with their intake. The accumulation of metals in marine organisms, both essential (Cu and Zn) and toxic (Pb, Cd and Cr), natural and anthropogenic, is an actual food safety issue. Significant (p>0.05) variations in metal concentrations were found in all crab species between the two years, with most of the metals showing high accumulation in 2012. For toxicological risk assessment, EWI (Estimated weekly intake), Target Hazard quotient (THQ) and cancer risk (CR) were also assessed and high EWI, Non- cancer risk (THQ < 1) showed that there is no serious threat associated with the consumption of shellfish species on Karachi coast. The Cancer risk showed the highest risk from Cd and Pb pollution if consumed in excess. We summarize key environmental health research on health effects associated with exposure to contaminated seafood. It could be concluded that considering the Pakistan coast, these edible species may be sensitive and vulnerable to the adverse effects of environmental contaminants; more attention should be paid to the Pb and Cd metal bioaccumulation and to toxicological risks to seafood and consumers.Keywords: cancer risk, edible crabs, heavy metals pollution, risk assessment
Procedia PDF Downloads 37811543 Antarctica, Global Change and Deaf Education in Brazil
Authors: Luiz Antonio Da Costa Rodrigues, Mara Aparecida De Castilho Lopes, Alexandre Santos Alencar
Abstract:
Teaching of science must transcend simple transmission of fundamental concepts and allow scientific literacy, as a process for understanding the human being as an integral part of a complex and interdependent whole. In this context, approaching the theme ‘Antarctica’ in deaf education is an important advance for teaching, considering that that continent has direct interactions with the climatic and environmental system of the planet. Therefore, textbooks can be important tools to enable the Deaf Community to access the discussion about the natural environment. A specific script was used to analyze textbooks adopted by schools in the Rio de Janeiro Metropolitan Region. Results show that none of the 14 analyzed books have a specific chapter on the theme, some presents images of the continent without reference to their environmental importance, and the complementary texts present in the analyzed material do not address the theme either. It is concluded that the study on Antarctica and global changes in elementary education is still incipient and the material used by most Brazilian public schools does not contemplate that subject in an accessible way for the deaf person. This fact represents the distance between deaf students and their environment, denoting the need for actions to promote that and other neglected themes in Science teaching.Keywords: Antarctica, deaf education, science teaching, textbook
Procedia PDF Downloads 28111542 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm
Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal
Abstract:
The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater
Procedia PDF Downloads 26811541 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mojo Mengistu Gelasso
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 8011540 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mengistu Gelasso Mojo
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 8311539 Assessment of Attractency of Bactrocera Zonata and Bactrocera dorsalis (Diptera:Tephritidae) to Different Biolure Phagostimulant-Mixtures
Authors: Muhammad Dildar Gogi, Muhammad Jalal Arif, Muhammad Junaid Nisar, Mubashir Iqbal, Waleed Afzal Naveed, Muhammad Ahsan Khan, Ahmad Nawaz, Muhammad Sufian, Muhammad Arshad, Amna Jalal
Abstract:
Fruit flies of Bactrocera genus cause heavy losses in fruits and vegetables globally and insecticide-application for their control creates issues of ecological backlash, environmental pollution, and food safety. There is need to explore alternatives and food-baits application is considered safe for the environment and effective for fruit fly management. Present experiment was carried out to assess the attractancy of five phagostimulant-Mixtures (PHS-Mix) prepared by mixing banana-squash, mulberry, protein-hydrolysate and molasses with some phagostimulant-lure sources including beef extract, fish extract, yeast, starch, rose oil, casein and cedar oil in five different ratios i.e., PHS-Mix-1 (1 part of all ingredients), PHS-Mix-2 (1 part of banana with 0.75 parts of all other ingredients), PHS-Mix-3 (1 part of banana with 0.5 parts of all other ingredients), PHS-Mix-4 (1 part of banana with 0.25 parts of all other ingredients) and PHS-Mix-5 (1 part of banana with 0.125 parts of all other ingredients). These were evaluated in comparison with a standard (GF-120). PHS-Mix-4 demonstrated 40.5±1.3-46.2±1.6% AI for satiated flies (class-II i.e., moderately attractive) and 59.5±2.0-68.6±3.0% AI for starved flies (class-III i.e., highly attractive) for both B. dorsalis and B. zonata in olfactometric study while the same exhibited 51.2±0.53% AI (class-III i.e., highly attractive) for B. zonata and 45.4±0.89% AI (class-II i.e., moderately attractive) for B. dorsalis in field study. PHS-Mix-1 proved non-attractive (class-I) and moderately attractive (class-II) phagostimulant in olfactometer and field studies, respectively. PHS-Mix-2 exhibited moderate attractiveness for starved lots in olfactometer and field-lot in field studies. PHS-Mix-5 proved non-attractive to starved and satiated lots of B. zonata and B. dorsalis females in olfactometer and field studies. Overall PHS-Mix-4 proved better phagostimulant-mixture followed by PHS-Mix-3 which was categorized as class-II (moderately attractive) phagostimulant for starved and satiated lots of female flies of both species in olfactometer and field studies; hence these can be exploited for fruit fly management.Keywords: attractive index, field conditions, olfactometer, Tephritid flies
Procedia PDF Downloads 24911538 A Study of Preliminary Findings of Behavioral Patterns under Captive Conditions in Chinkara (Gazella bennettii) with Prospects for Future Conservation
Authors: Muhammad Idnan, Arshad Javid, Muhammad Nadeem
Abstract:
The present study was conducted from April 2013 to March 2014 to observe the behavioral parameters of Chinkara (Gazella bennettii) under captive conditions by comparing the captive-born and wild-caught animals for conservation strategies. Understanding the behavioral conformations plays a significant role in captive management. Due to human population explosion and mechanized hunting, the captive breeding seems to be the best way for sports hunting, bush meat, for leather industry and horns for traditional medicinal usage. Primarily, captive management has been used on trial and error basis due to deficiency of ethology of this least concerned species. Behavior of [(20 wild-caught (WC) and 10 captive-bred (CB)] adult Chinkara was observed at captive breeding facilities for ungulates at Ravi Campus, University of Veterinary and Animal Sciences at Kasur district which is situated on southeast side of Lahore. The average annual rainfall is about 650 mm, with frequent raining during monsoon. A focal sample was used to observe the various behavioral patterns for CB and WC chinkara. A similarity was observed in behavioral parameters in WC and CB animals, however, when the differences were considered, WC male deer showed a significantly higher degree of agonistic interaction as compared to the CB male chinkara. These findings suggest that there is no immediate impact of captivity on behavior of chinkara nevertheless 10 generations of captivity. It is suggested that the Chinkara is not suitable for domestication and for successful deer farming, a further study is recommended for ethology of chinkara.Keywords: Chinkara (Gazella bennettii), domestication, deer farming, ex-situ conservation
Procedia PDF Downloads 164