Search results for: organisational learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7446

Search results for: organisational learning

3816 Trauma and Its High Influence on Special Education

Authors: Athena Johnson

Abstract:

Special education is an important field but often under-researched, particularly for the cause of learning deficiencies. Often times special education looks at the symptoms rather than the cause, and this can lead to many misdiagnoses. Student trauma, as measured by the Adverse Childhood Experiences (ACE) test, is extremely common, often resulting in Post Traumatic Stress Disorder (PTSD). PTSD affects the brain's ability to learn properly, making students have a much more difficult time with auditory learning and memory due to always being in flight or fight mode, and due to this, students with PTSD are often misdiagnosed with Attention Deficit and Hyperactivity Disorder (ADHD). This can lead to them getting the wrong support, with PTSD students needing more counseling than anything else. Through these research papers' methodologies, a literature review on article research from the perspectives of students who were misdiagnosed, and imperial research, the major findings of this study were the importance of trauma-informed care in schools. Trauma-informed care in the school system is crucial for helping the many students who experience traumatic life events and struggle in school due to it. It is important to support students with PTSD so that they are able to integrate and learn better in society and school with trauma-informed school care.

Keywords: ACE test, ADHD, misdiagnoses, special education, trauma, trauma-informed care, PTSD

Procedia PDF Downloads 117
3815 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 166
3814 Early Adolescents Motivation and Engagement Levels in Learning in Low Socio-Economic Districts in Sri Lanka (Based on T-Tests Results)

Authors: Ruwandika Perera

Abstract:

Even though the Sri Lankan government provides a reasonable level of support for students at all levels of the school system, for example, free education, textbooks, school uniforms, subsidized public transportation, and school meals, low participation in learning among secondary students is an issue warranting investigation, particularly in low socio-economic districts. This study attempted to determine the levels of motivation and engagement amongst students in a number of schools in two low socio-economic districts of Sri Lanka. This study employed quantitative research design in an attempt to determine levels of motivation and engagement amongst Sri Lankan secondary school students. Motivation and Engagement Scale-Junior School (MES-JS) was administered among 100 Sinhala-medium and 100 Tamil-medium eighth-grade students (50 students from each gender). The mean age of the students was 12.8 years. Schools were represented by type 2 government schools located in Monaragala and Nuwara Eliya districts in Sri Lanka. Confirmatory factor analysis (CFA) was conducted to measure the construct validity of the scale. Since this did not provide a robust solution, exploratory factor analysis (EFA) was conducted. Four factors were identified; Failure Avoidance and Anxiety (FAA), Positive Motivation (PM), Uncertain Control (UC), and Positive Engagement (PE). An independent-samples t-test was conducted to compare PM, PE, FAA, and UC in gender and ethnic groups. There was no significant difference identified for PE, FAA, and UC scales based upon gender. These results indicate that for the participants in this study, there were no significant differences based on gender in the levels of failure avoidance and anxiety, uncertain control, and positive engagement in the school experience. But, the result for the PM scale was close to significant, indicating there may be differences based on gender for positive motivation. A significant difference exists for all scales based on ethnicity, with the mean result for the Tamil students being significantly higher than that for the Sinhala students. These results indicate those Sinhala-medium students’ levels of positive motivation and positive engagement in learning was lower than Tamil-medium students. Also, these results indicate those Tamil-medium students’ levels of failure avoidance, anxiety, and uncertain control was higher than Sinhala-medium students. It could be concluded that male students levels of PM were significantly lower than female students. Also, Sinhala-medium students’ levels of PM and PE was lower than Tamil-medium students, and Tamil-medium students levels of FAA and UC was significantly higher than Sinhala-medium students. Thus, there might be particular school-related conditions affecting this situation, which are related to early adolescents’ motivation and engagement in learning.

Keywords: early adolescents, engagement, low socio-economic districts, motivation

Procedia PDF Downloads 167
3813 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 151
3812 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 68
3811 The Use of Educational Language Games

Authors: April Love Palad, Charita B. Lasala

Abstract:

Mastery on English language is one of the important goals of all English language teachers. This goal can be seen based from the students’ actual performance using the target language which is English. Learning the English language includes hard work where efforts need to be exerted and this can be attained gradually over a long period of time. It is extremely important for all English language teachers to know the effects of incorporating games in teaching. Whether this strategy can have positive or negative effects in students learning, teachers should always consider what is best for their learners. Games may help and provide confidents language learners. These games help teachers to create context in which the language is suitable and significant. Focusing in accuracy and fluency is the heart of this study and this will be obtain in either teaching English using the traditional method or teaching English using language games. It is very important for all English teachers to know which strategy is effective in teaching English to be able to cope with students’ underachievement in this subject. This study made use of the comparative-experimental method. It made use of the pre-post test design with the aim to explore the effectiveness of the language games as strategy used in language teaching for high school students. There were two groups of students being observed, the controlled and the experimental, employing the two strategies in teaching English –traditional and with the use of language games. The scores obtained by two samples were compared to know the effectiveness of the two strategies in teaching English. In this study, it found out that language games help improve students’ fluency and accuracy in the use of target language and this is very evident in the results obtained in the pre-test and post –test result as well the mean gain scores by the two groups of students. In addition, this study also gives us a clear view on the positive effects on the use of language games in teaching which also supported by the related studies based from this research. The findings of the study served as the bases for the creation of the proposed learning plan that integrated language games that teachers may use in their own teaching. This study further concluded that language games are effective in developing students’ fluency in using the English language. This justifies that games help encourage students to learn and be entertained at the same time. Aside from that, games also promote developing language competency. This study will be very useful to teachers who are in doubt in the use of this strategy in their teaching.

Keywords: language games, experimental, comparative, strategy, language teaching, methodology

Procedia PDF Downloads 424
3810 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 177
3809 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 139
3808 Teaching Audiovisual Translation (AVT):Linguistic and Technical Aspects of Different Modes of AVT

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Teachers constantly need to innovate and redefine materials for their lectures, especially in areas such as Language for Specific Purposes (LSP) and Translation Studies (TS). It is therefore essential for the lecturers to be technically skilled to handle the never-ending evolution in software and technology, which are necessary elements especially in certain courses at university level. This need becomes even more evident in Audiovisual Translation (AVT) Modules and Courses. AVT has undergone considerable growth in the area of teaching and learning of languages for academic purposes. We have witnessed the development of a considerable number of masters and postgraduate courses where AVT becomes a tool for L2 learning. The teaching and learning of different AVT modes are components of undergraduate and postgraduate courses. Universities, in which AVT is offered as part of their teaching programme or training, make use of professional or free software programs. This paper presents an approach in AVT withina specific university context, in which technology is used by means of professional and nonprofessional software. Students take an AVT subject as part of their English Linguistics Master’s Degree at the Complutense University (UCM) in which they are using professional (Spot) and nonprofessional (Subtitle Workshop, Aegisub, Windows Movie Maker) software packages. The students are encouraged to develop their tasks and projects simulating authentic professional experiences and contexts in the different AVT modes: subtitling for hearing and deaf and hard of hearing population, audio description and dubbing. Selected scenes from TV series such as X-Files, Gossip girl, IT Crowd; extracts from movies: Finding Nemo, Good Will Hunting, School of Rock, Harry Potter, Up; and short movies (Vincent) were used. Hence, the complexity of the audiovisual materials used in class as well as the activities for their projects were graded. The assessment of the diverse tasks carried out by all the students are expected to provide some insights into the best way to improve their linguistic accuracy and oral and written productions with the use of different AVT modes in a very specific ESP university context.

Keywords: ESP, audiovisual translation, technology, university teaching, teaching

Procedia PDF Downloads 519
3807 Evidence on the Impact of Corporate Governance on Bank Performance from Deposit Money Banks in Sub-Saharan Africa

Authors: Ayotunde Qudus Saka, Xin Zhang

Abstract:

Purpose: The purpose of this study is to investigate how corporate governance traits affect the financial performance of banks in the sub-Saharan African region from 2008 to 2022. Methodology/Design/Approach: The performance of a few chosen banks in Sub-Saharan Africa is examined in relation to corporate governance using static panel regression analysis. The following variables were used to present corporate governance in the study: board size (BDS), board gender diversity (BGD), board independence (BDI), number of audit committee meetings (NAM), and number of foreign members on the board (SFM). Return on assets (ROA) was employed as the dependent variable. Fixed effect (FE), random effect (RE), and common effect (CE) estimators were used with static panel data. The model estimate procedure is based on the 'Log-Lin' specification. The estimation includes eleven (11) models, ten of which relate to the individual country and one that captures the SSA countries used in this study. Finding: The RE effect estimator seems to be more efficient than the FE estimator overall. Therefore, the selected estimator used for the overall country investigation is the random effect model adopted in evaluating the connection between financial success and corporate governance, and according to the all-country specification in assessing the study's goal, the fixed effect estimator is thus selected for most of the countries except for Malawi and Zambia that common effect model worked well for showing that the banks in the aforementioned countries have similar organisational cultures and management philosophies. Consequently, the selected estimators for every country were used to evaluate the connection between financial success and corporate governance. Originality/Value: Corporate governance and bank performance topics are well grounded in literature with evidence from developed countries. However, there is a darth in developing countries particularly in the sub-Saharan African region. This study presents multi-country empirical evidence within the SSAs which gives the study more samples, this study makes use of balanced data from 2008 to 2022 being the latest data coverage from SSA, and to the best knowledge of the authors, no prior research has examined the impact of corporate governance mechanisms on bank performance in the SSA region through the use of multi-country samples.

Keywords: bank performance, corporate governance, sub-Saharan African (SSA), gender diversity, foreign member of the board, multi-country

Procedia PDF Downloads 14
3806 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 169
3805 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 441
3804 A Comparison of the First Language Vocabulary Used by Indonesian Year 4 Students and the Vocabulary Taught to Them in English Language Textbooks

Authors: Fitria Ningsih

Abstract:

This study concerns on the process of making corpus obtained from Indonesian year 4 students’ free writing compared to the vocabulary taught in English language textbooks. 369 students’ sample writings from 19 public elementary schools in Malang, East Java, Indonesia and 5 selected English textbooks were analyzed through corpus in linguistics method using AdTAT -the Adelaide Text Analysis Tool- program. The findings produced wordlists of the top 100 words most frequently used by students and the top 100 words given in English textbooks. There was a 45% match between the two lists. Furthermore, the classifications of the top 100 most frequent words from the two corpora based on part of speech found that both the Indonesian and English languages employed a similar use of nouns, verbs, adjectives, and prepositions. Moreover, to see the contextualizing the vocabulary of learning materials towards the students’ need, a depth-analysis dealing with the content and the cultural views from the vocabulary taught in the textbooks was discussed through the criteria developed from the checklist. Lastly, further suggestions are addressed to language teachers to understand the students’ background such as recognizing the basic words students acquire before teaching them new vocabulary in order to achieve successful learning of the target language.

Keywords: corpus, frequency, English, Indonesian, linguistics, textbooks, vocabulary, wordlists, writing

Procedia PDF Downloads 190
3803 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 133
3802 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: humanized care service, volunteer activity, nursing student, learning log

Procedia PDF Downloads 309
3801 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 198
3800 The Perceived Impact of Consultancy Organisations and Social Enterprises: Converging and Diverging Discourses

Authors: Seda Muftugil-Yalcin

Abstract:

With the proliferation of the number of social enterprises worldwide, there is now a whole ecosystem full of different organisational actors revolving around social enterprises. Impact hubs, incubation centers, and organisations (profit or non-profit) that offer consultancy services to social enterprises can be said to constitute one such cluster in the eco-system. These organisations offer a variety of services to social enterprises which desire to maximize their positive social impact. Especially with regards to impact measurement, there are numerous systems/guides/approaches/tools developed that claim to benefit social enterprises. Many organisations choose one of the existing tools and craft programs that help social enterprises to measure and to manage their social impacts. However, empirical evidence with regards to how the services of these consultancy organisations are precisely utilized on the field is scarce. This inevitably casts doubt on the impact of these organisations themselves. This research dwells on four case studies from the Netherlands and Turkey. In each country, two university-affiliated impact centers and two independent consultancy agencies that work with social entrepreneurs in the area of social impact measurement are closely examined. The overarching research question has been 'With regards to impact measurement, how do the founders/managers of these organisations perceive and make sense of their contribution to social enterprises and to the social entrepreneurship eco-system at large?' As for methodology, in-depth interviews were carried out with the managers/founders of these organisations and discourse analysis method has been used for data analysis together with grounded theory. The comparison between Turkey and Netherlands elucidate common denominators of impact measurement hype and discourses that are currently existing worldwide. In addition, it also reveals differing priorities of social enterprises in these different settings, which shape the expectations of social enterprises of consultancy organisations. Comparison between university affiliated impact hubs and independent consultancy organisations also give away important data about how different forms of consultancy organisations (in this case university based and independent) position themselves in relation to alike organisations with similar aims. The overall aim of the research is to reveal the contribution of the consultancy organisations that work with social enterprises to the social entrepreneurship field as perceived by them through a cross cultural study. The findings indicate that in both settings, the organisations that were claiming to bring positive social impact on the social entrepreneurship eco-system through their impact measurement trainings were themselves having a hard time in concretizing their own contributions; which indicated that these organisations were in need of a different impact measurement discourse than the ones they were championing.

Keywords: consultancy organisations, social entrepreneurship, social impact measurement, social impact discourse

Procedia PDF Downloads 127
3799 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners

Authors: Anna-Maria Ramezanzadeh

Abstract:

Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.

Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics

Procedia PDF Downloads 168
3798 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses

Authors: David Philpott, Karen Kennedy

Abstract:

In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.

Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis

Procedia PDF Downloads 296
3797 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 25
3796 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu

Abstract:

Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 256
3795 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 65
3794 Co-Creating an International Flipped Faculty Development Model: A US-Afghan Case Study

Authors: G. Alex Ambrose, Melissa Paulsen, Abrar Fitwi, Masud Akbari

Abstract:

In 2016, a U.S. business college was awarded a sub grant to work with FHI360, a nonprofit human development organization, to support a university in Afghanistan funded by the State Department’s U.S. Agency for International Development (USAID). A newly designed Master’s Degree in Finance and Accounting is being implemented to support Afghanistan’s goal of 20% females in higher education and industry by 2020 and to use finance and accounting international standards to attract capital investment for economic development. This paper will present a case study to describe the co-construction of an approach to an International Flipped Faculty Development Model grounded in blended learning theory. Like education in general, faculty development is also evolving from the traditional face to face environment and interactions to the fully online and now to a best of both blends. Flipped faculty development is both a means and a model for careful integration of the strengths of the synchronous and asynchronous dynamics and technologies with the combination of intentional sequencing to pre-online interactions that prepares and enhances the face to face faculty development and mentorship residencies with follow-up post-online support. Initial benefits from this model include giving the Afghan faculty an opportunity to experience and apply modern teaching and learning strategies with technology in their own classroom. Furthermore, beyond the technological and pedagogical affordances, the reciprocal benefits gained from the mentor-mentee, face-to-face relationship will be explored. Evidence to support this model includes: empirical findings from pre- and post-Faculty Mentor/ Mentee survey results, Faculty Mentorship group debriefs, Faculty Mentorship contact logs, and student early/end of semester feedback. In addition to presenting and evaluating this model, practical challenges and recommendations for replicating international flipped faculty development partnerships will be provided.

Keywords: educational development, faculty development, international development, flipped learning

Procedia PDF Downloads 194
3793 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 48
3792 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 299
3791 Special Education in the South African Context: A Bio-Ecological Perspective

Authors: Suegnet Smit

Abstract:

Prior to 1994, special education in South Africa was marginalized and fragmented. Moving away from a Medical model approach to special education, the Government, after 1994, promoted an Inclusive approach, as a means to transform education in general, and special education in particular. This transformation, however, is moving at too a slow pace for learners with barriers to learning and development to benefit fully from their education. The goal of the Department of Basic Education is to minimize, remove, and prevent barriers to learning and development in the educational setting, by attending to the unique needs of the individual learner. However, the implementation of Inclusive education is problematic, and general education remains poor. This paper highlights the historical development of special education in South Africa, underpinned by a bio-ecological perspective. Problematic areas within the systemic levels of the education system are highlighted in order to indicate how the interactive processes within the systemic levels affect special needs learners on the personal dimension of the bio-ecological approach. As part of the methodology, thorough document analysis was conducted on information collected from a large body of research literature, which included academic articles, reports, policies, and policy reviews. Through a qualitative analysis, data were grouped and categorized according to the bio-ecological model systems, which revealed various successes and challenges within the education system. The challenges inhibit change, growth, and development for the child, who experience barriers to learning. From these findings, it is established that special education in South Africa has been, and still is, on a bumpy road. Sadly, the transformation process of change, envisaged by implementing Inclusive education, is still yet a dream, not fully realized. Special education seems to be stuck at what is, and the education system has not moved forward significantly enough to reach what special education should and could be. The gap that exists between a vision of Inclusive quality education for all, and the current reality, is still too wide. Problems encountered in all the education system levels, causes a funnel-effect downward to learners with special educational needs, with negative effects for the development of these learners.

Keywords: bio-ecological perspective, education systems, inclusive education, special education

Procedia PDF Downloads 150
3790 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 97
3789 Effects of Classroom Management Strategies on Students’ Well-Being at Secondary Level

Authors: Saba Latif

Abstract:

The study is about exploring the Impact of Classroom Management Techniques on students’ Well-being at the secondary level. The objectives of the study are to identify the classroom management practices of teachers and their impact on students’ achievement. All secondary schools of Lahore city are the population of study. The researcher randomly selected ten schools, and from these schools, two hundred students participated in this study. Data has been collected by using Classroom Management and Students’ Wellbeing questionnaire. Frequency analysis has been applied. The major findings of the study are calculated as follows: The teacher’s instructional activities affect classroom management. The secondary school students' seating arrangement can influence the learning-teaching process. Secondary school students strongly disagree with the statement that the large size of the class affects the teacher’s classroom management. The learning environment of the class helps students participate in question-and-answer sessions. All the activities of the teachers are in accordance with practices in the class. The discipline of the classroom helps the students to learn more. The role of the teacher is to guide, and it enhances the performance of the teacher. The teacher takes time on disciplinary rules and regulations of the classroom. The teacher appreciates them when they complete the given task. The teacher appreciates teamwork in the class.

Keywords: classroom management, strategies, wellbeing, practices

Procedia PDF Downloads 54
3788 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness

Authors: Marzieh Karimihaghighi, Carlos Castillo

Abstract:

This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.

Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism

Procedia PDF Downloads 156
3787 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 152