Search results for: learning paths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7607

Search results for: learning paths

3977 Teacher Education: Teacher Development and Support

Authors: Khadem Hichem

Abstract:

With the new technology challenges, dynamics and challenges of the contemporary world, most teachers are struggling to maintain effective and successful teaching /learning environment for learners. Teachers as a key to the success of reforms in the educational setting, they must improve their competencies to teach effectively. Many researchers emphasis on the ongoing professional development of the teacher by enhancing their experiences and encouraging their responsibility for learning, and thus promoting self-reliance, collaboration, and reflection. In short, teachers are considered as learners and they need to learn together. The educational system must support, both conceptually and financially, the teachers’ development as lifelong learners Teachers need opportunities to grow in language proficiency and in knowledge. Changing nature of language and culture in the world, all teachers must have opportunities to update their knowledge and practices. Many researchers in the field of foreign or additional languages indicate that teachers keep side by side of effective instructional practices and they need special support with the challenging task of developing and administering proficiency tests to their students. For significant change to occur, each individual teacher’s needs must be addressed. The teacher must be involved experientially in the process of development, since, by itself, knowledge of how to change does not mean change will be initiated. For improvement to occur, new skills have to be guided, practiced, and reflected upon in collaboration with colleagues. Clearly, teachers are at different places developmentally; therefore, allowances for various entry levels and individual differences need to be built into the professional development structure. Objectives must be meaningful to the participant and teacher improvement must be stated terms of student knowledge, student performance, and motivation. The most successful professional development process acknowledges the student-centered nature of good teaching. This paper highlights the importance of teacher professional development process and institutional supports as way to enhance good teaching and learning environment.

Keywords: teacher professional development, teacher competencies, institutional support, teacher education

Procedia PDF Downloads 357
3976 The Influence of Liberal Arts and Sciences Pedagogy and Covid Pandemic on Global Health Workforce Training in China: A Qualitative Study

Authors: Meifang Chen

Abstract:

Background: As China increased its engagement in global health affairs and research, global Health (GH) emerged as a new discipline in China after 2010. Duke Kunshan University (DKU), as a member of the Chinese Consortium of Universities for Global Health, is the first university that experiments “Western-style” liberal arts and sciences (LAS) education pedagogy in GH undergraduate and postgraduate programs in China since 2014. The COVID-19 pandemic has brought significant disruption to education across the world. At the peak of the pandemic, 45 countries in the Europe and Central Asia regions closed their schools, affecting 185 million students. DKU, as many other universities and schools, was unprepared for this sudden abruptness and were forced to build emergency remote learning systems almost immediately. This qualitative study aims to gain a deeper understanding of 1) how Chinese students and parents embrace GH training in the liberal arts and sciences education context, and 2) how the COVID pandemic influences the students’ learning experience as well as affects students and parents’ perceptions of GH-related study and career development in China. Methods: students and parents at DKU were invited and recruited for open-ended, semi-structured interviews during Sept 2021-Mar 2022. Open coding procedures and thematic content analysis were conducted using Nvivo 12 software. Results: A total of 18 students and 36 parents were interviewed. Both students and parents were fond of delivering GH education using the liberal arts and sciences pedagogy. Strengths of LAS included focusing on whole person development, allowing personal enrichment, tailoring curriculum to individual’s interest, providing well-rounded knowledge through interdisciplinary learning, and increasing self-study capacity and adaptability. Limitations of LAS included less time to dive deep into disciplines. There was a significant improvement in independence, creativity, problem solving, and team coordinating capabilities among the students. The impact of the COVID pandemic on GH learning experience included less domestic and abroad fieldwork opportunities, less in-person interactions (especially with foreign students and faculty), less timely support, less lab experience, and coordination challenges due to time-zone difference. The COVID pandemic increased the public’s awareness of the importance of GH and acceptance of GH as a career path. More job and postgraduate program opportunities were expected in near future. However, some parents expressed concerns about GH-related employment opportunities in China. Conclusion: The application of the liberal arts and science education pedagogy in GH training were well-received by the Chinese students and parents. Although global pandemic like COVID disrupted GH learning in many ways, most Chinese students and parents held optimistic attitudes toward GH study and career development.

Keywords: COVID, global health, liberal arts and sciences pedagogy, China

Procedia PDF Downloads 120
3975 Designing an Introductory Python Course for Finance Students

Authors: Joelle Thng, Li Fang

Abstract:

Objective: As programming becomes a highly valued and sought-after skill in the economy, many universities have started offering Python courses to help students keep up with the demands of employers. This study focuses on designing a university module that effectively educates undergraduate students on financial analysis using Python programming. Methodology: To better satisfy the specific demands for each sector, this study adopted a qualitative research modus operandi to craft a module that would complement students’ existing financial skills. The lessons were structured using research-backed educational learning tools, and important Python concepts were prudently screened before being included in the syllabus. The course contents were streamlined based on criteria such as ease of learning and versatility. In particular, the skills taught were modelled in a way to ensure they were beneficial for financial data processing and analysis. Results: Through this study, a 6-week course containing the chosen topics and programming applications was carefully constructed for finance students. Conclusion: The findings in this paper will provide valuable insights as to how teaching programming could be customised for students hailing from various academic backgrounds.

Keywords: curriculum development, designing effective instruction, higher education strategy, python for finance students

Procedia PDF Downloads 83
3974 Bag of Local Features for Person Re-Identification on Large-Scale Datasets

Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou

Abstract:

In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.

Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking

Procedia PDF Downloads 199
3973 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 75
3972 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 259
3971 Elastic Collisions of Electrons with DNA and Water From 10 eV to 100 KeV: Scar Macro Investigation

Authors: Aouina Nabila Yasmina, Zine El Abidine Chaoui

Abstract:

Recently, understanding the interactions of electrons with the DNA molecule and its components has attracted considerable interest because DNA is the main site damaged by ionizing radiation. The interactions of radiation with DNA induce a variety of molecular damage such as single-strand breaks, double-strand breaks, basic damage, cross-links between proteins and DNA, and others, or the formation of free radicals, which, by chemical reactions with DNA, can also lead to breakage of the strand. One factor that can contribute significantly to these processes is the effect of water hydration on the formation and reaction of radiation induced by these radicals in and / or around DNA. B-DNA requires about 30% by weight of water to maintain its native conformation in the crystalline state. The transformation depends on various factors such as sequence, ion composition, concentration and water activity. Partial dehydration converts it to DNA-A. The present study shows the results of theoretical calculations for positrons and electrons elastic scattering with DNA medium and water over a broad energy range from 10 eV to 100 keV. Indeed, electron elastic cross sections and elastic mean free paths are calculated using a corrected form of the independent atom method, taking into account the geometry of the biomolecule (SCAR macro). Moreover, the elastic scattering of electrons and positrons by atoms of the biomolecule was evaluated by means of relativistic (Dirac) partial wave analysis. Our calculated results are compared with theoretical data available in the literature in the absence of experimental data, in particular for positron. As a central result, our electron elastic cross sections are in good agreement with existing theoretical data in the range of 10 eV to 1 keV.

Keywords: elastic cross scrion, elastic mean free path, scar macro method, electron collision

Procedia PDF Downloads 68
3970 Multiple Intelligences as Basis for Differentiated Classroom Instruction in Technology Livelihood Education: An Impact Analysis

Authors: Sheila S. Silang

Abstract:

This research seeks to make an impact analysis on multiple intelligence as the basis for differentiated classroom instruction in TLE. It will also address the felt need of how TLE subject could be taught effectively exhausting all the possible means.This study seek the effect of giving different instruction according to the ability of the students in the following objectives: 1. student’s technological skills enhancement, 2. learning potential improvements 3. having better linkage between school and community in a need for soliciting different learning devices and materials for the learner’s academic progress. General Luna, Quezon is composed of twenty seven barangays. There are only two public high schools. We are aware that K-12 curriculum is focused on providing sufficient time for mastery of concepts and skills, develop lifelong learners, and prepare graduates for tertiary education, middle-level skills development, employment, and entrepreneurship. The challenge is with TLE offerring a vast area of specializations, how would Multiple Intelligence play its vital role as basis in classroom instruction in acquiring the requirement of the said curriculum? 1.To what extent do the respondent students manifest the following types of intelligences: Visual-Spatial, Body-Kinesthetic, Musical, Interpersonal, Intrapersonal, Verbal-Linguistic, Logical-Mathematical and Naturalistic. What media should be used appropriate to the student’s learning style? Visual, Printed Words, Sound, Motion, Color or Realia 3. What is the impact of multiple intelligence as basis for differentiated instruction in T.L.E. based on the following student’s ability? Learning Characteristic and Reading Ability and Performance 3. To what extent do the intelligences of the student relate with their academic performance? The following were the findings derived from the study: In consideration of the vast areas of study of TLE, and the importance it plays in the school curriculum coinciding with the expectation of turning students to technologically competent contributing members of the society, either in the field of Technical/Vocational Expertise or Entrepreneurial based competencies, as well as the government’s concern for it, we visualize TLE classroom teachers making use of multiple intelligence as basis for differentiated classroom instruction in teaching the subject .Somehow, multiple intelligence sample such as Linguistic, Logical-Mathematical, Bodily-Kinesthetic, Interpersonal, Intrapersonal, and Spatial abilities that an individual student may have or may not have, can be a basis for a TLE teacher’s instructional method or design.

Keywords: education, multiple, differentiated classroom instruction, impact analysis

Procedia PDF Downloads 448
3969 The English Classroom: Scope and Space for Motivation

Authors: Madhavi Godavarthy

Abstract:

The globalized world has been witnessing the ubiquity of the English language and has made it mandatory that students be equipped with the required Communication and soft skills. For students and especially for students studying in technical streams, gaining command over the English language is only a part of the bigger challenges they will face in the future. Linguistic capabilities if blended with the right attitude and a positive personality would deliver better results in the present environment of the digitalized world. An English classroom has that ‘space’; a space if utilized well by the teacher can pay rich dividends. The prescribed syllabus for English in the process of adapting itself to the challenges of a more and more technical world has meted out an indifferent treatment in including ‘literary’ material in their curriculum. A debate has always existed regarding the same and diversified opinions have been given. When the student is motivated to reach Literature through intrinsic motivation, it may contribute to his/her personality-development. In the present paper, the element of focus is on the scope and space to motivate students by creating a specific space for herself/himself amidst the schedules of the teaching-learning processes by taking into consideration a few literary excerpts for the purpose.

Keywords: English language, teaching and learning process, reader response theory, intrinsic motivation, literary texts

Procedia PDF Downloads 618
3968 Managing Linguistic Diversity in Teaching and in Learning in Higher Education Institutions: The Case of the University of Luxembourg

Authors: Argyro-Maria Skourmalla

Abstract:

Today’s reality is characterized by diversity in different levels and aspects of everyday life. Focusing on the aspect of language and communication in Higher Education (HE), the present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, adopted its new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. In addition, with around 10.000 students and staff coming from various countries around the world, linguistic diversity in this university is seen as both a resource and a challenge that calls for an inclusive and multilingual approach. The present paper includes data derived from semi-structured interviews with lecturing staff from different disciplines and an online survey with undergraduate students at the University of Luxembourg. Participants shared their experiences and point of view regarding linguistic diversity in this context. Findings show that linguistic diversity in this university is seen as an asset but comes with challenges, and even though there is progress in the use of multilingual practices, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.

Keywords: linguistic diversity, higher education, Luxembourg, multilingual practices, teaching, learning

Procedia PDF Downloads 81
3967 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 21
3966 Study on the Transition to Pacemaker of Two Coupled Neurons

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.

Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity

Procedia PDF Downloads 290
3965 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 83
3964 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 541
3963 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 73
3962 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 47
3961 Arabic as a Foreign Language in the Curriculum of Higher Education in Nigeria: Problems, Solutions, and Prospects

Authors: Kazeem Oluwatoyin Ajape

Abstract:

The study is concerned with the problem of how to improve the teaching of Arabic as a foreign language in Nigerian Higher Education System. The paper traces the historical background of Arabic education in Nigeria and also outlines the problems facing the language in Nigerian Institutions. It lays down some of the essential foundation work necessary for bringing about systematic and constructive improvements in the Teaching of Arabic as a Foreign Language (TAFL) by giving answers to the following research questions: what is the appropriate medium of instruction in teaching a foreign or second language? What is the position of English language in the teaching and learning of Arabic/Islamic education? What is the relevance of the present curriculum of Arabic /Islamic education in Nigerian institutions to the contemporary society? A survey of the literature indicates that a revolution is currently taking place in FL teaching and that a new approach known as the Communicative Approach (CA), has begun to emerge and influence the teaching of FLs in general, over the last decade or so. Since the CA is currently being adapted to the teaching of most major FLs and since this revolution has not yet had much impact on TAPL, the study explores the possibility of the application of the CA to the teaching of Arabic as a living language and also makes recommendations towards the development of the language in Nigerian Institutions of Higher Learning.

Keywords: Arabic Language, foreign language, Nigerian institutions, curriculum, communicative approach

Procedia PDF Downloads 616
3960 Linguistic Accessibility and Audiovisual Translation: Corpus Linguistics as a Tool for Analysis

Authors: Juan-Pedro Rica-Peromingo

Abstract:

The important change taking place with respect to the media and the audiovisual world in Europe needs to benefit all populations, in particular those with special needs, such as the deaf and hard-of-hearing population (SDH) and blind and partially-sighted population (AD). This recent interest in the field of audiovisual translation (AVT) can be observed in the teaching and learning of the different modes of AVT in the degree and post-degree courses at Spanish universities, which expand the interest and practice of AVT linguistic accessibility. We present a research project led at the UCM which consists of the compilation of AVT activities for teaching purposes and tries to analyze the creation and reception of SDH and AD: the AVLA Project (Audiovisual Learning Archive), which includes audiovisual materials carried out by the university students on different AVT modes and evaluations from the blind and deaf informants. In this study, we present the materials created by the students. A group of the deaf and blind population has been in charge of testing the student's SDH and AD corpus of audiovisual materials through some questionnaires used to evaluate the students’ production. These questionnaires include information about the reception of the subtitles and the audio descriptions from linguistic and technical points of view. With all the materials compiled in the research project, a corpus with both the students’ production and the recipients’ evaluations is being compiled: the CALING (Corpus de Accesibilidad Lingüística) corpus. Preliminary results will be presented with respect to those aspects, difficulties, and deficiencies in the SDH and AD included in the corpus, specifically with respect to the length of subtitles, the position of the contextual information on the screen, and the text included in the audio descriptions and tone of voice used. These results may suggest some changes and improvements in the quality of the SDH and AD analyzed. In the end, demand for the teaching and learning of AVT and linguistic accessibility at a university level and some important changes in the norms which regulate SDH and AD nationally and internationally will be suggested.

Keywords: audiovisual translation, corpus linguistics, linguistic accessibility, teaching

Procedia PDF Downloads 87
3959 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens

Authors: Nihar Kanta Patra, Akhtar Hussain

Abstract:

This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.

Keywords: library, librarians, metaphor, perception

Procedia PDF Downloads 103
3958 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 151
3957 Evaluating Impact of Teacher Professional Development Program on Students’ Learning

Authors: S. C. Lin, W. W. Cheng, M. S. Wu

Abstract:

This study attempted to investigate the connection between teacher professional development program and students’ Learning. This study took Readers’ Theater Teaching Program (RTTP) for professional development as an example to inquiry how participants apply their new knowledge and skills learned from RTTP to their teaching practice and how the impact influence students learning. The goals of the RTTP included: 1) to enhance teachers RT content knowledge; 2) to implement RT instruction in teachers’ classrooms in response to their professional development. 2) to improve students’ ability of reading fluency in professional development teachers’ classrooms. This study was a two-year project. The researchers applied mixed methods to conduct this study including qualitative inquiry and one-group pretest-posttest experimental design. In the first year, this study focused on designing and implementing RTTP and evaluating participants’ satisfaction of RTTP, what they learned and how they applied it to design their English reading curriculum. In the second year, the study adopted quasi-experimental design approach and evaluated how participants RT instruction influenced their students’ learning, including English knowledge, skill, and attitudes. The participants in this study composed two junior high school English teachers and their students. Data were collected from a number of different sources including teaching observation, semi-structured interviews, teaching diary, teachers’ professional development portfolio, Pre/post RT content knowledge tests, teacher survey, and students’ reading fluency tests. To analyze the data, both qualitative and quantitative data analysis were used. Qualitative data analysis included three stages: organizing data, coding data, and analyzing and interpreting data. Quantitative data analysis included descriptive analysis. The results indicated that average percentage of correct on pre-tests in RT content knowledge assessment was 40.75% with two teachers ranging in prior knowledge from 35% to 46% in specific RT content. Post-test RT content scores ranged from 70% to 82% correct with an average score of 76.50%. That gives teachers an average gain of 35.75% in overall content knowledge as measured by these pre/post exams. Teachers’ pre-test scores were lowest in script writing and highest in performing. Script writing was also the content area that showed the highest gains in content knowledge. Moreover, participants hold a positive attitude toward RTTP. They recommended that the approach of professional learning community, which was applied in RTTP was benefit to their professional development. Participants also applied the new skills and knowledge which they learned from RTTP to their practices. The evidences from this study indicated that RT English instruction significantly influenced students’ reading fluency and classroom climate. The result indicated that all of the experimental group students had a big progress in reading fluency after RT instruction. The study also found out several obstacles. Suggestions were also made.

Keywords: teacher’s professional development, program evaluation, readers’ theater, english reading instruction, english reading fluency

Procedia PDF Downloads 401
3956 Focus Group Discussion (FGD) Strategy in Teaching Sociolinguistics to Enhance Students' Mastery: A Survey Research in Sanata Dharma ELESP Department

Authors: Nugraheni Widianingtyas, Niko Albert Setiawan

Abstract:

For ELESP Teachers’ College, teaching learning strategies such as presentation and group discussion are classical ones to be implemented in the class. In order to create a breakthrough which can bring about more positive advancements in the learning process, a Focus Group Discussion (FGD) is being offered and implemented in certain classes. Interestingly, FGD is frequently used in the social-business inquiries such as for recruiting employees. It is then interesting to investigate FGD when it is implemented in the educational scope, especially in the Sociolinguistics class which regarded as one of the most arduous subjects in this study program. Thus, this study focused on how FGD enhances students Sociolinguistics mastery. In response to that, a quantitative survey research was conducted in which observation, questionnaire, and interview (triangulation method) became the instruments. The respondents of this study were 29 sixth-semester students who take Sociolinguistics of ELESP, Sanata Dharma University in 2017. The findings indicated that FGD could help students in enhancing Sociolinguistics mastery. In addition, it also revealed that FGD was exploring students’ logical thinking, English communication skill, and decision-making.

Keywords: focus group discussion, material mastery, sociolinguistics, teaching strategy

Procedia PDF Downloads 217
3955 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 144
3954 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach

Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius

Abstract:

The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.

Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics

Procedia PDF Downloads 150
3953 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 369
3952 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data

Authors: Devin Simmons

Abstract:

At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.

Keywords: ferry vessels, transportation, modeling, AIS data

Procedia PDF Downloads 180
3951 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 519
3950 Influence of Instrumental Playing on Attachment Type of Musicians and Music Students Using Adult Attachment Scale-R

Authors: Sofia Serra-Dawa

Abstract:

Adult relationships accrue on a variety of past social experiences, intentions, and emotions that might predispose and influence the approach to and construction of subsequent relationships. The Adult Attachment Theory (AAT) proposes four types of adult attachment, where attachment is built over two dimensions of anxiety and avoidance: secure, anxious-preoccupied, dismissive-avoidant, and fearful-avoidant. The AAT has been studied in multiple settings such as personal and therapeutic relationships, educational settings, sexual orientation, health, and religion. In music scholarship, the AAT has been used to frame class learning of student singers and study the relational behavior between voice teachers and students. Building on this study, the present inquiry studies how attachment types might characterize learning relationships of music students (in the Western Conservatory tradition), and whether particular instrumental experiences might correlate to given attachment styles. Given certain behavioral cohesive features of established traditions of instrumental playing and performance modes, it is hypothesized that student musicians will display specific characteristics correlated to instrumental traditions, demonstrating clear tendency of attachment style, which in turn has implications on subsequent professional interactions. This study is informed by the methodological framework of Adult Attachment Scale-R (Collins and Read, 1990), which was particularly chosen given its non-invasive questions and classificatory validation. It is further hypothesized that the analytical comparison of musicians’ profiles has the potential to serve as the baseline for other comparative behavioral observation studies [this component is expected to be verified and completed well before the conference meeting]. This research may have implications for practitioners concerned with matching and improving musical teaching and learning relationships and in (professional and amateur) long-term musical settings.

Keywords: adult attachment, music education, musicians attachment profile, musicians relationships

Procedia PDF Downloads 160
3949 Understanding the Programming Techniques Using a Complex Case Study to Teach Advanced Object-Oriented Programming

Authors: M. Al-Jepoori, D. Bennett

Abstract:

Teaching Object-Oriented Programming (OOP) as part of a Computing-related university degree is a very difficult task; the road to ensuring that students are actually learning object oriented concepts is unclear, as students often find it difficult to understand the concept of objects and their behavior. This problem is especially obvious in advanced programming modules where Design Pattern and advanced programming features such as Multi-threading and animated GUI are introduced. Looking at the students’ performance at their final year on a university course, it was obvious that the level of students’ understanding of OOP varies to a high degree from one student to another. Students who aim at the production of Games do very well in the advanced programming module. However, the students’ assessment results of the last few years were relatively low; for example, in 2016-2017, the first quartile of marks were as low as 24.5 and the third quartile was 63.5. It is obvious that many students were not confident or competent enough in their programming skills. In this paper, the reasons behind poor performance in Advanced OOP modules are investigated, and a suggested practice for teaching OOP based on a complex case study is described and evaluated.

Keywords: complex programming case study, design pattern, learning advanced programming, object oriented programming

Procedia PDF Downloads 224
3948 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 149