Search results for: dynamic value stream mapping
1998 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans
Authors: O. Ekrami, P. Claes, S. Van Dongen
Abstract:
Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing
Procedia PDF Downloads 1401997 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso
Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni
Abstract:
At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.Keywords: aerosols retention, aerosols loading, statistics, analytical technique
Procedia PDF Downloads 3151996 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.Keywords: land characterization, suitability, soil orders, soil organic carbon stock
Procedia PDF Downloads 1141995 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma
Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov
Abstract:
Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.Keywords: electrical contact, material, nanocomposite, plasma, synthesis
Procedia PDF Downloads 2351994 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 731993 Cross-Cultural Collaboration Shaping Co-Creation Methodology to Enhance Disaster Risk Management Approaches
Authors: Jeannette Anniés, Panagiotis Michalis, Chrysoula Papathanasiou, Selby Knudsen
Abstract:
RiskPACC project aims to bring together researchers, practitioners, and first responders from nine European countries following a co-creation approach aiming to develop customised solutions to meet the needs of end-users. The co-creation workshops target to enhance the communication pathways between local civil protection authorities (CPAs) and citizens, in an effort to close the risk perception-action gap (RPAG). The participants in the workshops include a variety of stakeholders, as well as citizens, fostering the dialogue between the groups and supporting citizen participation in disaster risk management (DRM). The co-creation methodology in place implements co-design elements due to the integration of four ICT tools. Such ICT tools include web-based and mobile application technical solutions in different development stages, ranging from formulation and validation of concepts to pilot demonstrations. In total, seven different case studies are foreseen in RiskPACC. The workflow of the workshops is designed to be adaptive to every of the seven case study countries and their cultures’ particular needs. This work aims to provide an overview of the the preparation and the conduction of the workshops in which researchers and practitioners focused on mapping these different needs from the end users. The latter included first responders but also volunteers and citizens who actively participated in the co-creation workshops. The strategies to improve communication between CPAs and citizens themselves differ in the countries, and the modules of the co-creation methodology are adapted in response to such differences. Moreover, the project partners experienced how the structure of such workshops is perceived differently in the seven case studies. Therefore, the co-creation methodology itself is a design method underlying several iterations, which are eventually shaped by cross-cultural collaboration. For example, some case studies applied other modules according to the participatory group recruited. The participants were technical experts, teachers, citizens, first responders, or volunteers, among others. This work aspires to present the divergent approaches of the seven case studies implementing the co-creation methodology proposed, in response to different perceptions of the modules. An analysis of the adaptations and implications will also be provided to assess where the case studies’ objective of improving disaster resilience has been obtained.Keywords: citizen participation, co-creation, disaster resilience, risk perception, ICT tools
Procedia PDF Downloads 891992 Socioterritorial Inequalities in a Region of Chile. Beyond the Geography
Authors: Javier Donoso-Bravo, Camila Cortés-Zambrano
Abstract:
In this paper, we analyze socioterritorial inequalities in the region of Valparaiso (Chile) using secondary data to account for these inequalities drawing on economic, social, educational, and environmental dimensions regarding the thirty-six municipalities of the region. We looked over a wide-ranging set of secondary data from public sources regarding economic activities, poverty, employment, income, years of education, post-secondary education access, green areas, access to potable water, and others. We found sharp socioterritorial inequalities especially based on the economic performance in each territory. Analysis show, on the one hand, the existence of a dual and unorganized development model in some territories with a strong economic activity -especially in the areas of finance, real estate, mining, and vineyards- but, at the same time, with poor social indicators. On the other hand, most of the territories show a dispersed model with very little dynamic economic activities and very poor social development. Finally, we discuss how socioterritorial inequalities in the region of Valparaiso reflect the level of globalization of the economic activities carried on in every territory.Keywords: socioterritorial inequalities, development model, Chile, secondary data, Region of Valparaiso
Procedia PDF Downloads 1011991 Exploring Stakeholders’ Perceptions of the Implementation of the Door-to-Door Vaccination Campaign for the Oral Polio Vaccine (NOPV2) In Uganda: A Qualitative Study
Authors: Elizabeth B. Katana, Brenda N. Simbwa, Josephine Namayanja, Bob O. Amodan, Edirisa J. Nsubuga, Eva A. O. Laker
Abstract:
Background: Understanding stakeholders’ perceptions towards the implementation of a mass vaccination campaign is important to ensure the design of better strategies to address challenges. We explored stakeholders’ perceptions of the implementation of a nationwide door-to-door mass vaccination campaign for the oral polio vaccine (nOPV2) in Uganda for the two rounds that occurred in January and November 2022. Methods: A qualitative study was conducted among stakeholders who participated in the campaign implementation from 8 districts in Uganda using random sampling. We conducted 46 In-depth interviews lasting 30 – 40 minutes with 6 national/central supervisors, 12 district, 14 sub-county, and 14 parish-level supervisors. Stakeholders were asked about their experiences in the campaign implementation, including challenges faced and their opinions of the campaign impact and use of the door-to-door strategy. Data were analyzed thematically in line with the major campaign activities. Results: Most of the stakeholders were primarily concerned about poor planning, inadequate training of vaccination teams, community resistance including schools, challenges with recruitment and teaming of vaccinators, poor and delayed payments, lack of logistics and motivation for vaccination teams, the timing of the activities and implementing amidst COVID-19 and Ebola. The stakeholders believed that the first round was not well planned and implemented, while the second round was leveraged in their previous experiences. On the other hand, some positive experiences were noted with regard to communication, advocacy and mobilization, vaccine delivery and distribution, district readiness assessments, and cold chain management. Conclusion: This study identified many challenges that were faced in the implementation of the door-to-door mass campaign for nOPV2 in Uganda. This study identified that more needs to be done to improve door-to-door mass campaigns with a focus on motivating the implementers. These findings highlight the need for conducting performance reviews, improved planning, especially routine updates and verification of target populations and training in microplanning, and adequate mapping of community resistance to inform the implementation of future mass campaigns.Keywords: mass polio vaccination campaigns, door-to-door strategy, stakeholders' perceptions, implementation challenges
Procedia PDF Downloads 711990 Music Genre Classification Based on Non-Negative Matrix Factorization Features
Authors: Soyon Kim, Edward Kim
Abstract:
In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)
Procedia PDF Downloads 3031989 A Brave New World of Privacy: Empirical Insights into the Metaverse’s Personalization Dynamics
Authors: Cheng Xu
Abstract:
As the metaverse emerges as a dynamic virtual simulacrum of reality, its implications on user privacy have become a focal point of interest. While previous discussions have ventured into metaverse privacy dynamics, a glaring empirical gap persists, especially concerning the effects of personalization in the context of news recommendation services. This study stands at the forefront of addressing this void, meticulously examining how users' privacy concerns shift within the metaverse's personalization context. Through a pre-registered randomized controlled experiment, participants engaged in a personalization task across both the metaverse and traditional online platforms. Upon completion of this task, a comprehensive news recommendation service provider offers personalized news recommendations to the users. Our empirical findings reveal that the metaverse inherently amplifies privacy concerns compared to traditional settings. However, these concerns are notably mitigated when users have a say in shaping the algorithms that drive these recommendations. This pioneering research not only fills a significant knowledge gap but also offers crucial insights for metaverse developers and policymakers, emphasizing the nuanced role of user input in shaping algorithm-driven privacy perceptions.Keywords: metaverse, privacy concerns, personalization, digital interaction, algorithmic recommendations
Procedia PDF Downloads 1171988 A Theoretical Analysis on the Controversial Issue of Teaching Professional in the Institutionalized Perspective
Authors: Tien-Hui Chiang, Q. Zhou
Abstract:
For structural-functionalism, one set of the common traits of traditional professionals, such as medical practitioners and engineers, can be viewed as the criteria for evaluating whether a given occupation has the right of claiming its professional status or not. Under the influence of this professionalism, teaching practitioners have devoted themselves to acquiring this right as evidenced by the fact that initial training has been extended to even the level of postgraduate. However, for interactionalists, professionalism adopts a predetermined assumption so that it ignores the dynamic nature of social development, which is able to regulate the professional status of a given occupation. Such an interactive approach highlights the concept of professionalization. Furthermore, Marxists argue that structural-functionalists have ignored the impact of proletarianization on the white collar. While professionals gradually lose their control over their practices, the title of profession functions as a self-regulated icon that prevents them from collaborating with the working class and, in turn, creates the ideology of de-politicization sustaining the interests of the ruling class. This article adopts a theoretical analysis on these contradictory arguments. It argues that these criticisms neglect the influence of the institutionalized value system on social operation, which is the core element in sustaining the notion of the profession.Keywords: teaching profession, professionalism, professionalization, proletarianialization, institutionalized value system
Procedia PDF Downloads 3371987 The Maps of Meaning (MoM) Consciousness Theory
Authors: Scott Andersen
Abstract:
Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.Keywords: consciousness, perception, prospection, embodiment
Procedia PDF Downloads 601986 A Dynamic Model for Assessing the Advanced Glycation End Product Formation in Diabetes
Authors: Victor Arokia Doss, Kuberapandian Dharaniyambigai, K. Julia Rose Mary
Abstract:
Advanced Glycation End (AGE) products are the end products due to the reaction between excess reducing sugar present in diabetes and free amino group in protein lipids and nucleic acids. Thus, non-enzymic glycation of molecules such as hemoglobin, collagen, and other structurally and functionally important proteins add to the pathogenic complications such as diabetic retinopathy, neuropathy, nephropathy, vascular changes, atherosclerosis, Alzheimer's disease, rheumatoid arthritis, and chronic heart failure. The most common non-cross linking AGE, carboxymethyl lysine (CML) is formed by the oxidative breakdown of fructosyllysine, which is a product of glucose and lysine. CML is formed in a wide variety of tissues and is an index to assess the extent of glycoxidative damage. Thus we have constructed a mathematical and computational model that predicts the effect of temperature differences in vivo, on the formation of CML, which is now being considered as an important intracellular milieu. This hybrid model that had been tested for its parameter fitting and its sensitivity with available experimental data paves the way for designing novel laboratory experiments that would throw more light on the pathological formation of AGE adducts and in the pathophysiology of diabetic complications.Keywords: advanced glycation end-products, CML, mathematical model, computational model
Procedia PDF Downloads 1291985 Status of Vocational Education and Training in India: Policies and Practices
Authors: Vineeta Sirohi
Abstract:
The development of critical skills and competencies becomes imperative for young people to cope with the unpredicted challenges of the time and prepare for work and life. Recognizing that education has a critical role in reaching sustainability goals as emphasized by 2030 agenda for sustainability development, educating youth in global competence, meta-cognitive competencies, and skills from the initial stages of formal education are vital. Further, educating for global competence would help in developing work readiness and boost employability. Vocational education and training in India as envisaged in various policy documents remain marginalized in practice as compared to general education. The country is still far away from the national policy goal of tracking 25% of the secondary students at grade eleven and twelve under the vocational stream. In recent years, the importance of skill development has been recognized in the present context of globalization and change in the demographic structure of the Indian population. As a result, it has become a national policy priority and taken up with renewed focus by the government, which has set the target of skilling 500 million people by 2022. This paper provides an overview of the policies, practices, and current status of vocational education and training in India supported by statistics from the National Sample Survey, the official statistics of India. The national policy documents and annual reports of the organizations actively involved in vocational education and training have also been examined to capture relevant data and information. It has also highlighted major initiatives taken by the government to promote skill development. The data indicates that in the age group 15-59 years, only 2.2 percent reported having received formal vocational training, and 8.6 percent have received non-formal vocational training, whereas 88.3 percent did not receive any vocational training. At present, the coverage of vocational education is abysmal as less than 5 percent of the students are covered by the vocational education programme. Besides, launching various schemes to address the mismatch of skills supply and demand, the government through its National Policy on Skill Development and Entrepreneurship 2015 proposes to bring about inclusivity by bridging the gender, social and sectoral divide, ensuring that the skilling needs of socially disadvantaged and marginalized groups are appropriately addressed. It is fundamental that the curriculum is aligned with the demands of the labor market, incorporating more of the entrepreneur skills. Creating nonfarm employment opportunities for educated youth will be a challenge for the country in the near future. Hence, there is a need to formulate specific skill development programs for this sector and also programs for upgrading their skills to enhance their employability. There is a need to promote female participation in work and in non-traditional courses. Moreover, rigorous research and development of a robust information base for skills are required to inform policy decisions on vocational education and training.Keywords: policy, skill, training, vocational education
Procedia PDF Downloads 1531984 The Role of the Russian as a Foreign Language (RFL) Textbook in the RFL System
Authors: Linda Torresin
Abstract:
This paper is devoted to the Russian as a Foreign Language (RFL) textbook, which is understood as a fundamental element of the RFL system. The aim of the study is to explore the role of the RFL textbook in modern RFL teaching theories and practices. It is suggested that the RFL textbook is not a secondary factor but contributes to the advancement and rewriting of both RFL theories and practices. This study applies to the RFL textbook theory's recent pedagogical developments in education. Therefore, the RFL system is conceived as a complex adaptive system whose elements (teacher, textbook, students, etc.) interact in a dynamic network of interconnections. In particular, the author shows that the textbook plays a central role in the RFL system since it may change and even renew RFL teaching from both theoretical and practical perspectives. On the one hand, in fact, the use of an RFL textbook may impact teaching theories: that is, the textbook may either consolidate preexisting theories or launch new approaches. On the other hand, the RFL textbook may also influence teaching practices by reinforcing the preexisting ones or encouraging teachers to try new strategies instead. All this allows the RFL textbook, within the RFL complex adaptive system, to exert an influence on the specific teaching contexts in which Russian is taught, interacting with the other elements of the system itself. Through its findings, this paper contributes to the advancement of research on RFL textbook theory.Keywords: adaptive system, foreign language textbook, teaching Russian as a foreign language, textbook of Russian as a foreign language
Procedia PDF Downloads 961983 Deep Learning for Recommender System: Principles, Methods and Evaluation
Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui
Abstract:
Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.Keywords: big data, decision making, deep learning, recommender system
Procedia PDF Downloads 4781982 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)
Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa
Abstract:
Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point
Procedia PDF Downloads 2381981 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers
Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan
Abstract:
The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers
Procedia PDF Downloads 3351980 Regional Changes under Extreme Meteorological Events
Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel
Abstract:
The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)
Procedia PDF Downloads 3971979 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen
Abstract:
After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers
Procedia PDF Downloads 1411978 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties
Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione
Procedia PDF Downloads 821977 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties
Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF, and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione
Procedia PDF Downloads 1611976 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 781975 The Impact of Artificial Intelligence on Human Rights Priciples and Obligations
Authors: Adel Atta Youssef Rezkalla
Abstract:
Russia's invasion of Ukraine tested the international community and prompted not only states but also non-state actors to take deterrent measures in response. In fact, international sports federations, notably FIFA and UEFA, have managed to shift the power dynamic quite effectively by imposing a blanket ban on Russian national teams and clubs. The purpose of this article is to examine the human rights consequences of such actions by international sports organizations. First, the article moves away from assessing the legal status of FIFA and UEFA under international law and examines the question of how a legal connection can be established with their human rights obligations. Secondly, the human rights aspects of the controversial FIFA and UEFA measures against Russian athletes are examined and these are analyzed in more detail using the proportionality test than the principle of non-discrimination under international human rights law. Finally, the main avenues for redress for possible human rights violations related to the actions taken by these organizations are identified and the challenges of arbitration and litigation in Switzerland are highlighted.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 771974 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model
Authors: Yangrae Cho, Jinseok Kim, Yongtae Park
Abstract:
Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection
Procedia PDF Downloads 3371973 The Effects of Consumer Inertia and Emotions on New Technology Acceptance
Authors: Chyi Jaw
Abstract:
Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity
Procedia PDF Downloads 2961972 Oxygen Enriched Co-Combustion of Sub-Bituminous Coal/Biomass Waste Fuel Blends
Authors: Chaouki Ghenai
Abstract:
Computational Fluid Dynamic analysis of co-combustion of coal/biomass waste fuel blends is presented in this study. The main objective of this study is to investigate the effects of biomass portions (0%, 10%, 20%, 30%: weight percent) blended with coal and oxygen concentrations (21% for air, 35%, 50%, 75% and 100 % for pure oxygen) on the combustion performance and emissions. The goal is to reduce the air emissions from power plants coal combustion. Sub-bituminous Nigerian coal with calorific value of 32.51 MJ/kg and sawdust (biomass) with calorific value of 16.68 MJ/kg is used in this study. Coal/Biomass fuel blends co-combustion is modeled using mixture fraction/pdf approach for non-premixed combustion and Discrete Phase Modeling (DPM) to predict the trajectories and the heat/mass transfer of the fuel blend particles. The results show the effects of oxygen concentrations and biomass portions in the coal/biomass fuel blends on the gas and particles temperatures, the flow field, the devolitization and burnout rates inside the combustor and the CO2 and NOX emissions at the exit from the combustor. The results obtained in the course of this study show the benefits of enriching combustion air with oxygen and blending biomass waste with coal for reducing the harmful emissions from coal power plants.Keywords: co-combustion, coal, biomass, fuel blends, CFD, air emissions
Procedia PDF Downloads 4181971 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model
Authors: Bin Wang, Hengyu Ji, Zhifeng Ye
Abstract:
Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.Keywords: fuel metering unit, stepping motor, AMESim/Matlab, full digital simulation
Procedia PDF Downloads 2491970 COVID–19 Impact on Passenger and Cargo Traffic: A Case Study
Authors: Maja Čović, Josipa Bojčić, Bruna Bacalja, Gorana Jelić Mrčelić
Abstract:
The appearance of the COVID-19 disease and its fast-spreading brought global pandemic and health crisis. In order to prevent the further spreading of the virus, the governments had implemented mobility restriction rules which left a negative mark on the world’s economy. Although there is numerous research on the impact of COVID-19 on marine traffic around the world, the objective of this paper is to consider the impact of COVID-19 on passenger and cargo traffic in Port of Split, in the Republic of Croatia. Methods used to make the theoretical and research part of the paper are descriptive method, comparative method, compilation, inductive method, deductive method, and statistical method. Paper relies on data obtained via Port of Split Authority and analyses trends in passenger and cargo traffic, including the year 2020, when the pandemic broke. Significant reductions in income, disruptions in transportation and traffic, as well as other maritime services are shown in the paper. This article also observes a significant decline in passenger traffic, cruising traffic and also observes the dynamic of cargo traffic inside the port of Split.Keywords: COVID-19, pandemic, passenger traffic, ports, trends, cargo traffic
Procedia PDF Downloads 2161969 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow
Authors: Sudipto Sarkar, Anamika Paul
Abstract:
Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio
Procedia PDF Downloads 111