Search results for: unscented kalman filter
519 A Subband BSS Structure with Reduced Complexity and Fast Convergence
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method, we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work, the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each subband than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 579518 Oil Water Treatment by Nutshell and Dates Pits
Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren
Abstract:
The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.Keywords: date pits, nutshell, oil water, TSS
Procedia PDF Downloads 156517 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 77516 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image
Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak
Abstract:
Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.Keywords: immature palm count, oil palm, precision agriculture, remote sensing
Procedia PDF Downloads 76515 Evaluation of Combined System of Constructed Wetland/Expended Clay Aggregate in Greywater Treatment
Authors: Eya Hentati, Mona Lamine, Jalel Bouzid
Abstract:
In this study, a laboratory-scale was designed and fabricated to treat single house greywater in the north of Tunisia with a combination of physical and natural treatments systems. The combined system includes a bio-filter composed of LECA® (lightweight expanded clay aggregate) followed by a vertical up-flow constructed wetland planted with Iris pseudacorus and Typha Latifolia. Applied two hydraulic retention times (HRTs) with two different plants types showed that a bio-filter planted with Typha Latifolia has an optimum removal efficiency for degradation of organic matter and transformation of nitrogen and phosphate at HRT of 30 h. The optimum removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) ranged between 48-65%, between while the nutrients removal was in the range of 70% to 90%. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration, but this steel does not meet current regulations for unlimited irrigation. Hence further improvement procedures are suggested.Keywords: constructed wetland, greywater treatment, nutriments, organics
Procedia PDF Downloads 167514 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 387513 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods
Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino
Abstract:
In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer
Procedia PDF Downloads 344512 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 149511 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss
Procedia PDF Downloads 481510 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil
Procedia PDF Downloads 130509 Numerical Investigation into Capture Efficiency of Fibrous Filters
Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard
Abstract:
Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory
Procedia PDF Downloads 206508 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth
Authors: Hatem Hajri, Mohamed-Cherif Rahal
Abstract:
Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter
Procedia PDF Downloads 171507 Optimization of Groundwater Utilization in Fish Aquaculture
Authors: M. Ahmed Eldesouky, S. Nasr, A. Beltagy
Abstract:
Groundwater is generally considered as the best source for aquaculture as it is well protected from contamination. The most common problem limiting the use of groundwater in Egypt is its high iron, manganese and ammonia content. This problem is often overcome by applying the treatment before use. Aeration in many cases is not enough to oxidize iron and manganese in complex forms with organics. Most of the treatment we use potassium permanganate as an oxidizer followed by a pressurized closed green sand filter. The aim of present study is to investigate the optimum characteristics of groundwater to give lowest iron, manganese and ammonia, maximum production and quality of fish in aquaculture in El-Max Research Station. The major design goal of the system was determined the optimum time for harvesting the treated water, pH, and Glauconite weight to use it for aquaculture process in the research site and achieve the Egyptian law (48/1982) and EPA level required for aquaculture. The water characteristics are [Fe = 0.116 mg/L, Mn = 1.36 mg/L,TN = 0.44 mg/L , TP = 0.07 mg/L , Ammonia = 0.386 mg/L] by using the glauconite filter we obtained high efficiency for removal for [(Fe, Mn and Ammonia] ,but in the Lab we obtained result for (Fe, 43-97), ( Mn,92-99 ), and ( Ammonia, 66-88 )]. We summarized the results to show the optimum time, pH, Glauconite weight, and the best model for design in the region.Keywords: aquaculture, ammonia in groundwater, groundwater, iron and manganese in water, groundwater treatment
Procedia PDF Downloads 233506 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 10505 A Grid Synchronization Method Based On Adaptive Notch Filter for SPV System with Modified MPPT
Authors: Priyanka Chaudhary, M. Rizwan
Abstract:
This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.Keywords: solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique
Procedia PDF Downloads 594504 Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression
Authors: Chafik Barnoussi, Mourad Talbi, Adnane Cherif
Abstract:
In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality.Keywords: speech compression, bionic wavelet transform, filterbanks, psychoacoustic model
Procedia PDF Downloads 384503 Semiconducting Nanostructures Based Organic Pollutant Degradation Using Natural Sunlight for Water Remediation
Authors: Ankur Gupta, Jayant Raj Saurav, Shantanu Bhattacharya
Abstract:
In this work we report an effective water filtration system based on the photo catalytic performance of semiconducting dense nano-brushes under natural sunlight. During thin-film photocatalysis usually performed by a deposited layer of photocatalyst, a stagnant boundary layer is created near the catalyst which adversely affects the rate of adsorption because of diffusional restrictions. One strategy that may be used is to disrupt this laminar boundary layer by creating a super dense nanostructure near the surface of the catalyst. Further it is adequate to fabricate a structured filter element for a through pass of the water with as grown nanostructures coming out of the surface of such an element. So, the dye remediation is performed through solar means. This remediation was initially limited to lower efficiency because of diffusional restrictions but has now turned around as a fast process owing to the development of the filter materials with standing out dense nanostructures. The effect of increased surface area due to microholes on fraction adsorbed is also investigated and found that there is an optimum value of hole diameter for maximum adsorption.Keywords: nano materials, photocatalysis, waste water treatment, water remediation
Procedia PDF Downloads 339502 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea
Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee
Abstract:
Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking
Procedia PDF Downloads 349501 A Sustainable and Low-Cost Filter to Treat Pesticides in Water
Authors: T. Abbas, J. McEvoy, E. Khan
Abstract:
Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.Keywords: pesticide contamination, rural communities, iron turning waste, filtration
Procedia PDF Downloads 255500 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square
Procedia PDF Downloads 383499 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.Keywords: anammox, filter media, kinetics, nitrogen removal
Procedia PDF Downloads 382498 Algorithmic Skills Transferred from Secondary CSI Studies into Tertiary Education
Authors: Piroska Biró, Mária Csernoch, János Máth, Kálmán Abari
Abstract:
Testing the first year students of Informatics at the University of Debrecen revealed that students start their tertiary studies in programming with a low level of programming knowledge and algorithmic skills. The possible reasons which lead the students to this very unfortunate result were examined. The results of the test were compared to the students’ results in the school leaving exams and to their self-assessment values. It was found that there is only a slight connection between the students’ results in the test and in the school leaving exams, especially at intermediate level. Beyond this, the school leaving exams do not seem to enable students to evaluate their own abilities.Keywords: deep and surface approaches, metacognitive abilities, programming and algorithmic skills, school leaving exams, tracking code
Procedia PDF Downloads 384497 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction
Authors: N. Boutaghane, F. Z. Tounsi
Abstract:
Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT
Procedia PDF Downloads 453496 Rapid, Automated Characterization of Microplastics Using Laser Direct Infrared Imaging and Spectroscopy
Authors: Andreas Kerstan, Darren Robey, Wesam Alvan, David Troiani
Abstract:
Over the last 3.5 years, Quantum Cascade Lasers (QCL) technology has become increasingly important in infrared (IR) microscopy. The advantages over fourier transform infrared (FTIR) are that large areas of a few square centimeters can be measured in minutes and that the light intensive QCL makes it possible to obtain spectra with excellent S/N, even with just one scan. A firmly established solution of the laser direct infrared imaging (LDIR) 8700 is the analysis of microplastics. The presence of microplastics in the environment, drinking water, and food chains is gaining significant public interest. To study their presence, rapid and reliable characterization of microplastic particles is essential. Significant technical hurdles in microplastic analysis stem from the sheer number of particles to be analyzed in each sample. Total particle counts of several thousand are common in environmental samples, while well-treated bottled drinking water may contain relatively few. While visual microscopy has been used extensively, it is prone to operator error and bias and is limited to particles larger than 300 µm. As a result, vibrational spectroscopic techniques such as Raman and FTIR microscopy have become more popular, however, they are time-consuming. There is a demand for rapid and highly automated techniques to measure particle count size and provide high-quality polymer identification. Analysis directly on the filter that often forms the last stage in sample preparation is highly desirable as, by removing a sample preparation step it can both improve laboratory efficiency and decrease opportunities for error. Recent advances in infrared micro-spectroscopy combining a QCL with scanning optics have created a new paradigm, LDIR. It offers improved speed of analysis as well as high levels of automation. Its mode of operation, however, requires an IR reflective background, and this has, to date, limited the ability to perform direct “on-filter” analysis. This study explores the potential to combine the filter with an infrared reflective surface filter. By combining an IR reflective material or coating on a filter membrane with advanced image analysis and detection algorithms, it is demonstrated that such filters can indeed be used in this way. Vibrational spectroscopic techniques play a vital role in the investigation and understanding of microplastics in the environment and food chain. While vibrational spectroscopy is widely deployed, improvements and novel innovations in these techniques that can increase the speed of analysis and ease of use can provide pathways to higher testing rates and, hence, improved understanding of the impacts of microplastics in the environment. Due to its capability to measure large areas in minutes, its speed, degree of automation and excellent S/N, the LDIR could also implemented for various other samples like food adulteration, coatings, laminates, fabrics, textiles and tissues. This presentation will highlight a few of them and focus on the benefits of the LDIR vs classical techniques.Keywords: QCL, automation, microplastics, tissues, infrared, speed
Procedia PDF Downloads 66495 Sampling Two-Channel Nonseparable Wavelets and Its Applications in Multispectral Image Fusion
Authors: Bin Liu, Weijie Liu, Bin Sun, Yihui Luo
Abstract:
In order to solve the problem of lower spatial resolution and block effect in the fusion method based on separable wavelet transform in the resulting fusion image, a new sampling mode based on multi-resolution analysis of two-channel non separable wavelet transform, whose dilation matrix is [1,1;1,-1], is presented and a multispectral image fusion method based on this kind of sampling mode is proposed. Filter banks related to this kind of wavelet are constructed, and multiresolution decomposition of the intensity of the MS and panchromatic image are performed in the sampled mode using the constructed filter bank. The low- and high-frequency coefficients are fused by different fusion rules. The experiment results show that this method has good visual effect. The fusion performance has been noted to outperform the IHS fusion method, as well as, the fusion methods based on DWT, IHS-DWT, IHS-Contourlet transform, and IHS-Curvelet transform in preserving both spectral quality and high spatial resolution information. Furthermore, when compared with the fusion method based on nonsubsampled two-channel non separable wavelet, the proposed method has been observed to have higher spatial resolution and good global spectral information.Keywords: image fusion, two-channel sampled nonseparable wavelets, multispectral image, panchromatic image
Procedia PDF Downloads 440494 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler
Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury
Abstract:
An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler
Procedia PDF Downloads 148493 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite
Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona
Abstract:
The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity
Procedia PDF Downloads 128492 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 65491 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint
Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung
Abstract:
Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow
Procedia PDF Downloads 127490 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics
Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund
Abstract:
The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer
Procedia PDF Downloads 142