Search results for: learning management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15916

Search results for: learning management

15586 Hate Speech Detection Using Deep Learning and Machine Learning Models

Authors: Nabil Shawkat, Jamil Saquer

Abstract:

Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.

Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification

Procedia PDF Downloads 136
15585 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 195
15584 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria

Authors: Victor Oluwaseyi Olowonisi

Abstract:

The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.

Keywords: e-learning, education, higher education, increasing literacy

Procedia PDF Downloads 268
15583 Students Perception of a Gamified Student Engagement Platform as Supportive Technology in Learning

Authors: Pinn Tsin Isabel Yee

Abstract:

Students are increasingly turning towards online learning materials to supplement their education. One such approach would be the gamified student engagement platforms (GSEPs) to instill a new learning culture. Data was collected from closed-ended questions via content analysis techniques. About 81.8% of college students from the Monash University Foundation Year agreed that GSEPs (Quizizz) was an effective tool for learning. Approximately 85.5% of students disagreed that games were a waste of time. GSEPs were highly effective among students to facilitate the learning process.

Keywords: engagement, gamified, Quizizz, technology

Procedia PDF Downloads 107
15582 Assessment of the Readiness of Institutions and Undergraduates’ Attitude to Online Learning Mode in Nigerian Universities

Authors: Adedolapo Taiwo Adeyemi, Success Ayodeji Fasanmi

Abstract:

The emergence of the coronavirus pandemic and the rate of the spread affected a lot of activities across the world. This led to the introduction of online learning modes in several countries after institutions were shut down. Unfortunately, most public universities in Nigeria could not switch to the online mode because they were not prepared for it, as they do not have the technological capacity to support a full online learning mode. This study examines the readiness of university and the attitude of undergraduates towards online learning mode in Obafemi Awolowo University (OAU), Ile Ife. It investigated the skills and competencies of students for online learning as well as the university’s readiness towards online learning mode; the effort was made to identify challenges of online teaching and learning in the study area, and suggested solutions were advanced. OAU was selected because it is adjudged to be the leading Information and Communication Technology (ICT) driven institution in Nigeria. The descriptive survey research design was used for the study. A total of 256 academic staff and 1503 undergraduates were selected across six faculties out of the thirteen faculties in the University. Two set of questionnaires were used to get responses from the selected respondents. The result showed that students have the skills and competence to operate e-learning facilities but are faced with challenges such as high data cost, erratic power supply, and lack of gadgets, among others. The study found out that the university was not prepared for online learning mode as it lacks basic technological facilities to support it. The study equally showed that while lecturers possess certain skills in using some e-learning applications, they were limited by the unavailability of online support gadgets, poor internet connectivity, and unstable power supply. Furthermore, the assessment of student attitude towards online learning mode shows that the students found the online learning mode very challenging as they had to bear the huge cost of data. Lecturers also faced the same challenge as they had to pay a lot to buy data, and the networks were sometimes unstable. The study recommended that adequate funding needs to be provided to public universities by the government while the management of institutions must build technological capacities to support online learning mode in the hybrid form and on a full basis in case of future emergencies.

Keywords: universities, online learning, undergraduates, attitude

Procedia PDF Downloads 95
15581 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khlaid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: language acquisition, language learning, factors, Bisha college

Procedia PDF Downloads 499
15580 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
15579 ILearn, a Pathway to Progress

Authors: Reni Francis

Abstract:

Learning has transcended the classroom boundaries to create a learner centric, interactive, and integrative teaching learning environment. This study analysed the impact of iLearn on the teaching, learning, and evaluation among 100 teacher trainees. The objectives were to cater to the different learning styles of the teacher trainees, to incorporate innovative teaching learning activities, to assist in peer tutoring, to implement different evaluation processes. i: Identifying the learning styles among the teacher trainees through VARK Learning style checklist was followed by planning the teaching-learning process to meet the learning styles of the teacher trainees. L: Leveraging innovations in teaching- learning by planning and creating modules incorporating innovative teaching learning and hence the concept based year plan was prepared. E: Engage learning through constructivism using different teaching methodology to engage the teacher trainees in the learning process through Workshop, Round Robin, Gallery walk, Co-Operative learning, Think-Pair-Share, EDMODO, Course Networking, Concept Map, Brainstorming Sessions, Video Clippings. A: Assessing the learning through an Open Book assignment, Closed book assignment, and Multiple Choice Questions and Seminar presentation. R: Remediation through peer tutoring through Mentor-mentee approach in the tutorial groups, Group work, Library Hours. N: Norming new standards. This was done in the form of extended remediation and tutorials to understand the need of the teacher trainee and support them for further achievements in learning through Face to face interaction, Supervised Study Circle, Mobile (Device) learning. The findings of the study revealed the positive impact of iLearn towards student achievement and enhanced social skills.

Keywords: academic achievement, innovative strategy, learning styles, social skills

Procedia PDF Downloads 356
15578 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
15577 Knowledge Management (KM) Practices: A Study of KM Adoption among Doctors in Kuwait

Authors: B. Alajmi, L. Marouf, A. S. Chaudhry

Abstract:

In recent years, increasing emphasis has been placed upon issues concerning the evaluation of health care. In this regard, knowledge management has also been considered an important component of the evaluation process. KM facilitates the transfer of existing knowledge or the development of new knowledge among healthcare staff and patients. This research aimed to examine how hospitals in Kuwait employ knowledge management practices, including capturing, sharing, and generating, and the perceived impact of KM practices on performance of hospitals in Kuwait. Through adopting a quantitative survey method with 277 sample of doctors, the study found that in terms of the three major knowledge management practices – knowledge capturing, sharing, and generating – the adoption of KM practices were rated very low in the sampled hospitals in Kuwait. Hospitals paid little attention to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, knowledge management practices were perceived to have an impact on hospitals’ performance. Through knowledge capturing, sharing, and generating, hospitals could improve the services they provide through documenting best practices, transforming their hospitals into learning organizations in which lessons learned are captured, stored, and made available for others to learn from.

Keywords: knowledge management, hospitals, knowledge management practices, knowledge management tools, performance

Procedia PDF Downloads 503
15576 Expansion of Subjective Learning at Japanese Universities: Experiential Learning Based on Social Participation

Authors: Kumiko Inagaki

Abstract:

Qualitative changes to the undergraduate education have recently become the focus of attention in Japan. This is occurring against the backdrop of declining birthrate and increasing university enrollment, as well as drastic societal changes of advance toward globalization and a knowledge-based society. This paper describes the cases of Japanese universities that promoted various forms of experiential learning around the theme of social participation. The opportunity of learning through practical experience, where students turn their attention to social problems and take pains to consider means of resolving them, creates opportunities to demonstrate “human power” applicable to all sorts of activities the following graduation, thereby guaranteeing students’ continuous growth throughout their careers.

Keywords: career education, experiential learning, subjective learning, university education

Procedia PDF Downloads 310
15575 Savinglife®: An Educational Technology for Basic and Advanced Cardiovascular Life Support

Authors: Naz Najma, Grace T. M. Dal Sasso, Maria de Lourdes de Souza

Abstract:

The development of information and communication technologies and the accessibility of mobile devices has increased the possibilities of the teaching and learning process anywhere and anytime. Mobile and web application allows the production of constructive teaching and learning models in various educational settings, showing the potential for active learning in nursing. The objective of this study was to present the development of an educational technology (Savinglife®, an app) for learning cardiopulmonary resuscitation and advanced cardiovascular life support training. Savinglife® is a technological production, based on the concept of virtual learning and problem-based learning approach. The study was developed from January 2016 to November 2016, using five phases (analyze, design, develop, implement, evaluate) of the instructional systems development process. The technology presented 10 scenarios and 12 simulations, covering different aspects of basic and advanced cardiac life support. The contents can be accessed in a non-linear way leaving the students free to build their knowledge based on their previous experience. Each scenario is presented through interactive tools such as scenario description, assessment, diagnose, intervention and reevaluation. Animated ECG rhythms, text documents, images and videos are provided to support procedural and active learning considering real life situation. Accessible equally on small to large devices with or without an internet connection, Savinglife® offers a dynamic, interactive and flexible tool, placing students at the center of the learning process. Savinglife® can contribute to the student’s learning in the assessment and management of basic and advanced cardiac life support in a safe and ethical way.

Keywords: problem-based learning, cardiopulmonary resuscitation, nursing education, advanced cardiac life support, educational technology

Procedia PDF Downloads 304
15574 Blended Learning and English Language Teaching: Instructors' Perceptions and Aspirations

Authors: Rasha Alshaye

Abstract:

Blended learning has become an innovative model that combines face-to-face with e-learning approaches. The Saudi Electronic University (SEU) has adopted blended learning as a flexible approach that provides instructors and learners with a motivating learning environment to stimulate the teaching and learning process. This study investigates the perceptions of English language instructors, teaching the four English language skills at Saudi Electronic University. Four main domains were examined in this study; challenges that the instructors encounter while implementing the blended learning approach, enhancing student-instructor interaction, flexibility in teaching, and the lack of technical skills. Furthermore, the study identifies and represents the instructors’ aspirations and plans to utilize this approach in enhancing the teaching and learning experience. Main findings indicate that instructors at Saudi Electronic University experience some challenges while teaching the four language skills. However, they find the blended learning approach motivating and flexible for them and their students. This study offers some important understandings into how instructors are applying the blended learning approach and how this process can be enriched.

Keywords: blended learning, English language skills, English teaching, instructors' perceptions

Procedia PDF Downloads 139
15573 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
15572 Analyzing Log File of Community Question Answering for Online Learning

Authors: Long Chen

Abstract:

With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.

Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training

Procedia PDF Downloads 441
15571 Use of Self-Monitoring Strategy on Homework Completion among Pupils with Learning Disabilities in Ondo State, Nigeria

Authors: Olusegun Omoluwa, Kolawole Israel Anthony

Abstract:

Pupils with learning disabilities are found in every classroom, but because learning disabilities cannot be seen, the condition is often too neglected. Unless these pupils are recognised and treated, they are likely to become educational discards. This study consequently attempted to determine effects of self-monitoring strategy on homework completion among pupils with learning disabilities. Ninety (90) participants were engaged in the study. Pre-test, post-test, control group quasi experimental design was adopted. Purposive sampling technique was used to select pupils with evidence of learning disabilities from three primary schools in Ondo State. Findings showed that self-monitoring strategy was significant in enhancing homework completion among pupils with learning disabilities. However, gender and self-esteem did not significantly contribute to homework completion. The study therefore recommended that measures such that would uncover unsettling academic, psychological and emotional deficiencies of these pupils through appropriate diagnosis should be undertaken by the parents and teachers, in order for them to have a sense of belonging in the society.

Keywords: self monitoring, home work completion, learning dissabilities, learning

Procedia PDF Downloads 352
15570 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan

Authors: Wan Jen Chang

Abstract:

Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.

Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system

Procedia PDF Downloads 67
15569 A Study on the Difficulties and Countermeasures of Uyghur Students’ English Learning in Hotan District, Xinjiang

Authors: Tingting Zou

Abstract:

This paper firstly presents an overview of the situation of Xinjiang and Hotan, and describes the current status and features of Uyghur students’ English education. Then it summarizes the research on the theories of Third Language Acquisition and Foreign Language Learning Motivation at home and abroad. Further, through the data collected by the questionnaire, the paper points out the three main problems and causes of Uyghur students’ English learning in Hotan, Xinjiang. Finally, the paper draws a conclusion and puts forward some suggestions on how to improve their English learning quality based on the theory of Foreign Language Learning Motivation.

Keywords: countermeasures and difficulties, English learning, Hotan Xinjiang, Uyghur students

Procedia PDF Downloads 96
15568 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model

Authors: Zhidong Zhang, Yingchen Yang

Abstract:

In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.

Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes

Procedia PDF Downloads 152
15567 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 153
15566 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 158
15565 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing

Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar

Abstract:

The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic waste

Keywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development

Procedia PDF Downloads 30
15564 Artificial Intelligence in Duolingo

Authors: Elana Mahboub, Lamar Bakhurji, Hind Alhindi, Sara Alesayi

Abstract:

Duolingo is a revolutionary language learning platform that offers an interactive and accessible learning experience. Its gamified approach makes language learning engaging and enjoyable, with a diverse range of languages available. The platform's adaptive learning system tailors lessons to individual proficiency levels, ensuring a personalized and efficient learning journey. The incorporation of multimedia elements enhances the learning experience and promotes practical language application. Duolingo's success is attributed to its mobile accessibility, offering basic access to language courses for free, with optional premium features for those seeking additional resources. Research shows positive outcomes for users, and the app's global impact extends beyond individual learning to formal language education initiatives. Duolingo is a transformative force in language education, breaking down barriers and making language learning an attainable goal for millions worldwide.

Keywords: duolingo, artificial intelligence, artificial intelligence in duolingo, benefit of artificial intelligence

Procedia PDF Downloads 72
15563 Dynamics of Piaget’s Cognitive Learning Approach and Vygotsky’s Sociocultural Theory in Different Stages of Medical and Allied Health Education

Authors: Ferissa B. Ablola

Abstract:

The two learning theories which were evidently used in medical education include cognitive and sociocultural frameworks. The interplay of different learning theories in education is vital since most of the existing theories have specific focus of development. In addition, a certain theory is best fit with a particular learning outcome and audience profile. The application of learning theories is education is said to be dynamic and becomes more complex with increasing educational level. This systematic review aims to describe the possible shift from integration of cognitive learning theory to employment of socio-cultural approach in medical and health-allied education over the years among students, educators and the learning institution through systematic review following the PRISMA guidelines. In addition, the changes in teaching modality and individual acceptance of the shift of learning framework among cognitive constructivist and social constructivist will also be documented. This present review may serve as baseline information on the connection of two widely used theories in medical education in different year levels. Further, this study emphasizes the significance of the alignment of different learning theories and combination of insights from several educational frameworks, would permit the creation of a teaching/learning design with real theoretical depth. A more inclusive systematic review is necessary to involve more related studies, and exploration of interaction among other learning theories in health and other fields of study is encouraged.

Keywords: learning theory, cognitive, sociocultural, medical education

Procedia PDF Downloads 26
15562 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 187
15561 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 162
15560 Virtua-Gifted and Non-Gifted Students’ Motivation toward Virtual Flipped Learning from L2 Motivational Self-System Lense

Authors: Kamal Heidari

Abstract:

Covid-19 has borne drastic effects on different areas of society, including the education area, in that it brought virtual education to the center of attention, as an alternative to in-person education. In virtual education, the importance of flipped learning doubles, as students are supposed to take the main responsibility of teaching/learning process; and teachers play merely a facilitative/monitoring role. Given the students’ responsibility in virtual flipped learning, students’ motivation plays a pivotal role in the effectiveness of this learning method. The L2 Motivational Self-System (L2MSS) model is a currently proposed model elaborating on students’ motivation based on three sub-components: ideal L2 self, ought-to L2 self, and L2 learning experience. Drawing on an exploratory sequential mixed-methods research design, this study probed the effect of virtual flipped learning (via SHAD platform) on 112 gifted and non-gifted students’ motivation based on the L2 MSS. This study uncovered that notwithstanding the point that virtual flipped learning improved both gifted and non-gifted students’ motivation, it differentially affected their motivation. In other words, gifted students mostly referred to ideal L2 self, while non-gifted ones referred to ought-to L2 self and L2 learning experience aspects of motivation.

Keywords: virtual flipped learning, giftedness, motivation, L2MSS

Procedia PDF Downloads 91
15559 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning

Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov

Abstract:

The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.

Keywords: computer-assisted instruction, language learning, natural language grammar models, HCI

Procedia PDF Downloads 519
15558 Using Diagnostic Assessment as a Learning and Teaching Approach to Identify Learning Gaps at a Polytechnic

Authors: Vijayan Narayananayar

Abstract:

Identifying learning gaps is crucial in ensuring learners have the necessary knowledge and skills to succeed. The Learning and Teaching (L&T) approach requires tutors to identify gaps in knowledge and improvise learning activities to close them. One approach to identifying learning gaps is through diagnostic assessment, which uses well-structured questions and answer options. The paper focuses on the use of diagnostic assessment as a learning and teaching approach in a foundational module at a polytechnic. The study used diagnostic assessment over two semesters, including the COVID and post-COVID semesters, to identify gaps in learning. The design of the diagnostic activity, pedagogical intervention, and survey responses completed by learners were analyzed. Results showed that diagnostic assessment can be an effective tool for identifying learning gaps and designing interventions to address them. Additionally, the use of diagnostic assessment provides an opportunity for tutors to engage with learners on a one-to-one basis, tailoring teaching to individual needs. The paper also discusses the design of diagnostic questions and answer options, including characteristics that need to be considered in achieving the target of identifying learning gaps. The implications of using diagnostic assessment as a learning and teaching approach include bridging the gap between theory and practice, and ensuring learners are equipped with skills necessary for their future careers. This paper can be useful in helping educators and practitioners to incorporate diagnostic assessment into their L&T approach.

Keywords: assessment, learning & teaching, diagnostic assessment, analytics

Procedia PDF Downloads 111
15557 The Role of E-Learning in Science, Technology, Engineering, and Math Education

Authors: Annette McArthur

Abstract:

The traditional model of teaching and learning, where ICT sits as a separate entity is not a model for a 21st century school. It is imperative that teaching and learning embraces technological advancements. The challenge in schools lies in shifting the mindset of teachers so they see ICT as integral to their teaching, learning and curriculum rather than a separate E-Learning curriculum stream. This research project investigates how the effective, planned, intentional integration of ICT into a STEM curriculum, can enable the shift in the teacher mindset. The project incorporated: • Developing a professional coaching relationship with key STEM teachers. • Facilitating staff professional development involving student centered project based learning pedagogy in the context of a STEM curriculum. • Facilitating staff professional development involving digital literacy. • Establishing a professional community where collaboration; sharing and reflection were part of the culture of the STEM community. • Facilitating classroom support for the effective delivery innovative STEM curriculum. • Developing STEM learning spaces where technologies were used to empower and engage learners to participate in student-centered, project-based learning.

Keywords: e-learning, ICT, project based learning, STEM

Procedia PDF Downloads 300