Search results for: football analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 498

Search results for: football analytics

168 A Relational View for Financial Metrics in Logistics Service Providers

Authors: Paulo Sergio Altman Ferreira

Abstract:

Relationship development plays an essential role in every logistics company. Logistics companies are service-based businesses essentially performing the flow of materials, housing, and inventory management for a wide range of customers. The service encounter between the logistics provider’s personnel and the customers may form a connection that will demonstrate a strong impact, not only to the customers' overall satisfaction but may also provide the perception of individualized services. Logistics services must drive value. It also shows a close influence on the quality and costs of client-centered services. If we describe logistics value creation as the function of quality perception of the client divided by service costs, there is a requirement to better outline and explain the measures and analytics for logistics costs and relationship performance. This critical shift to understand logistics services is a relevant contribution to capture how relationship value can be quantified. This might involve changing our current perspective on logistics providers beyond uniquely measuring the services in terms of activities, personnel levels, and financial/costs ratios. This paper argues that measuring value creation accomplishments of logistics services needs to consider the relational improvements for the wider range of logistics companies. Accurate logistics value requires a description of the financial impact of the relational perspective of the service.

Keywords: logistics services providers, financial metrics, relationship management, value creation

Procedia PDF Downloads 150
167 The Role of Social Networks in Promoting Ethics in Iranian Sports

Authors: Tayebeh Jameh-Bozorgi, M. Soleymani

Abstract:

In this research, the role of social networks in promoting ethics in Iranian sports was investigated. The research adopted a descriptive-analytic method, and the survey’s population consisted of all the athletes invited to the national football, volleyball, wrestling and taekwondo teams. Considering the limited population, the size of the society was considered as the sample size. After the distribution of the questionnaires, 167 respondents answered the questionnaires correctly. The data collection tool was chosen according to Hamid Ghasemi`s, standard questionnaire for social networking and mass media, which has 28 questions. Reliability of the questionnaire was calculated using Cronbach's alpha coefficient (94%). The content validity of the questionnaire was also approved by the professors. In this study, descriptive statistics and inferential statistical methods were used to analyze the data using statistical software. The benchmark tests used in this research included the following: Binomial test, Friedman test, Spearman correlation coefficient, Vermont Creamers, Good fit test and comparative prototypes. The results showed that athletes believed that social network has a significant role in promoting sport ethics in the community. Telegram has been known to play a big role than other social networks. Moreover, the respondents' view on the role of social networks in promoting sport ethics was significantly different in both men and women groups. In fact, women had a more positive attitude towards the role of social networks in promoting sport ethics than men. The respondents' view of the role of social networks in promoting the ethics of sports in the study groups also had a significant difference. Additionally, there was a significant and reverse relationship between the sports experience and the attitude of national athletes regarding the role of social networks in promoting ethics in sports.

Keywords: ethics, social networks, mass media, Iranian sports, internet

Procedia PDF Downloads 288
166 CanVis: Towards a Web Platform for Cancer Progression Tree Analysis

Authors: Michael Aupetit, Mahmoud Al-ismail, Khaled Mohamed

Abstract:

Cancer is a major public health problem all over the world. Breast cancer has the highest incidence rate over all cancers for women in Qatar making its study a top priority of the country. Human cancer is a dynamic disease that develops over an extended period through the accumulation of a series of genetic alterations. A Darwinian process drives the tumor cells toward higher malignancy growing the branches of a progression tree in the space of genes expression. Although it is not possible to track these genetic alterations dynamically for one patient, it is possible to reconstruct the progression tree from the aggregation of thousands of tumor cells’ genetic profiles from thousands of different patients at different stages of the disease. Analyzing the progression tree is a way to detect pivotal molecular events that drive the malignant evolution and to provide a guide for the development of cancer diagnostics, prognostics and targeted therapeutics. In this work we present the development of a Visual Analytic web platform CanVis enabling users to upload gene-expression data and analyze their progression tree. The server computes the progression tree based on state-of-the-art techniques and allows an interactive visual exploration of this tree and the gene-expression data along its branching structure helping to discover potential driver genes.

Keywords: breast cancer, progression tree, visual analytics, web platform

Procedia PDF Downloads 416
165 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates

Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras

Abstract:

Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.

Keywords: blockchain, degree verification, higher education certificates, Hyperledger Iroha

Procedia PDF Downloads 141
164 Sociological Approach to the Influence of Gender Stereotypes in Sport Education

Authors: Sara Rozenwajn Acheroy

Abstract:

This study aims to analyze gender stereotypes’ influence of physical education’s teachers in secondary education and coaches in sports clubs of five sports: swimming, beach-volley, tennis, gymnastics and football. Because sport is a major socializing agent of high symbolic, ideological and economical relevance with an impact in the social values and the construct of identity, in addition, to be an international and global phenomenon, States tend to institutionalize it through education, federations, and clubs, as well as build sports facilities. Research in the field is now needed more than ever, given that sport is still considered as a masculine practice, and that such perspective is spread at school since the age of six in physical education lessons. For all those reasons, and more, it is necessary to study which stereotypes are transmitted in its everyday practice and how it affects young people’s self-perception on their physical and body capacities. This study’s objectives are centered on 4 points: 1) stereotypes and self-perception of students and young people, 2) teachers and coaches’ stereotypes and influence, 3) social status of parents (indicative) and 4) environmental analysis of schools and sport clubs. To that end, triangular methodology has been favored. Quantitative and qualitative data, through semi-structured interviews with coaches and teachers; group interviews with young people; 450 surveys in high schools from Madrid, Barcelona and Canary Islands; and participant observation in clubs. Remarks made at this stage of the study are diverse and not conclusive. For example, physical education teachers have more gender stereotypes than coaches in sport clubs, matching with our hypothesis so far. It also seems that young people at the age of 16-17 still do not have internalized gender stereotypes as deep as their teachers. This among other observations of the current fieldwork will be exposed, hoping to give a better understanding of the need for gender policies and educational programs with gender perspective in all sectors that includes sport’s activities.

Keywords: gender, sport, sexism, gender stereotypes, sport education

Procedia PDF Downloads 223
163 The Impact of AI on Higher Education

Authors: Georges Bou Ghantous

Abstract:

This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.

Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning

Procedia PDF Downloads 26
162 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 190
161 Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target

Authors: Ivan Ramos Sampe Immanuel, Linung Kresno Adikusumo, Liston Sitanggang

Abstract:

Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets.

Keywords: production, performance, dashboard, data analytics

Procedia PDF Downloads 70
160 The Effect of PETTLEP Imagery on Equestrian Jumping Tasks

Authors: Nurwina Anuar, Aswad Anuar

Abstract:

Imagery is a popular mental technique used by athletes and coaches to improve learning and performance. It has been widely investigated and beneficial in the sports context. However, the imagery application in equestrian sport has been understudied. Thus, the effectiveness of imagery should encompass the application in the equestrian sport to ensure its application covert all sports. Unlike most sports (e.g., football, badminton, tennis, ski) which are both mental and physical are dependent solely upon human decision and response, equestrian sports involves the interaction of human-horse collaboration to success in the equestrian tasks. This study aims to investigate the effect of PETTLEP imagery on equestrian jumping tasks, motivation and imagery ability. It was hypothesized that the use of PETTLEP imagery intervention will significantly increase in the skill equestrian jumping tasks. It was also hypothesized that riders’ imagery ability and motivation will increase across phases. The participants were skilled riders with less to no imagery experience. A single-subject ABA design was employed. The study was occurred over five week’s period at Universiti Teknologi Malaysia Equestrian Park. Imagery ability was measured using the Sport Imagery Assessment Questionnaires (SIAQ), the motivational measured based on the Motivational imagery ability measure for Sport (MIAMS). The effectiveness of the PETTLEP imagery intervention on show jumping tasks were evaluated by the professional equine rider on the observational scale. Results demonstrated the improvement on all equestrian jumping tasks for the most participants from baseline to intervention. Result shows the improvement on imagery ability and participants’ motivations after the PETTLEP imagery intervention. Implication of the present study include underlining the impact of PETTLEP imagery on equestrian jumping tasks. The result extends the previous research on the effectiveness of PETTLEP imagery in the sports context that involves interaction and collaboration between human and horse.

Keywords: PETTLEP imagery, imagery ability, equestrian, equestrian jumping tasks

Procedia PDF Downloads 202
159 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being

Procedia PDF Downloads 70
158 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 35
157 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 17
156 Powering Connections: Synergizing Sales and Marketing for Electronics Engineering with Web Development.

Authors: Muhammad Awais Kiani, Abdul Basit Kiani, Maryam Kiani

Abstract:

Synergizing Sales and Marketing for Electronics Engineering with Web Development, explores the dynamic relationship between sales, marketing, and web development within the electronics engineering industry. This study is important for the power of digital platforms to connect with customers. Which increases brand visibility and drives sales. It highlights the need for collaboration between sales and marketing teams, as well as the integration of web development strategies to create seamless user experiences and effective lead generation. Furthermore, It also emphasizes the role of data analytics and customer insights in optimizing sales and marketing efforts in the ever-evolving landscape of electronics engineering. Sales and marketing play a crucial role in driving business growth, and in today's digital landscape, web development has become an integral part of these strategies. Web development enables businesses to create visually appealing and user-friendly websites that effectively showcase their products or services. It allows for the integration of e-commerce functionalities, enabling seamless online transactions. Furthermore, web development helps businesses optimize their online presence through search engine optimization (SEO) techniques, social media integration, and content management systems. This abstract highlights the symbiotic relationship between sales marketing in the electronics industry and web development, emphasizing the importance of a strong online presence in achieving business success.

Keywords: electronics industry, web development, sales, marketing

Procedia PDF Downloads 116
155 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics

Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari

Abstract:

The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.

Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration

Procedia PDF Downloads 64
154 Digital Innovation and Business Transformation

Authors: Bisola Stella Sonde

Abstract:

Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.

Keywords: business transformation, digital innovation, emerging technologies, organizational structures

Procedia PDF Downloads 60
153 Building a Transformative Continuing Professional Development Experience for Educators through a Principle-Based, Technological-Driven Knowledge Building Approach: A Case Study of a Professional Learning Team in Secondary Education

Authors: Melvin Chan, Chew Lee Teo

Abstract:

There has been a growing emphasis in elevating the teachers’ proficiency and competencies through continuing professional development (CPD) opportunities. In this era of a Volatile, Uncertain, Complex, Ambiguous (VUCA) world, teachers are expected to be collaborative designers, critical thinkers and creative builders. However, many of the CPD structures are still revolving in the model of transmission, which stands in contradiction to the cultivation of future-ready teachers for the innovative world of emerging technologies. This article puts forward the framing of CPD through a Principle-Based, Technological-Driven Knowledge Building Approach grounded in the essence of andragogy and progressive learning theories where growth is best exemplified through an authentic immersion in a social/community experience-based setting. Putting this Knowledge Building Professional Development Model (KBPDM) in operation via a Professional Learning Team (PLT) situated in a Secondary School in Singapore, research findings reveal that the intervention has led to a fundamental change in the learning paradigm of the teachers, henceforth equipping and empowering them successfully in their pedagogical design and practices for a 21st century classroom experience. This article concludes with the possibility in leveraging the Learning Analytics to deepen the CPD experiences for educators.

Keywords: continual professional development, knowledge building, learning paradigm, principle-based

Procedia PDF Downloads 130
152 Prevalence of Dietary Supplements among University Athlete Regime in Sri Lanka: A Cross-Sectional Study

Authors: S. A. N. Rashani, S. Pigera, P. N. J. Fernando, S. Jayawickema, M. A. Niriella, A. P. De Silva

Abstract:

Dietary supplement (DS) consumption is drastically trending among the young athlete generation in developing countries. Many athletes try to fulfill their nutrition requirements using dietary supplements without knowing their effects on health and performance. This study aimed to assess the DS usage patterns of university athletes in Sri Lanka. A self-administered questionnaire was employed to collect data from state university students representing a university team, and a sample of 200 respondents was selected based on a stratified random sampling technique. Incomplete questionnaires were omitted from the analysis. The data were analyzed using IBM SPSS statistics for Windows version 25. The level of significance was set at p<0.05 in the data analysis. The prevalence of DS was 48.2% (n= 94), with no significant association between gender and DS intake. Protein (15.9%), vitamin (14.9%), sports drinks (12.8%), and creatine (8.2%) were the most consumed DS by students. Weightlifting (85.0%), football (62.5%), rugby (57.7%), and wrestling (40.9%) players showed higher DS usage among other sports. Coaches were reported as the most frequent person who was advised to use DS (43.0%). Students who won interuniversity games showed significantly low DS intake (p = 0.002) compared to others. Interestingly, DS use was significantly affected by the season of use (p = 0.000), pointing out that during competition and training seasons (62.4%) was the most frequent use. The pharmacy (27.0%) was the commonest place to buy DS. Students who used nutrient-dense meal plans during the training and competition period still showed a 61.0% tendency to consume DS. Most claimed reason to use DS was to increase energy and strength (29.0%). A majority reported that they used DS for less than one month (35.5%), while the second-highest duration was over three years (17.2%). Considering body mass index (BMI), healthy weight students showed 71.0% DS prevalence. DS prevalence was moderate among Sri Lankan university students, highlighting that the highest DS use was during competition and training seasons. Moreover, it emphasizes the need for nutrition and anti-doping counseling in the Sri Lankan university system.

Keywords: athlete, dietary, supplements, university

Procedia PDF Downloads 205
151 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore

Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska

Abstract:

— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.

Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis

Procedia PDF Downloads 25
150 Duality of Leagility and Governance: A New Normal Demand Network Management Paradigm under Pandemic

Authors: Jacky Hau

Abstract:

The prevalence of emerging technologies disrupts various industries as well as consumer behavior. Data collection has been in the fingertip and inherited through enabled Internet-of-things (IOT) devices. Big data analytics (BDA) becomes possible and allows real-time demand network management (DNM) through leagile supply chain. To enhance further on its resilience and predictability, governance is going to be examined to promote supply chain transparency and trust in an efficient manner. Leagility combines lean thinking and agile techniques in supply chain management. It aims at reducing costs and waste, as well as maintaining responsiveness to any volatile consumer demand by means of adjusting the decoupling point where the product flow changes from push to pull. Leagility would only be successful when collaborative planning, forecasting, and replenishment (CPFR) process or alike is in place throughout the supply chain business entities. Governance and procurement of the supply chain, however, is crucial and challenging for the execution of CPFR as every entity has to walk-the-talk generously for the sake of overall benefits of supply chain performance, not to mention the complexity of exercising the polices at both of within across various supply chain business entities on account of organizational behavior and mutual trust. Empirical survey results showed that the effective timespan on demand forecasting had been drastically shortening in the magnitude of months to weeks planning horizon, thus agility shall come first and preferably following by lean approach in a timely manner.

Keywords: governance, leagility, procure-to-pay, source-to-contract

Procedia PDF Downloads 111
149 Comprehensive Study of Data Science

Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly

Abstract:

Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.

Keywords: data science, machine learning, data analytics, artificial intelligence

Procedia PDF Downloads 82
148 From Ride-Hailing App to Diversified and Sustainable Platform Business Model

Authors: Ridwan Dewayanto Rusli

Abstract:

We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.

Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce

Procedia PDF Downloads 93
147 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 187
146 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels

Authors: Martin Elstner

Abstract:

Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.

Keywords: bioanalytics, hydrogels, information processing, microvalve

Procedia PDF Downloads 309
145 An Evaluation of Existing Models to Smart Cities Development Around the World

Authors: Aqsa Mehmood, Muhammad Ali Tahir, Hafiz Syed Hamid Arshad, Salman Atif, Ejaz Hussain, Gavin McArdle, Michela Bertolotto

Abstract:

The evolution of smart cities in recent years has been developing dramatically. As urbanization increases, the demand for big data analytics and digital technology-based solutions for cities has also increased. Many cities around the world have now planned to focus on smart cities. To obtain a systematic overview of smart city models, we carried out a bibliometric analysis in the context of seven regions of the world to understand the main dimensions that characterize smart cities. This paper analyses articles published between 2017 and 2021 that were captured from Web of Science and Scopus. Specifically, we investigated publication trends to highlight the research gaps and current developments in smart cities research. Our survey provides helpful insights into the geographical distribution of smart city publications with respect to regions of the world and explores the current key topics relevant to smart cities and the co-occurrences of keywords used in these publications. A systematic literature review and keyword analysis were performed. The results have focused on identifying future directions in smart city development, including smart citizens, ISO standards, Open Geospatial Consortium and the sustainability factor of smart cities. This article will assist researchers and urban planners in understanding the latest trends in research and highlight the aspects which need further attention.

Keywords: smart cities, sustainability, regions, urban development, VOS viewer, research trends

Procedia PDF Downloads 118
144 A Data Driven Methodological Approach to Economic Pre-Evaluation of Reuse Projects of Ancient Urban Centers

Authors: Pietro D'Ambrosio, Roberta D'Ambrosio

Abstract:

The upgrading of the architectural and urban heritage of the urban historic centers almost always involves the planning for the reuse and refunctionalization of the structures. Such interventions have complexities linked to the need to take into account the urban and social context in which the structure and its intrinsic characteristics such as historical and artistic value are inserted. To these, of course, we have to add the need to make a preliminary estimate of recovery costs and more generally to assess the economic and financial sustainability of the whole project of re-socialization. Particular difficulties are encountered during the pre-assessment of costs since it is often impossible to perform analytical surveys and structural tests for both structural conditions and obvious cost and time constraints. The methodology proposed in this work, based on a multidisciplinary and data-driven approach, is aimed at obtaining, at very low cost, reasonably priced economic evaluations of the interventions to be carried out. In addition, the specific features of the approach used, derived from the predictive analysis techniques typically applied in complex IT domains (big data analytics), allow to obtain as a result indirectly the evaluation process of a shared database that can be used on a generalized basis to estimate such other projects. This makes the methodology particularly indicated in those cases where it is expected to intervene massively across entire areas of historical city centers. The methodology has been partially tested during a study aimed at assessing the feasibility of a project for the reuse of the monumental complex of San Massimo, located in the historic center of Salerno, and is being further investigated.

Keywords: evaluation, methodology, restoration, reuse

Procedia PDF Downloads 187
143 A Corpus-Based Approach to Understanding Market Access in Fisheries and Aquaculture: A Systematic Literature Review

Authors: Cheryl Marie Cordeiro

Abstract:

Although fisheries and aquaculture studies might seem marginal to international business (IB) studies in general, fisheries and aquaculture IB (FAIB) management is currently facing increasing pressure to meet global demand and consumption for fish in the next coming decades. In part address to this challenge, the purpose of this systematic review of literature (SLR) study is to investigate the use of the term ‘market access’ in its context of use in the generic literature and business sector discourse, in comparison to the more specific literature and discourse in fisheries, aquaculture and seafood. This SLR aims to uncover the knowledge/interest gaps between the academic subject discourses and business sector practices. Corpus driven in methodology and using a triangulation method of three different text analysis software including AntConc, VOSviewer and Web of Science (WoS) analytics, the SLR results indicate a gap in conceptual knowledge and business practices in how ‘market access’ is conceived and used in the context of the pharmaceutical healthcare industry and FAIB research and practice. While it is acknowledged that the product orientation of different business sectors might differ, this SLR study works with the assumption that both business sectors are global in orientation. These business sectors are complex in their operations from product to market. This SLR suggests a conceptual model in understanding the challenges, the potential barriers as well as avenues for solutions to developing market access for FAIB.

Keywords: market access, fisheries and aquaculture, international business, systematic literature review

Procedia PDF Downloads 146
142 Predictor Factors in Predictive Model of Soccer Talent Identification among Male Players Aged 14 to 17 Years

Authors: Muhamad Hafiz Ismail, Ahmad H., Nelfianty M. R.

Abstract:

The longitudinal study is conducted to identify predictive factors of soccer talent among male players aged 14 to 17 years. Convenience sampling involving elite respondents (n=20) and sub-elite respondents (n=20) male soccer players. Descriptive statistics were reported as frequencies and percentages. The inferential statistical analysis is used to report the status of reliability, independent samples t-test, paired samples t-test, and multiple regression analysis. Generally, there are differences in mean of height, muscular strength, muscular endurance, cardiovascular endurance, task orientation, cognitive anxiety, self-confidence, juggling skills, short pass skills, long pass skills, dribbling skills, and shooting skills for 20 elite players and sub-elite players. Accordingly, there was a significant difference between pre and post-test for thirteen variables of height, weight, fat percentage, muscle strength, muscle endurance, cardiovascular endurance, flexibility, BMI, task orientation, juggling skills, short pass skills, a long pass skills, and dribbling skills. Based on the first predictive factors (physical), second predictive factors (fitness), third predictive factors (psychological), and fourth predictive factors (skills in playing football) pledged to the soccer talent; four multiple regression models were produced. The first predictive factor (physical) contributed 53.5 percent, supported by height and percentage of fat in soccer talents. The second predictive factor (fitness) contributed 63.2 percent and the third predictive factors (psychology) contributed 66.4 percent of soccer talent. The fourth predictive factors (skills) contributed 59.0 percent of soccer talent. The four multiple regression models could be used as a guide for talent scouting for soccer players of the future.

Keywords: soccer talent identification, fitness and physical test, soccer skills test, psychological test

Procedia PDF Downloads 157
141 Memory-Guided Oculomotor Task in High School Football Players with ADHD, Post-Concussive Injuries, and Controls

Authors: B. McGovern, J. F. Luck, A. Gade, I. V. Lake, D. O’Connell, H. C. Cutcliffe, K. P. Shah, E. E. Ginalis, C. M. Lambert, N. Christian, J. R. Kait, A. W. Yu, C. P. Eckersley, C. R. Bass

Abstract:

Mild traumatic brain injury (mTBI) in the form of post-concussive injuries and attention deficit / hyperactivity disorder (ADHD) share similar cognitive impairments, including impaired working memory and executive function. The memory-guided oculomotor task separates working memory and inhibitory components to provide further information on the nature of these deficits in each pathology. Eleven subjects with ADHD, fifteen control subjects, and ten subjects with recent concussive injury were matched on age, gender, and education (all high school-age males). Eye movements were recorded during memory-guided oculomotor tasks with varying delays using EyeLink 1000 (SR Research). The percentage of premature saccades and the latency of correct response are the analyzed measures for response inhibition and working memory, respectively. No significant differences were found in latencies between controls subjects and subjects with ADHD or post-concussive injuries, in accordance with previous studies. Subjects with ADHD and post-concussive injuries both demonstrated a trend of increased percentages of premature saccades compared to control subjects in the same oculomotor task. This trend reached statistical significance between the post-concussive and control groups (p < 0.05). These findings support the primary nature of the executive function deficits in response inhibition in ADHD and mTBI. The interpretation of results is limited by the small sample size and the exploratory nature of the study. Further investigation into oculomotor performance differences in mTBI and ADHD may help in differentiating these pathologies in consequent diagnoses and provide insight into the interaction of these deficits in mTBI.

Keywords: attention deficit / hyperactivity disorder (ADHD), concussion, diagnosis, oculomotor, pediatrics

Procedia PDF Downloads 299
140 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments

Authors: Naduni Ranasinghe

Abstract:

E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.

Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model

Procedia PDF Downloads 157
139 Big Data in Construction Project Management: The Colombian Northeast Case

Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez

Abstract:

In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.

Keywords: big data, building information modeling, tecnology, project manamegent

Procedia PDF Downloads 128