Search results for: artificial waterbodies
1789 F-IVT Actuation System to Power Artificial Knee Joint
Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo
Abstract:
The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint
Procedia PDF Downloads 6011788 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 2221787 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences
Authors: Thomas Schalow
Abstract:
This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.Keywords: artificial intelligence, CETI, communication, culture, language
Procedia PDF Downloads 3581786 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 4461785 Impact of Natural and Artificial Disasters, Lackadaisical and Semantic Approach in Risk Management, and Mitigation Implication for Sustainable Goals in Nigeria, from 2009 to 2022
Authors: Wisdom Robert Duruji, Moses Kanayochukwu Ifoh, Efeoghene Edward Esiemunobo
Abstract:
This study examines the impact of natural and artificial disasters, lackadaisical and semantic approach in risk management, and mitigation implication for sustainable development goals in Nigeria, from 2009 to 2022. The study utilizes a range of research methods to achieve its objectives. These include literature review, website knowledge, Google search, news media information, academic journals, field-work and on-site observations. These diverse methods allow for a comprehensive analysis on the impact and the implications being study. The study finds that paradigm shift from remediating seismic, flooding, environmental pollution and degradation natural disasters by Nigeria Emergency Management Agency (NEMA), to political and charity organization; has plunged risk reduction strategies to embezzling opportunities. However, this lackadaisical and semantic approach in natural disaster mitigation, invariably replicates artificial disasters in Nigeria through: Boko Haram terrorist organization, Fulani herdsmen and farmers conflicts, political violence, kidnapping for ransom, ethnic conflicts, Religious dichotomy, insurgency, secession protagonists, unknown-gun-men, and banditry. This study also, finds that some Africans still engage in self-imposed slavery through human trafficking, by nefariously stow-away to Europe; through Libya, Sahara desert and Mediterranean sea; in search for job opportunities, due to ineptitude in governance by their leaders; a perilous journey that enhanced artificial disasters in Nigeria. That artificial disaster fatality in Nigeria increased from about 5,655 in 2009 to 114,318 in 2018; and to 157,643 in 2022. However, financial and material loss of about $9.29 billion was incurred in Nigeria due to natural disaster, while about $70.59 billion was accrued due to artificial disaster; from 2009 to 2018. Although disaster risk mitigation and politics can synergistically support sustainable development goals; however, they are different entities, and need for distinct separations in Nigeria, as in reality and perception. This study concluded that referendum should be conducted in Nigeria, to ascertain its current status as a nation. Therefore it is recommended that Nigerian governments should refine its naturally endowed crude oil locally; to end fuel subsidy scam, corruption and poverty in Nigeria!Keywords: corruption, crude oil, environmental risk analysis, Nigeria, referendum, terrorism
Procedia PDF Downloads 421784 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 2371783 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 1321782 Roughness Discrimination Using Bioinspired Tactile Sensors
Authors: Zhengkun Yi
Abstract:
Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination
Procedia PDF Downloads 3111781 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 641780 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems
Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang
Abstract:
The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes
Procedia PDF Downloads 6111779 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4161778 AI-Based Technologies for Improving Patient Safety and Quality of Care
Authors: Tewelde Gebreslassie Gebreanenia, Frie Ayalew Yimam, Seada Hussen Adem
Abstract:
Patient safety and quality of care are essential goals of health care delivery, but they are often compromised by human errors, system failures, or resource constraints. In a variety of healthcare contexts, artificial intelligence (AI), a quickly developing field, can provide fresh approaches to enhancing patient safety and treatment quality. Artificial Intelligence (AI) has the potential to decrease errors and enhance patient outcomes by carrying out tasks that would typically require human intelligence. These tasks include the detection and prevention of adverse events, monitoring and warning patients and clinicians about changes in vital signs, symptoms, or risks, offering individualized and evidence-based recommendations for diagnosis, treatment, or prevention, and assessing and enhancing the effectiveness of health care systems and services. This study examines the state-of-the-art and potential future applications of AI-based technologies for enhancing patient safety and care quality, as well as the opportunities and problems they present for patients, policymakers, researchers, and healthcare providers. In order to ensure the safe, efficient, and responsible application of AI in healthcare, the paper also addresses the ethical, legal, social, and technical challenges that must be addressed and regulated.Keywords: artificial intelligence, health care, human intelligence, patient safty, quality of care
Procedia PDF Downloads 781777 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 941776 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 521775 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 91774 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior
Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi
Abstract:
Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests
Procedia PDF Downloads 1961773 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks
Authors: Waleed Basuliman
Abstract:
Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.Keywords: artificial neural network, anthropometric measurements, back-propagation
Procedia PDF Downloads 4871772 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 3341771 Adhering to the Traditional Standard of Originality in the Era of Artificial Intelligence Copyright Protection
Authors: Xiaochen Mu
Abstract:
Whether in common law countries that adhere to the "commercial copyright theory" or in civil law countries that center around "author's rights," the standards for judging originality have undergone continuous adjustments in response to the development of information technology. The adherence to originality standards does not arbitrarily dictate that all types of works be judged according to a single standard of originality, nor does it rigidly ignore the changes in creative methods and dissemination models brought about by technology. Adjustments and interpretations should be allowed based on the different forms of expression of works. Appropriate adjustments and interpretations are our response to technological advancements. However, what should be upheld are the principles and bottom lines of these adjustments and interpretations, namely the legislative intent and purpose of copyright law, which are to encourage the creation and dissemination of outstanding cultural works and to promote the flourishing of culture.Keywords: generative artificial intelligence, originality, works, copyright
Procedia PDF Downloads 411770 Singularity Theory in Yakam Matrix by Multiparameter Bifurcation Interfacial in Coupled Problem
Authors: Leonard Kabeya Mukeba Yakasham
Abstract:
The theoretical machinery from singularity theory introduced by Glolubitsky, Stewart, and Schaeffer, to study equivariant bifurcation problem is completed and expanded wile generalized to the multiparameter context. In this setting the finite deterinancy theorem or normal forms, the stability of equivariant bifurcation problem, and the structural stability of universal unfolding are discussed. With Yakam Matrix the solutions are limited for some partial differential equations stochastic nonlinear of the open questions in singularity artificial intelligence for future.Keywords: equivariant bifurcation, symmetry singularity, equivariant jets and transversality; normal forms, universal unfolding instability, structural stability, artificial intelligence, pdens, yakam matrix
Procedia PDF Downloads 251769 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 1561768 AI Ethical Values as Dependent on the Role and Perspective of the Ethical AI Code Founder- A Mapping Review
Authors: Moshe Davidian, Shlomo Mark, Yotam Lurie
Abstract:
With the rapid development of technology and the concomitant growth in the capability of Artificial Intelligence (AI) systems and their power, the ethical challenges involved in these systems are also evolving and increasing. In recent years, various organizations, including governments, international institutions, professional societies, civic organizations, and commercial companies, have been choosing to address these various challenges by publishing ethical codes for AI systems. However, despite the apparent agreement that AI should be “ethical,” there is debate about the definition of “ethical artificial intelligence.” This study investigates the various AI ethical codes and their key ethical values. From the vast collection of codes that exist, it analyzes and compares 25 ethical codes that were found to be representative of different types of organizations. In addition, as part of its literature review, the study overviews data collected in three recent reviews of AI codes. The results of the analyses demonstrate a convergence around seven key ethical values. However, the key finding is that the different AI ethical codes eventually reflect the type of organization that designed the code; i.e., the organizations’ role as regulator, user, or developer affects the view of what ethical AI is. The results show a relationship between the organization’s role and the dominant values in its code. The main contribution of this study is the development of a list of the key values for all AI systems and specific values that need to impact the development and design of AI systems, but also allowing for differences according to the organization for which the system is being developed. This will allow an analysis of AI values in relation to stakeholders.Keywords: artificial intelligence, ethical codes, principles, values
Procedia PDF Downloads 1071767 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis
Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie
Abstract:
Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis
Procedia PDF Downloads 831766 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force
Authors: P. Kooche Baghy, S. Eskandari, E.javanmard
Abstract:
Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.Keywords: artificial neural network, Bayesian, cold rolling, force evaluation
Procedia PDF Downloads 4421765 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power
Procedia PDF Downloads 3751764 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 81763 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 2001762 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 2121761 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO
Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero
Abstract:
Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control
Procedia PDF Downloads 3631760 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 155