Search results for: machine learning tools and techniques
13390 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 15713389 Preservice Science Teachers' Understanding of Equitable Assessment
Authors: Kemal Izci, Ahmet Oguz Akturk
Abstract:
Learning is dependent on cognitive and physical differences as well as other differences such as ethnicity, language, and culture. Furthermore, these differences also influence how students show their learning. Assessment is an integral part of learning and teaching process and is essential for effective instruction. In order to provide effective instruction, teachers need to provide equal assessment opportunities for all students to see their learning difficulties and use them to modify instruction to aid learning. Successful assessment practices are dependent upon the knowledge and value of teachers. Therefore, in order to use assessment to assess and support diverse students learning, preservice and inservice teachers should hold an appropriate understanding of equitable assessment. In order to prepare teachers to help them support diverse student learning, as a first step, this study aims to explore how preservice teachers’ understand equitable assessment. 105 preservice science teachers studying at teacher preparation program in a large university located at Eastern part of Turkey participated in the current study. A questionnaire, preservice teachers’ reflection papers and interviews served as data sources for this study. All collected data qualitatively analyzed to develop themes that illustrate preservice science teachers’ understanding of equitable assessment. Results of the study showed that preservice teachers mostly emphasized fairness including fairness in grading and fairness in asking questions not out of covered concepts for equitable assessment. However, most of preservice teachers do not show an understanding of equity for providing equal opportunities for all students to display their understanding of related content. For some preservice teachers providing different opportunities (providing extra time for non-native speaking students) for some students seems to be unfair for other students and therefore, these kinds of refinements do not need to be used. The results of the study illustrated that preservice science teachers mostly understand equitable assessment as fairness and less highlight the role of using equitable assessment to support all student learning, which is more important in order to improve students’ achievement of science. Therefore, we recommend that more opportunities should be provided for preservice teachers engage in a more broad understanding of equitable assessment and learn how to use equitable assessment practices to aid and support all students learning trough classroom assessment.Keywords: science teaching, equitable assessment, assessment literacy, preservice science teachers
Procedia PDF Downloads 30413388 E-Portfolios as a Means of Perceiving Students’ Listening and Speaking Progress
Authors: Heba Salem
Abstract:
This paper aims to share the researcher’s experience of using e-Portfolios as an assessment tool to follow up on students’ learning experiences and performance throughout the semester. It also aims at highlighting the importance of students’ self-reflection in the process of language learning. The paper begins by introducing the advanced media course, with its focus on listening and speaking skills, and introduces the students’ profiles. Then it explains the students’ role in the e-portfolio process as they are given the option to choose a listening text they studied throughout the semester and to choose a recorded oral production of their collection of artifacts throughout the semester. Students showcase and reflect on their progress in both listening comprehension and speaking. According to the research, re-listening to work given to them and to their production is a means of reflecting on both their progress and achievement. And choosing the work students want to showcase is a means to promote independent learning as well as self-expression. Students are encouraged to go back to the class learning outcomes in the process of choosing the work. In their reflections, students express how they met the specific learning outcome. While giving their presentations, students expressed how useful the experience of returning and going over what they covered to select one and going over their production as well. They also expressed how beneficial it was to listen to themselves and literally see their progress in both listening comprehension and speaking. Students also reported that they grasped more details from the texts than they did when first having it as an assignment, which coincided with one of the class learning outcomes. They also expressed the fact that they had more confidence speaking as well as they were able to use a variety of vocabulary and idiomatic expressions that students have accumulated. For illustration, this paper includes practical samples of students’ tasks and instructions as well as samples of their reflections. The results of students’ reflections coincide with what the research confirms about the effectiveness of the e-portfolios as a means of assessment. The employment of e-Portfolios has two-folded benefits; students are able to measure the achievement of the targeted learning outcomes, and teachers receive constructive feedback on their teaching methods.Keywords: e-portfolios, assessment, self assessment, listening and speaking progress, foreign language, reflection, learning out comes, sharing experience
Procedia PDF Downloads 9813387 Extending the Flipped Classroom Approach: Using Technology in Module Delivery to Students of English Language and Literature at the British University in Egypt
Authors: Azza Taha Zaki
Abstract:
Technology-enhanced teaching has been in the limelight since the 90s when educators started investigating and experimenting with using computers in the classroom as a means of building 21st. century skills and motivating students. The concept of technology-enhanced strategies in education is kaleidoscopic! It has meant different things to different educators. For the purpose of this paper, however, it will be used to refer to the diverse technology-based strategies used to support and enrich the flipped learning process, in the classroom and outside. The paper will investigate how technology is put in the service of teaching and learning to improve the students’ learning experience as manifested in students’ attendance and engagement, achievement rates and finally, students’ projects at the end of the semester. The results will be supported by a student survey about relevant specific aspects of their learning experience in the modules in the study.Keywords: attendance, British University, Egypt, flipped, student achievement, student-centred, student engagement, students’ projects
Procedia PDF Downloads 11813386 Cost Reduction Techniques for Provision of Shelter to Homeless
Authors: Mukul Anand
Abstract:
Quality oriented affordable shelter for all has always been the key issue in the housing sector of our country. Homelessness is the acute form of housing need. It is a paradox that in spite of innumerable government initiated programmes for affordable housing, certain section of society is still devoid of shelter. About nineteen million (18.78 million) households grapple with housing shortage in Urban India in 2012. In Indian scenario there is major mismatch between the people for whom the houses are being built and those who need them. The prime force faced by public authorities in facilitation of quality housing for all is high cost of construction. The present paper will comprehend executable techniques for dilution of cost factor in housing the homeless. The key actors responsible for delivery of cheap housing stock such as capacity building, resource optimization, innovative low cost building material and indigenous skeleton housing system will also be incorporated in developing these techniques. Time performance, which is an important angle of above actors, will also be explored so as to increase the effectiveness of low cost housing. Along with this best practices will be taken up as case studies where both conventional techniques of housing and innovative low cost housing techniques would be cited. Transportation consists of approximately 30% of total construction budget. Thus use of alternative local solutions depending upon the region would be covered so as to highlight major components of low cost housing. Government is laid back regarding base line information on use of innovative low cost method and technique of resource optimization. Therefore, the paper would be an attempt to bring to light simpler solutions for achieving low cost housing.Keywords: construction, cost, housing, optimization, shelter
Procedia PDF Downloads 44513385 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability
Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa
Abstract:
COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.Keywords: self-learning module, academic performance, statistics and probability, normal distribution
Procedia PDF Downloads 11413384 Using Smartphone Instant Messaging (IM) App for Academic Discussion in an Undergraduate Chemistry Course
Authors: Mei Xuan Tan, Eng Ying Bong
Abstract:
Academic discussion during and after instructional teaching is an integral part of learning. Such discussion between the instructor and student or peer-to-peer discussion can be in several different forms. It could be face-to-face discussion, via email and use of online discussion forum. In this study, the effectiveness of using WhatsApp for academic discussion for a first year half-credit Chemistry course was examined. This study was run over two years with two different batches of students. Participation in the study was voluntary and student volunteers were recruited within the first week of the term. The activity in the WhatsApp group was monitored by two instructors teaching the course. At the end of the course, the students participated in an online survey to evaluate their experience of using WhatsApp for academic discussion. There were a total of 26 questions. The survey had a total of 4 sections with regards to the use of WhatsApp for academic discussion: 1) Familiarity with WhatsApp, 2) Effectiveness of using WhatsApp for discussion, 3) Challenges and 4) Overall experience. The main purpose of using an IM platform for academic discussion was to encourage after-class discussion amongst the students. 32% of the participants had used other online platform, such as Piazza and forums in Learning Management System (LMS), for after-class academic discussion with their instructors and peers. This was a low percentage considering that some courses use such online platform as their main forum amongst instructors and students. At the end of our study, over 83% of the participants felt that WhatsApp was a more effective platform compared to other online forum. One interesting finding was the effect of WhatsApp discussion on face-to-face interaction with instructors. 28% of the students agreed that the use of WhatsApp as a discussion forum had encouraged them to approach their instructors during or after class. 51% of students answered neutral. This could be interpreted that the use of WhatsApp had not affected the frequent (or lack of) face-to-face interaction with their instructors. A second survey question, similar but phrased differently from the first, was also asked to evaluate the aspect of face-to-face interaction with instructors. 34% disagreed that the use of WhatsApp had reduced the frequency of face-to-face interaction. This could imply that the frequency remained the same or might have increased. The 38% who agreed to a decrease in face-to-face interaction have either asked the questions in WhatsApp or had their questions answered by a query from another student in the group chat. These outcomes suggested that the use of technology aided and complemented face-to-face interaction between instructors and students. The study also looked at the challenges of using WhatsApp for academic discussion. Some challenges included difficulty in referring back to previous discussion and students finding some discussions irrelevant to them. In conclusion, the use of IM platform for academic discussion was desirable for the students, but it should not be the only channel as face-to-face consultation and online forum for lengthy discussion are still important for after-class learning of students.Keywords: chemistry, pedogogy, technological tools, undergraduate
Procedia PDF Downloads 13613383 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 16113382 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods
Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie
Abstract:
The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence
Procedia PDF Downloads 24813381 Diagnostic Evaluation of Micro Rna (miRNA-21, miRNA-215 and miRNA-378) in Patients with Colorectal Cancer
Authors: Ossama Abdelmotaal, Olfat Shaker, Tarek Salman, Lamiaa Nabeel, Mostafa Shabayek
Abstract:
Colorectal Cancer (CRC) is an important worldwide health problem. Colonoscopy is used in detecting CRC suffer from drawbacks where colonoscopy is an invasive method. This study validates easier and less time-consuming techniques to evaluate the usefulness of detecting miRNA-21, miRNA-215 and miRNA-378 in the sera of colorectal cancer patients as new diagnostic tools. This study includes malignant (Colo Rectal Cancer patients, n= 64)) and healthy (n=27) groups. The studied groups were subjected to colonoscopic examination and estimation of miRNA-21, miRNA-215 and miRNA-378 in sera by RT-PCR. miRNA-21 showed the statistically significantly highest median fold change. miRNA-378 showed statistically significantly lower value (Both showed over-expression). miRNA-215 showed the statistically significantly lowest median fold change (It showed down-regulation). Overall the miRNA (21-215 and 378) appear to be promising method of detecting CRC and evaluating its stages.Keywords: colorectal cancer, miRNA-21, miRNA-215, miRNA-378
Procedia PDF Downloads 30313380 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries
Authors: Shafaq Rubab
Abstract:
One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.Keywords: digital game-based learning, student’s motivation, instructional design model, learning process
Procedia PDF Downloads 43213379 Investigating Students' Understanding about Mathematical Concept through Concept Map
Authors: Rizky Oktaviana
Abstract:
The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.Keywords: concept map, concept mapping, mathematical concepts, understanding
Procedia PDF Downloads 27113378 Fairness in Recommendations Ranking: From Pairwise Approach to Listwise Approach
Authors: Patik Joslin Kenfack, Polyakov Vladimir Mikhailovich
Abstract:
Machine Learning (ML) systems are trained using human generated data that could be biased by implicitly containing racist, sexist, or discriminating data. ML models learn those biases or even amplify them. Recent research in work on has begun to consider issues of fairness. The concept of fairness is extended to recommendation. A recommender system will be considered fair if it doesn’t under rank items of protected group (gender, race, demographic...). Several metrics for evaluating fairness concerns in recommendation systems have been proposed, which take pairs of items as ‘instances’ in fairness evaluation. It doesn’t take in account the fact that the fairness should be evaluated across a list of items. The paper explores a probabilistic approach that generalize pairwise metric by using a list k (listwise) of items as ‘instances’ in fairness evaluation, parametrized by k. We also explore new regularization method based on this metric to improve fairness ranking during model training.Keywords: Fairness, Recommender System, Ranking, Listwise Approach
Procedia PDF Downloads 14813377 The Value of Dynamic Priorities in Motor Learning between Some Basic Skills in Beginner's Basketball, U14 Years
Authors: Guebli Abdelkader, Regiueg Madani, Sbaa Bouabdellah
Abstract:
The goals of this study are to find ways to determine the value of dynamic priorities in motor learning between some basic skills in beginner’s basketball (U14), based on skills of shooting and defense against the shooter. Our role is to expose the statistical results in compare & correlation between samples of study in tests skills for the shooting and defense against the shooter. In order to achieve this objective, we have chosen 40 boys in middle school represented in four groups, two controls group’s (CS1, CS2) ,and two experimental groups (ES1: training on skill of shooting, skill of defense against the shooter, ES2: experimental group training on skill of defense against the shooter, skill of shooting). For the statistical analysis, we have chosen (F & T) tests for the statistical differences, and test (R) for the correlation analysis. Based on the analyses statistics, we confirm the importance of classifying priorities of basketball basic skills during the motor learning process. Admit that the benefits of experimental group training are to economics in the time needed for acquiring new motor kinetic skills in basketball. In the priority of ES2 as successful dynamic motor learning method to enhance the basic skills among beginner’s basketball.Keywords: basic skills, basketball, motor learning, children
Procedia PDF Downloads 17013376 Exploring Students’ Satisfaction Levels with Online Facilitation Provided by National Open University of Nigeria’s Facilitators
Authors: Louis Okon Akpan
Abstract:
National Open University of Nigeria (NOUN) is an open and distance learning institution whose aim is to provide education for all and also promote lifelong learning in Nigeria. Before now, student-centred learning was adopted. In recent times, online facilitation has been introduced. Therefore, the study explores ways in which students are satisfied with online facilitation provided by NOUN lecturers. A qualitative approach was adopted. The interpretive paradigm was employed as a lens to interpret narratives from the participants. In order to gather information for the study, a semi-structured interview was developed for sixteen participants who were purposively selected from eight facilities of the university. After data gathering from the field, it was subjected to transcription and coding. The emergence of themes from the coded data was analysed using thematic analysis. Findings indicated that students found online learning, recently introduced by the university management, extremely fulfilling and rewarding.Keywords: online facilitation, lecturer, students’ satisfaction, National Open University of Nigeria
Procedia PDF Downloads 8513375 Working within the Zone of Proximal Development: Does It Help for Reading Strategy?
Authors: Mahmood Dehqan, Peyman Peyvasteh
Abstract:
In recent years there has been a growing interest in issues concerning the impact of sociocultural theory (SCT) of learning on different aspects of second/foreign language learning. This study aimed to find the possible effects of sociocultural teaching techniques on reading strategy of EFL learners. Indeed, the present research compared the impact of peer and teacher scaffolding on EFL learners’ reading strategy use across two proficiency levels. To this end, a pre-test post-test quasi-experimental research design was used and two instruments were utilized to collect the data: Nelson English language test and reading strategy questionnaire. Ninety five university students participated in this study were divided into two groups of teacher and peer scaffolding. Teacher scaffolding group received scaffolded help from the teacher based on three mechanisms of effective help within ZPD: graduated, contingent, dialogic. In contrast, learners of peer scaffolding group were unleashed from the teacher-fronted classroom as they were asked to carry out the reading comprehension tasks with the feedback they provided for each other. Results obtained from ANOVA revealed that teacher scaffolding group outperformed the peer scaffolding group in terms of reading strategy use. It means teacher’s scaffolded help provided within the learners’ ZPD led to better reading strategy improvement compared with the peer scaffolded help. However, the interaction effect between proficiency factor and teaching technique was non-significant, leading to the conclusion that strategy use of the learners was not affected by their proficiency level in either teacher or peer scaffolding groups.Keywords: peer scaffolding, proficiency level, reading strategy, sociocultural theory, teacher scaffolding
Procedia PDF Downloads 38113374 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 14913373 Use of Nutritional Screening Tools in Cancer-Associated Malnutrition
Authors: Meryem Saban Guler, Saniye Bilici
Abstract:
Malnutrition is a problem that significantly affects patients with cancer throughout the course of their illness, and it may be present from the moment of diagnosis until the end of treatment. We searched electronic databases using key terms such as ‘malnutrition in cancer patients’ or ‘nutritional status in cancer’ or ‘nutritional screening tools’ etc. Decline in nutritional status and continuing weight loss are associated with an increase in number and severity of complications, impaired quality of life and decreased survival rate. Nutrition is an important factor in the treatment and progression of cancer. Cancer patients are particularly susceptible to nutritional depletion due to the combined effects of the malignant disease and its treatment. With increasing incidence of cancer, identification and management of nutritional deficiencies are needed. Early identification of malnutrition, is substantial to minimize or prevent undesirable outcomes throughout clinical course. In determining the nutritional status; food consumption status, anthropometric methods, laboratory tests, clinical symptoms, psychosocial data are used. First-line strategies must include routine screening and identification of inpatients or outpatients at nutritional risk with the use of a simple and standardized screening tool. There is agreement among international nutrition organizations and accredited health care organizations that routine nutritional screening should be a standard procedure for every patient admitted to a hospital. There are f management of all cancer patients therefore routine nutritional screening with validated tools can identify cancer patients at risk.Keywords: cancer, malnutrition, nutrition, nutritional screening
Procedia PDF Downloads 20613372 Instructional Resources Development in Open and Distance Learning: Prospects and Challenges of Media Integration in Nigeria
Authors: Felix E. Gbenoba, Opeyemi Dahunsi
Abstract:
Self-instructional materials are at the heart of instructional delivery in Open and Distance Learning (ODL). The success of any ODL institution depends on the availability of instructional materials in quality and quantity. An ODL study material is expected to fully play the teacher plays in the face-to-face learning environment. In Nigeria, efforts to deliver ODL learning materials have been peculiarly challenging. Although researchers are unrelenting in hewing out ways to make ODL delivery in Africa generally and Nigeria in particular, meet the learners’ needs and acceptable global practices, the prospects of integrating instructional media into distance learning courses are largely unexplored. In the present study, we critically examine the prospects of integration of instructional media into ODL courses for pedagogic and other benefits it portends for delivery via the distance learning mode. Although efforts to integrate media in ODL have been recorded before now, the reality has not matched the expectation so far in Nigeria. This does not mean that the existing instructional materials have not produced any significant positive results in improving the overall learning (and teaching) experience in its institutions; it implies that increased integration as suggested here will further improve the experience as well as bring up the new challenges. Obstacles and problems of instructional materials and media development that could have affected the open educational resource initiatives are well established. The first aspect of this paper recalls the revolutionary strides that ODL brought to delivery of education in Nigeria particularly. The other aspect is on what instructional media are, their role, prospects and challenges for ODL in Nigeria; these are examined vis a vis the challenges of development, production and distribution of print instructional materials as the major format of instructional delivery at Nigeria’s only single mode ODL institution, NOUN. In the third aspect, we justify the need and benefits of integrating instructional media into the courses and make recommendations.Keywords: instructional delivery, instructional media, ODL, media integration, Nigeria, self-instructional materials
Procedia PDF Downloads 38713371 Socio-Emotional Skills of Children with Learning Disability, Their Perceived Self-Efficacy and Academic Achievement
Authors: P. Maheshwari, M. Brindavan
Abstract:
The present research aimed to study the level of socio-emotional skills and perceived self-efficacy of children with learning disability. The study further investigated the relationship between the levels of socio-emotional skills, perceived self-efficacy and academic achievement of children with learning disability. The sample comprised of 40 children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai. Purposive or Judgmental and snowball sampling technique was used to select the sample for the study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability. A self-constructed Child’s Perceived Self-Efficacy Assessment Scale and Child’s Social and Emotional Skills Assessment Scale was used to measure the level of child’s perceived self-efficacy and their level of social and emotional skill respectively. Academic scores of the child were collected from the child’s parents or teachers and were converted into a percentage. The data was analyzed quantitatively using SPSS. Spearman rho or Pearson Product Moment correlation was used to ascertain the multiple relationships between child’s perceived self-efficacy, child’s social and emotional skills and child’s academic achievement. The findings revealed majority (27) of the children with learning disability perceived themselves having above average level of social and emotional skills while 13 out of 40 perceived their level of social and emotional skills at an average level. Domain wise analyses revealed that, in the domain of self- management (26) and relationship skills (22) more number of the children perceived themselves as having average or below average level of social and emotional skills indicating that they perceived themselves as having average or below average skills in regulating their emotions, thoughts, and behaviors effectively in different situations, establishing and maintaining healthy and rewarding relationships with diverse groups and individuals. With regard to perceived self-efficacy, the majority of the children with learning disability perceived themselves as having above average level of self-efficacy. Looking at the data domain wise it was found that, in the domains of self-regulated learning and emotional self-efficacy, 50% of the children perceived themselves at average or below average level, indicating that they perceived themselves as average on competencies like organizing academic activities, structuring environment to make it conducive for learning, expressing emotions in a socially acceptable manner. Further, the correlations were computed, and significant positive correlations were found between children’s social and emotional skills and academic achievement (r=.378, p < .01), and between children’s social and emotional skills and child’s perceived self-efficacy (r = .724, p < .01) and a positive significant correlation was also found between children’s perceived self-efficacy and academic achievement (r=.332, p < .05). Results of the study emphasize on planning intervention for children with learning disability focusing on improving self-management and relationship skills, self-regulated learning and emotional self-efficacy.Keywords: learning disability, social and emotional skills, perceived self-efficacy, academic achievement
Procedia PDF Downloads 24113370 A Comparative Analysis of Various Companding Techniques Used to Reduce PAPR in VLC Systems
Authors: Arushi Singh, Anjana Jain, Prakash Vyavahare
Abstract:
Recently, Li-Fi(light-fiedelity) has been launched based on VLC(visible light communication) technique, 100 times faster than WiFi. Now 5G mobile communication system is proposed to use VLC-OFDM as the transmission technique. The VLC system focused on visible rays, is considered for efficient spectrum use and easy intensity modulation through LEDs. The reason of high speed in VLC is LED, as they flicker incredibly fast(order of MHz). Another advantage of employing LED is-it acts as low pass filter results no out-of-band emission. The VLC system falls under the category of ‘green technology’ for utilizing LEDs. In present scenario, OFDM is used for high data-rates, interference immunity and high spectral efficiency. Inspite of the advantages OFDM suffers from large PAPR, ICI among carriers and frequency offset errors. Since, the data transmission technique used in VLC system is OFDM, the system suffers the drawbacks of OFDM as well as VLC, the non-linearity dues to non-linear characteristics of LED and PAPR of OFDM due to which the high power amplifier enters in non-linear region. The proposed paper focuses on reduction of PAPR in VLC-OFDM systems. Many techniques are applied to reduce PAPR such as-clipping-introduces distortion in the carrier; selective mapping technique-suffers wastage of bandwidth; partial transmit sequence-very complex due to exponentially increased number of sub-blocks. The paper discusses three companding techniques namely- µ-law, A-law and advance A-law companding technique. The analysis shows that the advance A-law companding techniques reduces the PAPR of the signal by adjusting the companding parameter within the range. VLC-OFDM systems are the future of the wireless communication but non-linearity in VLC-OFDM is a severe issue. The proposed paper discusses the techniques to reduce PAPR, one of the non-linearities of the system. The companding techniques mentioned in this paper provides better results without increasing the complexity of the system.Keywords: non-linear companding techniques, peak to average power ratio (PAPR), visible light communication (VLC), VLC-OFDM
Procedia PDF Downloads 28613369 Variables, Annotation, and Metadata Schemas for Early Modern Greek
Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara
Abstract:
Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.
Procedia PDF Downloads 6713368 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder
Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada
Abstract:
From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation
Procedia PDF Downloads 18813367 The Changing Role of Technology-Enhanced University Library Reform in Improving College Student Learning Experience and Career Readiness – A Qualitative Comparative Analysis (QCA)
Authors: Xiaohong Li, Wenfan Yan
Abstract:
Background: While it is widely considered that the university library plays a critical role in fulfilling the institution's mission and providing students’ learning experience beyond the classrooms, how the technology-enhanced library reform changed college students’ learning experience hasn’t been thoroughly investigated. The purpose of this study is to explore how technology-enhanced library reform affects students’ learning experience and career readiness and further identify the factors and effective conditions that enable the quality learning outcome of Chinese college students. Methodologies: This study selected the qualitative comparative analysis (QCA) method to explore the effects of technology-enhanced university library reform on college students’ learning experience and career readiness. QCA is unique in explaining the complex relationship between multiple factors from a holistic perspective. Compared with the traditional quantitative and qualitative analysis, QCA not only adds some quantitative logic but also inherits the characteristics of qualitative research focusing on the heterogeneity and complexity of samples. Shenyang Normal University (SNU) selected a sample of the typical comprehensive university in China that focuses on students’ learning and application of professional knowledge and trains professionals to different levels of expertise. A total of 22 current university students and 30 graduates who joined the Library Readers Association of SNU from 2011 to 2019 were selected for semi-structured interviews. Based on the data collected from these participating students, qualitative comparative analysis (QCA), including univariate necessity analysis and the multi-configuration analysis, was conducted. Findings and Discussion: QCA analysis results indicated that the influence of technology-enhanced university library restructures and reorganization on student learning experience and career readiness is the result of multiple factors. Technology-enhanced library equipment and other hardware restructured to meet the college students learning needs and have played an important role in improving the student learning experience and learning persistence. More importantly, the soft characteristics of technology-enhanced library reform, such as library service innovation space and culture space, have a positive impact on student’s career readiness and development. Technology-enhanced university library reform is not only the change in the building's appearance and facilities but also in library service quality and capability. The study also provides suggestions for policy, practice, and future research.Keywords: career readiness, college student learning experience, qualitative comparative analysis (QCA), technology-enhanced library reform
Procedia PDF Downloads 7913366 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach
Authors: Hassan M. H. Mustafa
Abstract:
This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology
Procedia PDF Downloads 47013365 Factors Affecting English Language Acquisition and Learning for Primary Schools in Nigeria
Authors: Chibuzor Dalmeida
Abstract:
This paper shall discuss the factors affecting English Language Acquisition and Learning for Primary School in Nigeria. Learning English language is a difficult task mostly those at the primary school level. Pupils find it more difficult on vocabulary, grammar and sentence structure, idioms, pronunciation etc. Researchers have discovered the reasons behind these discrepancies and have formulated theories that could be of utmost assistance to English language teachers and students. This paper further looked at the following factors that include Learner Characteristics and Personal Traits, Situational and Environmental Factors, Prior Language Development and Competence and Age and Brain Development. It further recommended that pupils must learn new vocabulary, rules for grammar and sentence structure, idioms, pronunciation. Pupils whose families and communities set high standards for language acquisition learn more quickly than those who do not. Exposure to high-quality programs also essential. Pupils do best when they are allowed to speak their native language.Keywords: acquisition, affecting, factors, learning
Procedia PDF Downloads 62913364 Self-Efficacy in Online Vocal Learning: Current Situation, Influencing Factors and Optimization Strategies
Authors: Tianyou Wang
Abstract:
Students' own intrinsic motivation is the main source of energy for learning activities, and their self-efficacy becomes a key factor affecting the learning effect. In today's increasingly common situation of online vocal music teaching, virtualized teaching scenarios have brought a considerable impact on students' personal efficacy. Since personal efficacy is the result of the interaction between environmental factors and subject characteristics, an empirical study was conducted to investigate the changes in students' self-efficacy, influencing factors, and characteristics in online vocal teaching scenarios based on the three dimensions of teachers, students, and technology. One hundred valid questionnaires were studied through a quantitative survey. The results showed that students' personal efficacy was significantly lower in online learning environments compared to offline vocal teaching and showed significant differences due to factors such as gender and class type; students' self-efficacy in online vocal teaching was significantly affected by factors such as technological environment, teaching style, and information technology ability. Based on the results of the study, it is recommended to pay attention to inquiry and practice in the teaching design, use singing projects as the teaching organization, grasp the learning process with the orientation of problem-solving, push the applicable vocal music teaching resources in time, lead students to explore and refine the problems and push students to learn independently according to the goals and plans.Keywords: vocal pedagogy, self-efficacy, online learning, intrinsic motivation, information technology
Procedia PDF Downloads 5513363 Incarcerated Students' Participation Rates in Open Distance Education: Exploring the Role of South African Universities
Authors: Veisiwe Gasa
Abstract:
Many higher institutions of education that offer Open Distance Learning (ODL) and e-Learning have opened their doors to accommodate prisoners who want to further their studies. The provision of education for prisoners in South Africa emanates from a number of reasons. The alarmingly high numbers of the prison population in South Africa has called for the government to provide desperate measures. It is on these premises that the provision of higher education in prison is recommended. Higher education is recommended because of the belief that it creates employability and thereby reduces recidivism. Using targeted sampling, 5 universities were required to elaborate on their awareness strategies, how they ensure that Distance Education is accessible to the prisoners and also the ways in which they cater to the needs of incarcerated students. The research findings reveal that there is so little that has been done by these particular institutions to cater for prisoners. This raises a concern and indicates a need to raise awareness of the value of higher and distance education among prisoners. It also calls for higher education institutions to make prisons aware of their course offerings.Keywords: e-Learning, incarcerated students, open distance learning, recidivism
Procedia PDF Downloads 18613362 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses
Authors: Matthew Baucum
Abstract:
With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.Keywords: FMRI, machine learning, meta-analysis, text analysis
Procedia PDF Downloads 44913361 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 130