Search results for: low carbon tourism
562 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification
Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto
Abstract:
Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.Keywords: membranes, 2D materials, hydrogen purification, nanocomposites
Procedia PDF Downloads 134561 Examining the Missing Feedback Link in Environmental Kuznets Curve Hypothesis
Authors: Apra Sinha
Abstract:
The inverted U-shaped Environmental Kuznets curve (EKC) demonstrates(pollution-income relationship)that initially the pollution and environmental degradation surpass the level of income per capita; however this trend reverses since at the higher income levels, economic growth initiates environmental upgrading. However, what effect does increased environmental degradation has on growth is the missing feedback link which has not been addressed in the EKC hypothesis. This paper examines the missing feedback link in EKC hypothesis in Indian context by examining the casual association between fossil fuel consumption, carbon dioxide emissions and economic growth for India. Fossil fuel consumption here has been taken as a proxy of driver of economic growth. The casual association between the aforementioned variables has been analyzed using five interventions namely 1) urban development for which urbanization has been taken proxy 2) industrial development for which industrial value added has been taken proxy 3) trade liberalization for which sum of exports and imports as a share of GDP has been taken as proxy 4)financial development for which a)domestic credit to private sector and b)net foreign assets has been taken as proxies. The choice of interventions for this study has been done keeping in view the economic liberalization perspective of India. The main aim of the paper is to investigate the missing feedback link for Environmental Kuznets Curve Hypothesis before and after incorporating the intervening variables. The period of study is from 1971 to 2011 as it covers pre and post liberalization era in India. All the data has been taken from World Bank country level indicators. The Johansen and Juselius cointegration testing methodology and Error Correction based Granger causality have been applied on all the variables. The results clearly show that out of five interventions, only in two interventions the missing feedback link is being addressed. This paper can put forward significant policy implications for environment protection and sustainable development.Keywords: environmental Kuznets curve hypothesis, fossil fuel consumption, industrialization, trade liberalization, urbanization
Procedia PDF Downloads 252560 Ambient Electrospray Deposition: An Efficient Technique to Immobilize Laccase on Cheap Electrodes With Unprecedented Reuse and Storage Performances
Authors: Mattea Carmen Castrovilli, Antonella Cartoni
Abstract:
Electrospray ionisation (ESI), a well-established technique widely used to produce ion beams of biomolecules in mass spectrometry (ESI-MS), can be used for ambient soft landing of enzymes on a specific substrate. In this work, we show how the ambient electrospray deposition (ESD) technique can be successfully exploited for manufacturing a promising, green-friendly electrochemical amperometric laccase-based biosensor with unprecedented reuse and storage performance. These biosensors have been manufactured by spraying a laccase solution of 2μg/μL at 20% of methanol on a commercial carbon screen printed electrode (C-SPE) using a custom ESD set-up. The laccase-based ESD biosensor has been tested against catechol compounds in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from cadmium, chrome, arsenic, and zinc and without any memory effects, but showing a matrix effect in lake and well water. The ESD biosensor shows enhanced performances compared to the ones fabricated with other immobilization methods, like drop-casting. Indeed, it retains 100% activity up to two months of storage at ambient conditions without any special care and working stability up to 63 measurements on the same electrode just prepared and 20 on a one-year-old electrode subjected to redeposition together with a 100% resistance to use of the same electrode in subsequent days. The ESD method is a one-step, environmentally friendly method that allows the deposition of the bio-recognition layer without using any additional chemicals. The promising results in terms of storage and working stability also obtained with the more fragile lactate oxidase enzyme suggest these improvements should be attributed to the ESD technique rather than to the bioreceptor, highlighting how the ESD could be useful in reducing pollution from disposable devices. Acknowledgment: The understanding at the molecular level of this promising biosensor by using different spectroscopies, microscopies and analytical techniques is the subject of our PRIN 2022 project ESILARANTE.Keywords: reuse, storage performance, immobilization, electrospray deposition, biosensor, laccase, catechol detection, green chemistry
Procedia PDF Downloads 62559 A Way to Recognize Origin of Soil Conditioners
Authors: Laura Santagostini, Vittoria Guglielmi
Abstract:
The meaning of the word 'Nature' (literally 'that which is about to be born') has accompanied researchers throughout their study of the environment and has led to the design of technical means to improve the properties of the soil, modifying its structure and/or consistency, thus favouring the emergence and growth of plants. These include soil improvers, i.e. any substance, natural or synthetic, mineral or organic, capable of modifying and improving the chemical, physical, biological and mechanical properties and characteristics of the soil. In particular, GCSCs (Green Composted Soil Conditioners) are soil conditioners produced through a controlled process of transforming selected organic green waste materials, such as clippings from the maintenance of ornamental greenery, crop residues and other plant waste. The use of GCSC in horticulture, fruit growing, industrial cultivation and nursery gardening is an active way to return organic carbon to the soil, thus limiting CO2 emissions and the production of greenhouse gases, and also to limit the environmental impact of peat extraction, which is normally used in these areas of application. With a view to distinguish between GCSC and peats and to assess what further contributions GCSC can provide to the soil and growing plants, we studied the behaviour of the two substrates by chromatographic techniques. After treating the individual soil improvers with different solvents, used individually or by applying a polarity gradient, the extracts obtained were analysed by HPLC and LCMS in order to assess their composition mainly from a qualitative point of view. Data obtained show in GCSC the presence of polyphenolic derivatives attributable to the degradation of plant material and potentially useful for the development and growth of young plants, while commercial peat-based products only sporadically showed the presence of recognisable molecules, confirming the lower complexity of the matrix under analysis. These results allowed us to distinguish the two different types of soil conditioner based on their chromatographic profiles.Keywords: chromatographic profile, HPLC, polyphenols, soil conditioners
Procedia PDF Downloads 124558 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods
Authors: Li-hsing Shih, Tzu-hsun Yen
Abstract:
Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling
Procedia PDF Downloads 60557 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior
Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns
Abstract:
A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation
Procedia PDF Downloads 192556 "Gurza Incinerator" : Biomass Incinerator Powered by Empty Bunch of Palm Oil Fruits as Electrical Biomass Base Development
Authors: Andi Ismanto
Abstract:
Indonesia is the largest palm oil producer in the world. The increasing number of palm oil extensification in Indonesia started on 2000-2011. Based on preliminary figures from the Directorate General of Plantation, palm oil area in Indonesia until 2011 is about 8.91 million hectares.On 2011 production of palm oil CPO reaches 22.51 million tons. In the other hands, the increasing palm oil production has impact to environment. The Empty Bunch of Palm Oil (EBPO)waste was increased to 20 million tons in 2009. Utilization of waste EBPO currently only used as an organic fertilizer for plants. But, it was not a good solution, because TKKS that used as organic compost has high content of carbon and hydrogen compound. The EBPO waste has potential used as fuel by gasification because it has short time of decomposition. So, the process will be more efficient in time. Utilization of urban wastehas been created using an incinerator used as a source of electrical energy for household.Usually, waste burning process by incinerator is using diesel fuel and kerosene. It is certainly less effective and not environment friendly, considering the waste incineration process using Incinerator tools are continuously. Considering biomass is a renewable source of energy and the world's energy system must be switch from an energy based on fossil resources into the energy based on renewable resources, the "Gurza Incinerator": Design Build Powerful Biomass Incinerator Empty Bunch of Palm Oil (EBPO) as Elecrical Biomass Base Development, a renewable future technology. The tools is using EBPO waste as source of burning to burn garbage inside the Incinerator hopper. EBPO waste will be processed by means of gasification. Gasification isa process to produce gases that can be used as fuel for electrical power. Hopefully, this technology could be a renewable future energy and also as starting point of electrical biomass base development.Keywords: incinerator, biomass, empty bunch palm oil, electrical energy
Procedia PDF Downloads 482555 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites
Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin
Abstract:
Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties
Procedia PDF Downloads 159554 Challenges Encountered by Small Business Owners in Building Their Social Media Marketing Competency
Authors: Nilay Balkan
Abstract:
Introductory statement: The purpose of this study is to understand how small business owners develop social media marketing competency, the challenges they encounter in doing so, and establish the social media training needs of such businesses. These challenges impact the extent to which small business owners build effective social media knowledge and, in turn, impact their ability to implement effective social media marketing into their business practices. This means small businesses are not fully able to benefit from social media, such as benefits to customer relationship management or increasing brand image, which would support the overall business operations for these businesses. This research is part one of a two-phased study. The first phase aims to establish the challenges small business owners face in building social media marketing competency and their specific training needs. Phase two will then focus in more depth on the barriers and challenges emerging from phase one. Summary of Methodology: Interviews with ten small business owners were conducted from various sectors, including fitness, tourism, food, and drinks. These businesses were located in the central belt of Scotland, which is an area with the highest population and business density in Scotland. These interviews were in-depth and semi-structured, with the purpose of being investigative and understanding the phenomena from the lived experience of the small business owners. A purposive sampling was used, where small business owners fulfilling certain criteria were approached to take part in the interviews. Key findings: The study found four ways in which small business owners develop their social media competency (informal methods, formal methods, learning through a network, and experimenting) and the various challenges they face with these methods. Further, the study established four barriers impacting the development of social media marketing competency among the interviewed small business owners. In doing so, preliminary support needs have also emerged. Concluding statement: The contribution of this study is to understand the challenges small business owners face when learning how to use social media for business purposes and identifying their training needs. This understanding can help the development of specific and tailored support. In addition, specific and tailored training can support small businesses in building competency. This supports small businesses to progress to the next stage of their development, which could be to further their digital transformation or grow their business. The insights from this study can be used to support business competitiveness and support small businesses to become more resilient. Moreover, small businesses and entrepreneurs share some similar characteristics, such as limited resources and conflicting priorities, and the findings of this study may be able to support entrepreneurs in their social media marketing strategies as well.Keywords: small business, marketing theory and applications, social media marketing, strategic management, digital competency, digitalisation, marketing research and strategy, entrepreneurship
Procedia PDF Downloads 91553 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging
Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland
Abstract:
A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography
Procedia PDF Downloads 157552 Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light
Authors: Md. Maksudur Rahman Khan, M. Rahim Uddin, Hamidah Abdullah, Kaykobad Md. Rezaul Karim, Abu Yousuf, Chin Kui Cheng, Huei Ruey Ong
Abstract:
A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe2O4 as tetragonal phase incorporation with anatase TiO2 in CuFe2O4/TiO2 hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe2O4 phases along with predominantly anatase phase of TiO2 in the CuFe2O4/TiO2 hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO2. Photoluminescence (PL) technique was used to study the electron–hole (e−/h+) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e−/h+) pairs in the CuFe2O4/TiO2 hetero-structure. The photocatalytic performance of CuFe2O4/TiO2 was evaluated based on the methanol yield with varying amount of TiO2 over CuFe2O4 (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO2 in aqueous phase were dissolved CO2 and HCO3- at pH ~5.9. It was evident that the CuFe2O4 could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO2 to increase the life time of the electron and facilitating the reactions of CO2 to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe2O4, but loading with TiO2 remarkably increased the methanol yield. Methanol yield over CuFe2O4/TiO2 was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO2/CH3OH.Keywords: photocatalysis, CuFe2O4/TiO2, band-gap energy, methanol
Procedia PDF Downloads 244551 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study
Authors: Bikram K. Das, Kalyan K. Chattopadhyay
Abstract:
The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.Keywords: graphdiyne, graphyne, nitrogen-doped, ORR
Procedia PDF Downloads 128550 Participation of Women in the Brazilian Paralympic Sports
Authors: Ana Carolina Felizardo Da Silva
Abstract:
People with disabilities are those who have limitations of a physical, mental, intellectual or sensory nature and who, therefore, should not be excluded or marginalized. In Brazil, the Brazilian Law for the Inclusion of People with Disabilities defines that people with disabilities have the right to culture, sport, tourism and leisure on an equal basis with other people. Sport for people with disabilities, in its genesis, had a character aimed at rehabilitating men and soldiers, that is, the male figure who returned wounded from war and needed care. By gaining practitioners, the marketing issue emerges and, successively, high performance, what we call Paralympic sport. We found that sport for people with disabilities was designed for men, corroborating the social idea that sport is a masculine and masculinizing environment. In this way, the inclusion of women with disabilities in sports becomes a double challenge because they are women and have a disability. From data collected from official documents of the International Paralympic Committee, it is found that the first report on the participation of women in the Paralympic Games was in 1948, in England, in Stoke Mandeville, a championship considered the firstborn of the games, later, became called the “Paralympic Games”. However, due to the lack of information, the return of the appearance of women participating in the Paralympics took place after long 40 years, in 1984, which demonstrates a large gap of records on the official website referring to women in the games. Despite the great challenge, the number of women has been growing substantially. When collecting data from participants of all 16 editions of the Paralympic Games, in its last edition, held in Tokyo, out of 4,400 competing athletes, 1,853 were women, which represents 42% of the total number of athletes. In this same edition, we had the largest delegation of Brazilian women, represented by 96 athletes out of a total of 260 Brazilian athletes. It is estimated that in the next edition, to be taken place in Paris in 2024, the participation of women will equal or surpass that of men. The certain invisibility of women participating in the Paralympic Games is noticed when we access the database of the Brazilian Paralympic Committee website. It is possible to identify all women medalists of a given edition. On the other side, participating female athletes who did not medal are not registered on the site. Regarding the participation of Brazilian women in the Paralympics, there was a considerable growth in the last two editions, in 2012 there were only 69 women participating, going to 102 in 2016 and 96 in 2021. The same happened in relation to the medalists, going from 8 Brazilians in 2012 to 33 in 2016 and 27 in 2021. In this sense, the present study, aims to analyze how Brazilian women participate in the Paralympics, giving visibility and voice to female athletes. Structured interviews are being carried out with the participants of the games, identifying the difficulties and potentialities of participating with athletes in the competition. The analysis will be carried out through Bardin’s content analysis.Keywords: paralympics, sport for people with disabilities, woman, woman in sport
Procedia PDF Downloads 73549 An Efficient Emitting Supramolecular Material Derived from Calixarene: Synthesis, Optical and Electrochemical Features
Authors: Serkan Sayin, Songul F. Varol
Abstract:
High attention on the organic light-emitting diodes has been paid since their efficient properties in the flat panel displays, and solid-state lighting was realized. Because of their high efficient electroluminescence, brightness and providing eminent in the emission range, organic light emitting diodes have been preferred a material compared with the other materials consisting of the liquid crystal. Calixarenes obtained from the reaction of p-tert-butyl phenol and formaldehyde in a suitable base have been potentially used in various research area such as catalysis, enzyme immobilization, and applications, ion carrier, sensors, nanoscience, etc. In addition, their tremendous frameworks, as well as their easily functionalization, make them an effective candidate in the applied chemistry. Herein, a calix[4]arene derivative has been synthesized, and its structure has been fully characterized using Fourier Transform Infrared Spectrophotometer (FTIR), proton nuclear magnetic resonance (¹H-NMR), carbon-13 nuclear magnetic resonance (¹³C-NMR), liquid chromatography-mass spectrometry (LC-MS), and elemental analysis techniques. The calixarene derivative has been employed as an emitting layer in the fabrication of the organic light-emitting diodes. The optical and electrochemical features of calixarane-contained organic light-emitting diodes (Clx-OLED) have been also performed. The results showed that Clx-OLED exhibited blue emission and high external quantum efficacy. As a conclusion obtained results attributed that the synthesized calixarane derivative is a promising chromophore with efficient fluorescent quantum yield that provides it an attractive candidate for fabricating effective materials for fluorescent probes and labeling studies. This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Grant no. 117Z402).Keywords: calixarene, OLED, supramolecular chemistry, synthesis
Procedia PDF Downloads 253548 Market Segmentation of Cruise Ship Passengers: Implications for Marketing of Local Products and Services at Destination Points
Authors: Gunnar Oskarsson, Irena Georgsdottir
Abstract:
Tourism has been growing incredibly fast during the past years, including the cruise industry, which is gaining increasing popularity among various groups of travelers. It is a challenging task for companies serving cruise ship passengers with local products and services at the point of destination to reach them in due time with information about their offerings, as well learning how to adapt their offerings and messages to the type of customers arriving on each particular occasion. Although some research has been conducted in this sphere, there is still limited knowledge about many specifics within this sector of the tourist industry. The objective of this research is to examine one of these, with the main goal of studying the segmentation of cruise passengers and to learn about marketing practices directed towards them. A qualitative research method, based on in-depth interviews, was used, as this provides an opportunity to gain insight into the participants’ perspectives. Interviews were conducted with 10 respondents from different companies in the tourist industry in Iceland, who interact with cruise passengers on a regular basis in their work environment. The main objective was to gain an understanding of what distinguishes different customer groups, or segments, in this industry, and of the marketing approaches directed towards them. The main findings reveal that participants note the strongest difference between cruise passengers of different nationalities, passengers coming on different ships (size and type), and passengers arriving at different times of the year. A drastic difference was noticed between nationalities in four main segments, American, British, Other European, and Asian customers, although some of these segments could be divided into even further sub-segments. Other important differencing factors were size and type of ships, quality or number of stars on the ship, and travelling time of the year. Companies serving cruise ship passengers, as well as the customers themselves, could benefit if the offerings of services were designed specifically for particular segments within the industry. Concerning marketing towards cruise passengers, the results indicate that it is carried out almost exclusively through the Internet using; a reliable website and, search engine optimization. Marketing is also by word-of-mouth. This research can assist practitioners by offering a deeper understanding of the approaches that may be effective in marketing local products and services to cruise ship passengers, based on their segmentation and by identifying effective ways to reach them. The research, furthermore, provides a valuable contribution to marketing knowledge for the benefit of an increasingly important market segment in a fast growing tourist industry.Keywords: capabilities, global integration, internationalisation, SMEs
Procedia PDF Downloads 401547 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel
Authors: V. Karthickeyan
Abstract:
The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine
Procedia PDF Downloads 155546 Evaluating the Service Quality and Customers’ Satisfaction for Lihpaoland in Taiwan
Authors: Wan-Yu Liu, Tiffany April Lin, Yu-Chieh Tang, Yi-Lin Wang, Chieh-Hui Li
Abstract:
As the national income in Taiwan has been raised, the life style of the public has also been changed, so that the tourism industry gradually moves from a service industry to an experience economy. The Lihpaoland is one of the most popular theme parks in Taiwan. However, the related works on performance of service quality of the park have been lacking since its re-operation in 2012. Therefore, this study investigates the quality of software/hardware facilities and services of the Lihpaoland, and aims to achieve the following three goals: 1) analyzing how various sample data of tourists leads to different results for service quality of LihpaoLand; 2) analyzing how tourists respond to the service tangibility, service reliability, service responsiveness, service guarantee, and service empathy of LihpaoLand; 3) according to the theoretical and empirical results, proposing how to improve the overall facilities and services of LihpaoLand, and hoping to provide suggestions to the LihpaoLand or other related businesses to make decision. The survey was conducted on the tourists to the LihpaoLand using convenience sampling, and 400 questionnaires were collected successfully. Analysis results show that tourists paid much attention to maintenance of amusement facilities and safety of the park, and were satisfied with them, which are great advantages of the park. However, transportation around the LihpaoLand was inadequate, and the price of the Fullon hotel (which is the hotel closest to the LihpaoLand) were not accepted by tourists – more promotion events are recommended. Additionally, the shows are not diversified, and should be improved with the highest priority. Tourists did not pay attention to service personnel’s clothing and the ticket price, but they were not satisfied with them. Hence, this study recommends to design more distinctive costumes and conduct ticket promotions. Accordingly, the suggestions made in this study for LihpaoLand are stated as follows: 1) Diversified amusement facilities should be provided to satisfy the needs at different ages. 2) Cheep but tasty catering and more distinctive souvenirs should be offered. 3) Diversified propaganda schemes should be strengthened to increase number of tourists. 4) Quality and professional of the service staff should be enhanced to acquire public praise and tourists revisiting. 5) Ticket promotions in peak seasons, low seasons, and special events should be conducted. 6) Proper traffic flows should be planned and combined with technologies to reduce waiting time of tourists. 7) The features of theme landscape in LihpaoLand should be strengthened to increase willingness of the tourists with special preferences to visit the park. 8) Ticket discounts or premier points card promotions should be adopted to reward the tourists with high loyalty.Keywords: service quality, customers’ satisfaction, theme park, Taiwan
Procedia PDF Downloads 471545 Environmental Assessment of Single-Industry Towns in Kazakhstan in the Context of Sustainable Development Goals
Authors: Almira Daulbayeva, Zhauhar Yessenkulova, Rassima Salimbayeva
Abstract:
In this article, the regularities of the modern spatial and temporal distribution of main pollutants in the air space of single-industry towns are considered, and the level of pollutant emissions into the atmospheric air by urban areas of the Karaganda region is determined. We selected such cities as Temirtau, Abay, Saran, and Balkhash. Ecological and hygienic assessment of atmospheric air pollution in these cities for 2020 - 2023 and the beginning of 2024 was carried out on the materials of annual Information Bulletins on the state of the environment of the Republic of Kazakhstan, bulletins ‘On the state of atmospheric air in Karaganda region’. The general assessment of atmospheric air pollution in the territory was high, especially in 2020 and 2021, and corresponded to the level of ‘tense’. According to the results of the analysis of atmospheric air pollution, it was revealed that enterprises of thermal power engineering and mining industry (mines, enrichment plants, metallurgical production of ‘ArcelorMittal’ JSC) carry out emission of significant amounts of pollutants, particulate matter, and heavy metals into the atmosphere. The total number of ingredients present in the atmosphere of the city exceeds dozens, many of which belong to the first and second categories of hazard. The main pollutants were sulphur dioxide, carbon oxides, and nitrogen dioxide, as well as suspended solids. We have also considered and studied some types of major diseases of the population living in the region in different conditions in recent years. According to the results of the study, the cities with the highest rates and levels of morbidity were identified: Temirtau, Shakhtinsk, Abay, located in Karaganda region, where the main industrial facilities are concentrated, emitting harmful pollutants from ‘Corporation Kazakhmys’ LLP, ‘Arcelor Mittal’ JSC, Balkhash Mining and Metallurgical Combine.Keywords: atmospheric air, pollutants, single-industry towns, Karaganda region, morbidity, sustainable development
Procedia PDF Downloads 22544 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies
Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif
Abstract:
Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environmentKeywords: PGPR, nitrogen fixation, phosphate solubilization, colonization
Procedia PDF Downloads 340543 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum
Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza
Abstract:
Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin
Procedia PDF Downloads 108542 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 234541 Leaching of Metal Cations from Basic Oxygen Furnace (BOF) Steelmaking Slag Immersed in Water
Authors: Umashankar Morya, Somnath Basu
Abstract:
Metalloids like arsenic are often present as contaminants in industrial effluents. Removal of the same is essential before the safe discharge of the wastewater into the environment. Otherwise, these pollutants tend to percolate into aquifers over a period of time and contaminate drinking water sources. Several adsorbents, including metal powders, carbon nanotubes and zeolites, are being used for this purpose, with varying degrees of success. However, most of these solutions are not only costly but also not always readily available. This restricts their use, especially among financially weaker communities. Slag generated globally from primary steelmaking operations exceeds 200 billion kg every year. Some of it is utilized for applications like road construction, filler in reinforced concrete, railway track ballast and recycled into iron ore agglomeration processes. However, these usually involve low-value addition, and a significant amount of the slag still ends up in a landfill. However, there is a strong possibility that the constituents in the steelmaking slag may immobilize metalloid contaminants present in wastewater through a combination of adsorption and precipitation of insoluble product(s). Preliminary experiments have already indicated that exposure to basic oxygen steelmaking slag does reduce pollutant concentration in wastewater. In addition, the slag is relatively inexpensive and available in large quantities and in several countries across the world. Investigations on the mechanism of interactions at the water-solid interfaces have been in progress for some time. However, at the same time, there are concerns about the possibility of leaching of metal ions from the slag particles in concentrations greater than what exists in the water bodies where the “treated” wastewater would eventually be discharged. The effect of such leached ions on the aquatic flora and fauna is yet uncertain. This has prompted the present investigation, which focuses on the leaching of metal ions from steelmaking slag particles in contact with wastewater, and the influence of these ions on the removal of contaminant species. Experiments were carried out to quantify the leaching behavior of different ionic species upon exposure of the slag particles to simulated wastewater, both with and without specific metalloid contaminants.Keywords: slag, water, metalloid, heavy metal, wastewater
Procedia PDF Downloads 75540 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process
Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira
Abstract:
Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.Keywords: electrocoagulation, fish, food industry, wastewater
Procedia PDF Downloads 249539 Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production
Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra
Abstract:
Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge.Keywords: activated sludge, lipid, hydrothermal decarboxylation, renewable diesel
Procedia PDF Downloads 319538 Testing the Impact of the Nature of Services Offered on Travel Sites and Links on Traffic Generated: A Longitudinal Survey
Authors: Rania S. Hussein
Abstract:
Background: This study aims to determine the evolution of service provision by Egyptian travel sites and how these services change in terms of their level of sophistication over the period of the study which is ten years. To the author’s best knowledge, this is the first longitudinal study that focuses on an extended time frame of ten years. Additionally, the study attempts to determine the popularity of these websites through the number of links to these sites. Links maybe viewed as the equivalent of a referral or word of mouth but in an online context. Both popularity and the nature of the services provided by these websites are used to determine the traffic on these sites. In examining the nature of services provided, the website itself is viewed as an overall service offering that is composed of different travel products and services. Method: This study uses content analysis in the form of a small scale survey done on 30 Egyptian travel agents’ websites to examine whether Egyptian travel websites are static or dynamic in terms of the services that they provide and whether they provide simple or sophisticated travel services. To determine the level of sophistication of these travel sites, the nature and composition of products and services offered by these sites were first examined. A framework adapted from Kotler (1997) 'Five levels of a product' was used. The target group for this study consists of companies that do inbound tourism. Four rounds of data collection were conducted over a period of 10 years. Two rounds of data collection were made in 2004 and two rounds were made in 2014. Data from the travel agents’ sites were collected over a two weeks period in each of the four rounds. Besides collecting data on features of websites, data was also collected on the popularity of these websites through a software program called Alexa that showed the traffic rank and number of links of each site. Regression analysis was used to test the effect of links and services on websites as independent variables on traffic as the dependent variable of this study. Findings: Results indicate that as companies moved from having simple websites with basic travel information to being more interactive, the number of visitors illustrated by traffic and the popularity of those sites increase as shown by the number of links. Results also show that travel companies use the web much more for promotion rather than for distribution since most travel agents are using it basically for information provision. The results of this content analysis study taps on an unexplored area and provide useful insights for marketers on how they can generate more traffic to their websites by focusing on developing a distinctive content on these sites and also by focusing on the visibility of their sites thus enhancing the popularity or links to their sites.Keywords: levels of a product, popularity, travel, website evolution
Procedia PDF Downloads 321537 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant
Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi
Abstract:
Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation
Procedia PDF Downloads 446536 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.Keywords: soil degradation, land consolidation, soil erosion, soil conservation
Procedia PDF Downloads 356535 Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran
Authors: Zhila Hemati, Seyed Sajjad Hosseni, Sohrab Zamzami
Abstract:
In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas.Keywords: wildfire, vegetation, plant species, forest
Procedia PDF Downloads 44534 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment
Authors: Guarry Montrose, Ted Soubdhan
Abstract:
In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.Keywords: plant fibers, tropical climates, sustainable development, waste reduction
Procedia PDF Downloads 182533 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites
Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy
Abstract:
Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements
Procedia PDF Downloads 264