Search results for: life-long learning for sustainable development
20165 The Use of Creativity to Nudge Students Into Heutagogy: An Implementation in Graduate Business Education
Authors: Ricardo Bragança, Tom Vinaimont
Abstract:
This paper discusses the introduction of processes of self-determined learning (heutagogy) into a graduate course on financial modeling, using elements of entangled pedagogy and Biggs’ constructive alignment. To encourage learners to take control of their own learning journey and develop critical thinking and problem-solving skills, each session in the course receives tailor-made media-enhanced pedagogical assets. The design of those assets specifically supports entangled pedagogy, which opposes technological or pedagogical determinism in support of the collaborative integration of pedagogy and technology. Media assets for each of the ten sessions in this course consist of three components. The first component in this three-pronged approach is a game-cut-like cinematographic representation that introduces the context of the session. The second component represents a character from an open-source-styled community that encourages self-determined learning. The third component consists of a character, which refers to the in-person instructor and also aligns learning outcomes and assessment tasks, using Biggs’ constructive alignment, to the cinematographic and open-source-styled component. In essence, the course's metamorphosis helps students apply the concepts they've studied to actual financial modeling issues. The audio-visual media assets create a storyline throughout the course based on gamified and real-world applications, thus encouraging student engagement and interaction. The structured entanglement of pedagogy and technology also guides the instructor in the design of the in-class interactions and directs the focus on outcomes and assessments. The transformation process of this graduate course in financial modeling led to an institutional teaching award in 2021. The transformation of this course may be used as a model for other courses and programs in many disciplines to help with intended learning outcomes integration, constructive alignment, and Assurance of Learning.Keywords: innovative education, active learning, entangled pedagogy, heutagogy, constructive alignment, project based learning, financial modeling, graduate business education
Procedia PDF Downloads 7220164 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities
Authors: Abdelghani Qadem
Abstract:
Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development
Procedia PDF Downloads 5720163 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 7520162 Development of Disability Studies in Post-Transformational Central and East European Countries from the 80s until Present
Authors: Klaudia Muca
Abstract:
Disability studies as an international movement are still developing, especially in the Central and East European young democratic countries. It is crucial to recognize in what manner this development might lead to create a sustainable social environment. Thanks to disability studies the process of introducing disability studies and its main ideas might become as effective as in the 90s in the USA or other Western countries. In the Central and East Europe lack of activism in favor of the disabled in the early stages of democratic transition (i.e. the 80s and 90s) caused misrepresentation of the disabled and their experience in present political and social sphere of life. People with disabilities were made to hold a minor position in society due to political changes that introduced in fact non-equal democracy. The results of this study indicate that activism in favor of people with disabilities and works of art created by the disabled are tools that influence present disability politics. That suggests that young European democracies need to modify their current political path in order to establish more equal social policies.Keywords: democratic transformation, disability as minority, misrepresentation of experience, non-equal democracy, sustainability
Procedia PDF Downloads 18820161 Practice of Applying MIDI Technology to Train Creative Teaching Skills
Authors: Yang Zhuo
Abstract:
This study explores the integration of MIDI technology as one of the important digital technologies in music teaching, from the perspective of teaching practice, into the process of cultivating students' teaching skills. At the same time, the framework elements of the learning environment for music education students are divided into four aspects: digital technology supported learning space, new knowledge learning, teaching methods, and teaching evaluation. In teaching activities, more attention should be paid to students' subjectivity and interaction between them so as to enhance their emotional experience in teaching practice simulation. In the process of independent exploration and cooperative interaction, problems should be discovered and solved, and basic knowledge of music and teaching methods should be exercised in practice.Keywords: music education, educational technology, MIDI, teacher training
Procedia PDF Downloads 8420160 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks
Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal
Abstract:
Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.Keywords: GIS, smart water, sustainability, urban water management
Procedia PDF Downloads 21720159 Motivation on Vocabulary and Reading Skill via Teacher-Created Website for Thai Students
Authors: P. Klinkesorn, S. Yordchim, T. Gibbs, J. Achariyopas
Abstract:
Vocabulary and reading skill were examined in terms of teaching and learning via teacher-created website. The aims of this study are 1) to survey students’ opinions on the teacher-created website for learning vocabulary and reading skill 2) to survey the students’ motivation for learning vocabulary and reading skill through the teacher-created website. Motivation was applied to the results of the questionnaires and interview forms. Finding suggests that Teacher-Created Website can increase students’ motivation to read more, build up a large stock of vocabulary and improve their understanding of the vocabulary. Implications for developing both social engagement and emotional satisfaction are discussed.Keywords: motivation, teacher-created website, Thai students, vocabulary and reading skill
Procedia PDF Downloads 46420158 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 39920157 A Paradigm Shift in Patent Protection-Protecting Methods of Doing Business: Implications for Economic Development in Africa
Authors: Odirachukwu S. Mwim, Tana Pistorius
Abstract:
Since the early 1990s political and economic pressures have been mounted on policy and law makers to increase patent protection by raising the protection standards. The perception of the relation between patent protection and development, particularly economic development, has evolved significantly in the past few years. Debate on patent protection in the international arena has been significantly influenced by the perception that there is a strong link between patent protection and economic development. The level of patent protection determines the extent of development that can be achieved. Recently there has been a paradigm shift with a lot of emphasis on extending patent protection to method of doing business generally referred to as Business Method Patenting (BMP). The general perception among international organizations and the private sectors also indicates that there is a strong correlation between BMP protection and economic growth. There are two diametrically opposing views as regards the relation between Intellectual Property (IP) protection and development and innovation. One school of thought promotes the view that IP protection improves economic development through stimulation of innovation and creativity. The other school advances the view that IP protection is unnecessary for stimulation of innovation and creativity and is in fact a hindrance to open access to resources and information required for innovative and creative modalities. Therefore, different theories and policies attach different levels of protection to BMP which have specific implications for economic growth. This study examines the impact of BMP protection on development by focusing on the challenges confronting economic growth in African communities as a result of the new paradigm in patent law. (Africa is used as a single unit in this study but this should not be construed as African homogeneity. Rather, the views advanced in this study are used to address the common challenges facing many communities in Africa). The study reviews (from the point of views of legal philosophers, policy makers and decisions of competent courts) the relevant literature, patent legislation particularly the International Treaty, policies and legal judgments. Findings from this study suggest that over and above the various criticisms levelled against the extreme liberal approach to the recognition of business methods as patentable subject matter, there are other specific implications that are associated with such approach. The most critical implication of extending patent protection to business methods is the locking-up of knowledge which may hamper human development in general and economic development in particular. Locking up knowledge necessary for economic advancement and competitiveness may have a negative effect on economic growth by promoting economic exclusion, particularly in African communities. This study suggests that knowledge of BMP within the African context and the extent of protection linked to it is crucial in achieving a sustainable economic growth in Africa. It also suggests that a balance is struck between the two diametrically opposing views.Keywords: Africa, business method patenting, economic growth, intellectual property, patent protection
Procedia PDF Downloads 12720156 A Case Study: Community Forestry in Nepal: Achievements and Challenges
Authors: Bhmika Raiu
Abstract:
The community forestry programme in Nepal officially started in the late 1970s. Since then concerning movement has been evolving to involve local communities in the management and utilization of forests. The policy of the government was originally intended to meet the basic forest products required by the communities through active participation in forest development and management. Later, it was expanded to include the mobilization and empowerment of the members of community forest user groups in the development of their local communities. It was observed that the trend of forest degradation has decreased since the handing over of national forests to local communities, but a number of unintended social anomalies have also cropped up. Such anomalies essentially constitute of the inequity and unfairness in the local and national level and in terms of long-term sustainability of forest resources. This paper provides an overview of various issues of community forestry, especially focusing on the major achievements made in community forestry. It calls for rethinking the community forestry programme in order to face the present day challenges of linking community forestry with livelihood promotion, good governance, and sustainable forest management. It also lays out strategies for reforms in community forestry.Keywords: community forest, livelihood promotion, challenges, achievements
Procedia PDF Downloads 37820155 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 9020154 Errors and Misconceptions for Students with Mathematical Learning Disabilities: Quest for Suitable Teaching Strategy
Authors: A. K. Tsafe
Abstract:
The study investigates the efficacy of Special Mathematics Teaching Strategy (SMTS) as against Conventional Mathematics Teaching Strategy (CMTS) in teaching students identified with Mathematics Learning Disabilities (MLDs) – dyslexia, Down syndrome, dyscalculia, etc., in some junior secondary schools around Sokoto metropolis. Errors and misconceptions in learning Mathematics displayed by these categories of students were observed. Theory of variation was used to provide a prism for viewing the MLDs from theoretical perspective. Experimental research design was used, involving pretest-posttest non-randomized approach. Pretest was administered to the intact class taught using CMTS before the class was split into experimental and control groups. Experimental group of the students – those identified with MLDs was taught with SMTS and later mean performance of students taught using the two strategies was sought to find if there was any significant difference between the performances of the students. A null hypothesis was tested at α = 0.05 level of significance. T-test was used to establish the difference between the mean performances of the two tests. The null hypothesis was rejected. Hence, the performance of students, identified with MLDs taught using SMTS was found to be better than their earlier performance taught using CMTS. The study, therefore, recommends amongst other things that teachers should be encouraged to use SMTS in teaching mathematics especially when students are found to be suffering from MLDs and exhibiting errors and misconceptions in the process of learning mathematics.Keywords: disabilities, errors, learning, misconceptions
Procedia PDF Downloads 9620153 Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-SMHSD) Framework Development for Low-Resource Areas
Authors: Wan You Ning
Abstract:
Addressing the rising prevalence of mental health issues among youths, the Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-ASMHSD) framework proposes the implementation of advanced mental health services in low-resource areas to further instil mental health resilience among students in a school-based setting. Recognizing the unsustainability of direct service delivery due to rapidly growing demands and costs, the MARS-ASMHSD framework endorses the deinstitutionalization of mental healthcare and explores a tiered, multi-dimensional approach in mental healthcare provision, establishing advanced school-based mental health service delivery. The framework is developed based on sustainable and credible evidence-based practices and modifications of existing mental health service deliveries in Asia, including Singapore, Thailand, Malaysia, Japan, and Taiwan. Dissemination of the framework model for implementation will enable a more progressive and advanced school-based mental health service delivery in low-resource areas. Through the evaluation of the mental health landscape and the role of stakeholders in the respective countries, the paper concludes with a multi-dimensional framework model for implementation in low-resource areas. A mixed-method independent research study is conducted to facilitate the framework's development.Keywords: mental health, youths, school-based services, framework development
Procedia PDF Downloads 4620152 Small-Group Case-Based Teaching: Effects on Student Achievement, Critical Thinking, and Attitude toward Chemistry
Authors: Reynante E. Autida, Maria Ana T. Quimbo
Abstract:
The chemistry education curriculum provides an excellent avenue where students learn the principles and concepts in chemistry and at the same time, as a central science, better understand related fields. However, the teaching approach used by teachers affects student learning. Cased-based teaching (CBT) is one of the various forms of inductive method. The teacher starts with specifics then proceeds to the general principles. The students’ role in inductive learning shifts from being passive in the traditional approach to being active in learning. In this paper, the effects of Small-Group Case-Based Teaching (SGCBT) on college chemistry students’ achievement, critical thinking, and attitude toward chemistry including the relationships between each of these variables were determined. A quasi-experimental counterbalanced design with pre-post control group was used to determine the effects of SGCBT on Engineering students of four intact classes (two treatment groups and two control groups) in one of the State Universities in Mindanao. The independent variables are the type of teaching approach (SGCBT versus pure lecture-discussion teaching or PLDT) while the dependent variables are chemistry achievement (exam scores) and scores in critical thinking and chemistry attitude. Both Analysis of Covariance (ANCOVA) and t-tests (within and between groups and gain scores) were used to compare the effects of SGCBT versus PLDT on students’ chemistry achievement, critical thinking, and attitude toward chemistry, while Pearson product-moment correlation coefficients were calculated to determine the relationships between each of the variables. Results show that the use of SGCBT fosters positive attitude toward chemistry and provides some indications as well on improved chemistry achievement of students compared with PLDT. Meanwhile, the effects of PLDT and SGCBT on critical thinking are comparable. Furthermore, correlational analysis and focus group interviews indicate that the use of SGCBT not only supports development of positive attitude towards chemistry but also improves chemistry achievement of students. Implications are provided in view of the recent findings on SGCBT and topics for further research are presented as well.Keywords: case-based teaching, small-group learning, chemistry cases, chemistry achievement, critical thinking, chemistry attitude
Procedia PDF Downloads 29720151 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 11920150 Construction of the Large Scale Biological Networks from Microarrays
Authors: Fadhl Alakwaa
Abstract:
One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.Keywords: gene regulatory network, biclustering, denoising, system biology
Procedia PDF Downloads 23920149 The Role of Strategic Flexibility for Achieving Sustainable Competition Advantage and Its Effect on Business Performance
Authors: Kemalettin Eryesil, Osman Esmen, Aykut Beduk
Abstract:
In this study, it has been studied to determine the relationship between business performance and strategic flexibility, which is defined to be the strategic choice that provides the ability of rapidly responding the changes of the dynamic environment of the companies, for having competitive advantages. In this context a field study has been conducted over 56 companies, which are active in informatics and electronics sectors in TEKNOKENT. As a result of the study it has been determined that; strategic flexibility has an effect on business performance and there is a positive and statistically significant relationship between strategic flexibility and business performance.Keywords: sustainable competition advantage, strategic flexibility, firm performance, TEKNOKENT
Procedia PDF Downloads 38320148 Research on Planning Strategy of Characteristic Town from the Perspective of Ecological Concept: A Case Study on Hangzhou Dream Town in Zhejiang
Authors: Xiaohan Ye
Abstract:
Under the new normal situation, some urban spaces with the industrial base and regional features in Zhejiang, China have been selected to build a characteristic town, a kind of environmentally-friendly development platform with city-industry integrated, in an attempt to achieve the most optimized layout of productivity with the least space resource. After analysis on the connotation, mechanism and mode of characteristic town in Zhejiang, it is suggested in this paper that characteristic town should take improving the regional ecological environment as an important object in planning strategy from the perspective of ecological concept. Improved environmental quality, optimized resource allocation, and compact industrial distribution should be realized so as to drive the regional green and sustainable development. Finally, this paper analyzes location selection, industrial distribution, spatial organization and environment construction based on the exploration of the dream town of Zhejiang province, the first batch of provincial-level characteristic towns to demonstrate how to apply the ecological concept to the design of characteristic town.Keywords: characteristic town, ecological concept, Hangzhou dream town, planning strategy
Procedia PDF Downloads 31220147 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 15720146 Family Income and Parental Behavior: Maternal Personality as a Moderator
Authors: Robert H. Bradley, Robert F. Corwyn
Abstract:
There is abundant research showing that socio-economic status is implicated in parenting. However, additional factors such as family context, parent personality, parenting history and child behavior also help determine how parents enact the role of caregiver. Each of these factors not only helps determine how a parent will act in a given situation, but each can serve to moderate the influence of the other factors. Personality has long been studied as a factor that influences parental behavior, but it has almost never been considered as a moderator of family contextual factors. For this study, relations between three maternal personality characteristics (agreeableness, extraversion, neuroticism) and four aspects of parenting (harshness, sensitivity, stimulation, learning materials) were examined when children were 6 months, 36 months, and 54 months old and again at 5th grade. Relations between these three aspects of personality and the overall home environment were also examined. A key concern was whether maternal personality characteristics moderated relations between household income and the four aspects of parenting and between household income and the overall home environment. The data for this study were taken from the NICHD Study of Early Child Care and Youth Development (NICHD SECCYD). The total sample consisted of 1364 families living in ten different sites in the United States. However, the samples analyzed included only those with complete data on all four parenting outcomes (i.e., sensitivity, harshness, stimulation, and provision of learning materials), income, maternal education and all three measures of personality (i.e., agreeableness, neuroticism, extraversion) at each age examined. Results from hierarchical regression analysis showed that mothers high in agreeableness were more likely to demonstrate sensitivity and stimulation as well as provide more learning materials to their children but were less likely to manifest harshness. Maternal agreeableness also consistently moderated the effects of low income on parental behavior. Mothers high in extraversion were more likely to provide stimulation and learning materials, with extraversion serving as a moderator of low income on both. By contrast, mothers high in neuroticism were less likely to demonstrate positive aspects of parenting and more likely to manifest negative aspects (e.g., harshness). Neuroticism also served to moderate the influence of low income on parenting, especially for stimulation and learning materials. The most consistent effects of parent personality were on the overall home environment, with significant main and interaction effects observed in 11 of the 12 models tested. These findings suggest that it may behoove professional who work with parents living in adverse circumstances to consider parental personality in helping to better target prevention or intervention efforts aimed at supporting parental efforts to act in ways that benefit children.Keywords: home environment, household income, learning materials, personality, sensitivity, stimulation
Procedia PDF Downloads 21120145 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences
Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson
Abstract:
This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.Keywords: data-driven, improvement, online courses, faculty development, analytics, course design
Procedia PDF Downloads 6120144 Exploring Disengaging and Engaging Behavior of Doctoral Students
Authors: Salome Schulze
Abstract:
The delay of students in completing their dissertations is a worldwide problem. At the University of South Africa where this research was done, only about a third of the students complete their studies within the required period of time. This study explored the reasons why the students interrupted their studies, and why they resumed their research at a later stage. If this knowledge could be utilised to improve the throughput of doctoral students, it could have significant economic benefits for institutions of higher education while at the same time enhancing their academic prestige. To inform the investigation, attention was given to key theories concerning the learning of doctoral students, namely the situated learning theory, the social capital theory and the self-regulated learning theory, based on the social cognitive theory of learning. Ten students in the faculty of Education were purposefully selected on the grounds of their poor progress, or of having been in the system for too long. The collection of the data was in accordance with a Finnish study, since the two studies had the same aims, namely to investigate student engagement and disengagement. Graphic elicitation interviews, based on visualisations were considered appropriate to collect the data. This method could stimulate the reflection and recall of the participants’ ‘stories’ with very little input from the interviewer. The interviewees were requested to visualise, on paper, their journeys as doctoral students from the time when they first registered. They were to indicate the significant events that occurred and which facilitated their engagement or disengagement. In the interviews that followed, they were requested to elaborate on these motivating or challenging events by explaining when and why they occurred, and what prompted them to resume their studies. The interviews were tape-recorded and transcribed verbatim. Information-rich data were obtained containing visual metaphors. The data indicated that when the students suffered a period of disengagement, it was sometimes related to a lack of self-regulated learning, in particular, a lack of autonomy, and the inability to manage their time effectively. When the students felt isolated from the academic community of practice disengagement also occurred. This included poor guidance by their supervisors, which accordingly deprived them of significant social capital. The study also revealed that situational factors at home or at work were often the main reasons for the students’ procrastinating behaviour. The students, however, remained in the system. They were motivated towards a renewed engagement with their studies if they were self-regulated learners, and if they felt a connectedness with the academic community of practice because of positive relationships with their supervisors and of participation in the activities of the community (e.g., in workshops or conferences). In support of their learning, networking with significant others who were sources of information provided the students with the necessary social capital. Generally, institutions of higher education cannot address the students’ personal issues directly, but they can deal with key institutional factors in order to improve the throughput of doctoral students. It is also suggested that graphic elicitation interviews be used more often in social research that investigates the learning and development of the students.Keywords: doctoral students, engaging and disengaging experiences, graphic elicitation interviews, student procrastination
Procedia PDF Downloads 19320143 Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher
Authors: Sumalee Tientongdee
Abstract:
In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students.Keywords: peer instruction, physics of waves, pre-service science teacher, Suan Sunandha Rajabhat university
Procedia PDF Downloads 34620142 The Influence of Teacher’s Non-Verbal Communication on Ondo State Secondary School Students’ Learning Outcomes in English Language
Authors: Bola M. Tunde-Awe
Abstract:
The study investigated the influence of teacher’s non-verbal communication on secondary school students’ learning outcomes in English language. The study was a survey research. Participants were three hundred Senior Secondary School II students randomly selected from ten schools in Akoko South West Local Government Area of Ondo State, Nigeria. The instrument used for data collection was a questionnaire containing twenty items on a four-point Likert scale which measured teacher’s use of three types of non-verbal communication modes: body movement, eye contact and spatial distance. The data collected was analysed using simple percentage. Findings revealed that teacher’s use of these non-verbal communication modes enhanced learners’ learning outcomes in English language: a total of 271 (90.33%) participants affirmed that teacher’s body language influenced their learning of English; 224 (74.66%) maintained the same stand for eye contact; while 202 (67.33%) affirmed that teacher’s spatial distance had positive influence. Consequent upon these findings, it was recommended that teachers of English language should constantly utilize non-verbal communication in their instructional delivery. Also, non-verbal communication modes should be included in teacher education programme to equip prospective pre-service teachers with the art of non-verbal communication.Keywords: non-verbal communication, body language, eye contact, spatial distance, learning outcomes
Procedia PDF Downloads 42120141 A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique
Authors: Wanlapa Boonsod, Nisachon Yangprasong, Udomsak Kitthawee
Abstract:
Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00).Keywords: convection, heat transfer, physics education, POE
Procedia PDF Downloads 21820140 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 15420139 Improving Teaching in English-Medium Instruction Classes at Japanese Universities through Needs-Based Professional Development Workshops
Authors: Todd Enslen
Abstract:
In order to attract more international students to study for undergraduate degrees in Japan, many universities have been developing English-Medium Instruction degree programs. This means that many faculty members must now teach their courses in English, which raises a number of concerns. A common misconception of English-Medium Instruction (EMI) is that teaching in English is simply a matter of translating materials. Since much of the teaching in Japan still relies on a more traditional, teachercentered, approach, continuing with this style in an EMI environment that targets international students can cause a clash between what is happening and what students expect in the classroom, not to mention what the Scholarship of Teaching and Learning (SoTL) has shown is effective teaching. A variety of considerations need to be taken into account in EMI classrooms such as varying English abilities of the students, modifying input material, and assuring comprehension through interactional checks. This paper analyzes the effectiveness of the English-Medium Instruction (EMI) undergraduate degree programs in engineering, agriculture, and science at a large research university in Japan by presenting the results from student surveys regarding the areas where perceived improvements need to be made. The students were the most dissatisfied with communication with their teachers in English, communication with Japanese students in English, adherence to only English being used in the classes, and the quality of the education they received. In addition, the results of a needs analysis survey of Japanese teachers having to teach in English showed that they believed they were most in need of English vocabulary and expressions to use in the classroom and teaching methods for teaching in English. The result from the student survey and the faculty survey show similar concerns between the two groups. By helping the teachers to understand student-centered teaching and the benefits for learning that it provides, teachers may begin to incorporate more student-centered approaches that in turn help to alleviate the dissatisfaction students are currently experiencing. Through analyzing the current environment in Japanese higher education against established best practices in teaching and EMI, three areas that need to be addressed in professional development workshops were identified. These were “culture” as it relates to the English language, “classroom management techniques” and ways to incorporate them into classes, and “language” issues. Materials used to help faculty better understand best practices as they relate to these specific areas will be provided to help practitioners begin the process of helping EMI faculty build awareness of better teaching practices. Finally, the results from faculty development workshops participants’ surveys will show the impact that these workshops can have. Almost all of the participants indicated that they learned something new and would like to incorporate the ideas from the workshop into their teaching. In addition, the vast majority of the participants felt the workshop provided them with new information, and they would like more workshops like these.Keywords: English-medium instruction, materials development, professional development, teaching effectiveness
Procedia PDF Downloads 8920138 The Role of Flowering Pesticidal Plants for Sustainable Pest Management
Authors: Baltazar Ndakidemi
Abstract:
The resource-constrained farmers, especially those in sub-Saharan Africa, encounter significant challenges related to agriculture, notably diseases and pests. The sustainable means of pest management are not well known to farmers. As a result, some farmers use synthetic pesticides whose environmental impacts, ill health, and other negative impacts of synthetic pesticides on natural enemies have posed a great need for more sustainable means of pest management. Pesticidal plant resources can replace synthetic pesticides because their secondary metabolites can exhibit insecticidal activities such as deterrence, repellence, and pests' mortality. Additionally, the volatiles from these plants can have positive effects of attracting populations of natural enemies. Pesticidal plants can be grown as field margin plants or in strips for supporting natural enemies' populations. However, this is practically undetermined. Hence, there is a need to investigate the roles played by pesticidal plants in supporting natural enemies of pests and their applications in different cropping systems such as legumes. This study investigates different pesticidal plants with a high potential for pest control in agricultural fields. The information sheds light on potential plants that can be used for different crop pests.Keywords: natural enemies, biological control, synthetic pesticides, pesticidal plants, predators, parasitoids
Procedia PDF Downloads 6820137 Undergraduate Students’ Learning Experience and Practices in Multilingual Higher Education Institutions: The Case of the University of Luxembourg
Authors: Argyro Maria Skourmalla
Abstract:
The present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, has adopted a new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. With around 7.000 students, more than half of which are international students, the University is a meeting point for languages and cultures. This paper includes data from an online survey that with undergraduate students from different disciplines at the University of Luxembourg. Students shared their personal experience and opinions regarding language use in this higher education context, as well as practices they use in learning in this multilingual context. Findings show the role of technology in assisting students in different aspects of learning this multilingual context. At the same time, more needs to be done to avoid an exclusively monolingual paradigm in higher education. Findings also show that some languages remain ‘unseen’ in this context. Overall, even though linguistic diversity in this University is seen as an asset, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.Keywords: higher education, learning, linguistic diversity, multilingual practices
Procedia PDF Downloads 6520136 Flipped Learning in the Delivery of Structural Analysis
Authors: Ali Amin
Abstract:
This paper describes a flipped learning initiative which was trialed in the delivery of the course: structural analysis and modelling. A short series of interactive videos were developed, which introduced the key concepts of each topic. The purpose of the videos was to introduce concepts and give the students more time to develop their thoughts prior to the lecture. This allowed more time for face to face engagement during the lecture. As part of the initial study, videos were developed for half the topics covered. The videos included a short summary of the key concepts ( < 10 mins each) as well as fully worked-out examples (~30mins each). Qualitative feedback was attained from the students. On a scale from strongly disagree to strongly agree, students were rate statements such as 'The pre-class videos assisted your learning experience', 'I felt I could appreciate the content of the lecture more by watching the videos prior to class'. As a result of the pre-class engagement, the students formed more specific and targeted questions during class, and this generated greater comprehension of the material. The students also scored, on average, higher marks in questions pertaining to topics which had videos assigned to them.Keywords: flipped learning, structural analysis, pre-class videos, engineering education
Procedia PDF Downloads 90