Search results for: water distribution system
24297 A Strategic Performance Control System for Municipal Organization
Authors: Emin Gundogar, Aysegul Yilmaz
Abstract:
Strategic performance control is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.Keywords: management information system, municipal management, performance control
Procedia PDF Downloads 47924296 Biosignal Measurement System Based on Ultra-Wide Band Human Body Communication
Authors: Jonghoon Kim, Gilwon Yoon
Abstract:
A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strong security measures since it does not use wireless network. Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.Keywords: biosignal, human body communication, mobile health, PPG, ultrawide band
Procedia PDF Downloads 48024295 Schematic Study of Groundwater Potential Zones in Granitic Terrain Using Remotesensing and GIS Techniques, in Miyapur and Bollaram Areas of Hyderabad, India
Authors: Ishrath, Tapas Kumar Chatterjee
Abstract:
The present study aims developing interpretation and evaluation to integrate various data types for management of existing water resources for sustainable use. Proper study should be followed based on the geomorphology of the area. Thematic maps such as lithology, base map, land use/land cover, geomorphology, drainage and lineaments maps are prepared to study the area by using area toposheet, IRS P6 and LISIII Satellite imagery. These thematic layers are finally integrated by using Arc GIS, Arc View, and software to prepare a ground water potential zones map of the study area. In this study, an integrated approach involving remote sensing and GIS techniques has successfully been used in identifying groundwater potential zones in the study area to classify them as good, moderate and poor. It has been observed that Pediplain shallow (PPS) has good recharge, Pediplain moderate (PPM) has moderately good recharge, Pediment Inselberg complex (PIC) has poor recharge and Inselberg (I) has no recharge. The study has concluded that remote sensing and GIS techniques are very efficient and useful for identifying ground water potential zones.Keywords: satellite remote sensing, GIS, ground water potential zones, Miyapur
Procedia PDF Downloads 44824294 Addressing Microbial Contamination in East Hararghe, Oromia, Ethiopia: Improving Water Sanitation Infrastructure and Promoting Safe Water Practices for Enhanced Food Safety
Authors: Tuji Jemal Ahmed, Hussen Beker Yusuf
Abstract:
Food safety is a major concern worldwide, with microbial contamination being one of the leading causes of foodborne illnesses. In Ethiopia, drinking water and untreated groundwater are a primary source of microbial contamination, leading to significant health risks. East Hararghe, Oromia, is one of the regions in Ethiopia that has been affected by this problem. This paper provides an overview of the impact of untreated groundwater on human health in Haramaya Rural District, East Hararghe and highlights the urgent need for sustained efforts to address the water sanitation supply problem. The use of untreated groundwater for drinking and household purposes in Haramaya Rural District, East Hararghe is prevalent, leading to high rates of waterborne illnesses such as diarrhea, typhoid fever, and cholera. The impact of these illnesses on human health is significant, resulting in significant morbidity and mortality, especially among vulnerable populations such as children and the elderly. In addition to the direct health impacts, waterborne illnesses also have indirect impacts on human health, such as reduced productivity and increased healthcare costs. Groundwater sources are susceptible to microbial contamination due to the infiltration of surface water, human and animal waste, and agricultural runoff. In Haramaya Rural District, East Hararghe, poor water management practices, inadequate sanitation facilities, and limited access to clean water sources contribute to the prevalence of untreated groundwater as a primary source of drinking water. These underlying causes of microbial contamination highlight the need for improved water sanitation infrastructure, including better access to safe drinking water sources and the implementation of effective treatment methods. The paper emphasizes the need for regular water quality monitoring, especially for untreated groundwater sources, to ensure safe drinking water for the population. The implementation of effective preventive measures, such as the use of effective disinfectants, proper waste disposal methods, and regular water quality monitoring, is crucial to reducing the risk of contamination and improving public health outcomes in the region. Community education and awareness-raising campaigns can also play a critical role in promoting safe water practices and reducing the risk of contamination. These campaigns can include educating the population on the importance of boiling water before drinking, the use of water filters, and proper sanitation practices. In conclusion, the use of untreated groundwater as a primary source of drinking water in East Hararghe, Oromia, Ethiopia, has significant impacts on human health, leading to widespread waterborne illnesses and posing a significant threat to public health. Sustained efforts are urgently needed to address the root causes of contamination, such as poor sanitation and hygiene practices, improper waste management, and the water sanitation supply problem, including the implementation of effective preventive measures and community-based education programs, ultimately improving public health outcomes in the region. A comprehensive approach that involves community-based water management systems, point-of-use water treatment methods, and awareness-raising campaigns can contribute to reducing the incidence of microbial contamination in the region.Keywords: food safety, health risks, microbial contamination, untreated groundwater
Procedia PDF Downloads 11924293 The Distribution and Environmental Behavior of Heavy Metals in Jajarm Bauxite Mine, Northeast Iran
Authors: Hossein Hassani, Ali Rezaei
Abstract:
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Environmental protection against various pollutants, such as heavy metals formed by industries, mines and modern technologies, is a concern for researchers and industry. In order to assess the contamination of soils the distribution and environmental behavior have been investigated. Jajarm bauxite mine, the most important deposits have been discovered in Iran, which is about 22 million tons of reserve, and is the main mineral of the Diaspora. With a view to estimate the heavy metals ratio of the Jajarm bauxite mine area and to evaluate the pollution level, 50 samples have been collected and have been analyzed for the heavy metals of As, Cd, Cu, Hg, Ni and Pb with the help of Inductively Coupled Plasma-Mass Spectrometer (ICP- MS). In this study, we have dealt with determining evaluation criteria including contamination factor (CF), average concentration (AV), enrichment factor (EF) and geoaccumulation index (GI) to assess the risk of pollution from heavy metals(As, Cd, Cu, Hg, Ni and Pb) in Jajarm bauxite mine. In the samples of the studied, the average of recorded concentration of elements for Arsenic, Cadmium, Copper, Mercury, Nickel and Lead are 18, 0.11, 12, 0.07, 58 and 51 (mg/kg) respectively. The comparison of the heavy metals concentration average and the toxic potential in the samples has shown that an average with respect to the world average of the uncontaminated soil amounts. The average of Pb and As elements shows a higher quantity with respect to the world average quantity. The pollution factor for the study elements has been calculated on the basis of the soil background concentration and has been categorized on the basis of the uncontaminated world soil average with respect to the Hakanson classification. The calculation of the corrected pollutant degree shows the degree of the bulk intermediate pollutant (1.55-2.0) for the average soil sampling of the study area which is on the basis of the background quantity and the world average quantity of the uncontaminated soils. The provided conclusion from calculation of the concentrated factor, for some of the samples show that the average of the lead and arsenic elements stations are more than the background values and the unnatural metal concentration are covered under the study area, That's because the process of mining and mineral extraction. Given conclusion from the calculation of Geoaccumulation index of the soil sampling can explain that the copper, nickel, cadmium, arsenic, lead and mercury elements are Uncontamination. In general, the results indicate that the Jajarm bauxite mine of heavy metal pollution is uncontaminated area and extract the mineral from the mine, not create environmental hazards in the region.Keywords: enrichment factor, geoaccumulation index, heavy metals, Jajarm bauxite mine, pollution
Procedia PDF Downloads 29524292 Innovations for Freight Transport Systems
Authors: M. Lu
Abstract:
The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)
Procedia PDF Downloads 32124291 Household Water Practices in a Rapidly Urbanizing City and Its Implications for the Future of Potable Water: A Case Study of Abuja Nigeria
Authors: Emmanuel Maiyanga
Abstract:
Access to sufficiently good quality freshwater has been a global challenge, but more notably in low-income countries, particularly in the Sub-Saharan countries, which Nigeria is one. Urban population is soaring, especially in many low-income countries, the existing centralised water supply infrastructures are ageing and inadequate, moreover in households peoples’ lifestyles have become more water-demanding. So, people mostly device coping strategies where municipal supply is perceived to have failed. This development threatens the futures of groundwater and calls for a review of management strategy and research approach. The various issues associated with water demand management in low-income countries and Nigeria, in particular, are well documented in the literature. However, the way people use water daily in households and the reasons they do so, and how the situation is constructing demand among the middle-class population in Abuja Nigeria is poorly understood. This is what this research aims to unpack. This is achieved by using the social practices research approach (which is based on the Theory of Practices) to understand how this situation impacts on the shared groundwater resource. A qualitative method was used for data gathering. This involved audio-recorded interviews of householders and water professionals in the private and public sectors. It also involved observation, note-taking, and document study. The data were analysed thematically using NVIVO software. The research reveals the major household practices that draw on the water on a domestic scale, and they include water sourcing, body hygiene and sanitation, laundry, kitchen, and outdoor practices (car washing, domestic livestock farming, and gardening). Among all the practices, water sourcing, body hygiene, kitchen, and laundry practices, are identified to impact most on groundwater, with impact scale varying with household peculiarities. Water sourcing practices involve people sourcing mostly from personal boreholes because the municipal water supply is perceived inadequate and unreliable in terms of service delivery and water quality, and people prefer easier and unlimited access and control using boreholes. Body hygiene practices reveal that every respondent prefers bucket bathing at least once daily, and the majority bathe twice or more every day. Frequency is determined by the feeling of hotness and dirt on the skin. Thus, people bathe to cool down, stay clean, and satisfy perceived social, religious, and hygiene demand. Kitchen practice consumes water significantly as people run the tap for vegetable washing in daily food preparation and dishwashing after each meal. Laundry practice reveals that most people wash clothes most frequently (twice in a week) during hot and dusty weather, and washing with hands in basins and buckets is the most prevalent and water wasting due to soap overdose. The research also reveals poor water governance as a major cause of current inadequate municipal water delivery. The implication poor governance and widespread use of boreholes is an uncontrolled abstraction of groundwater to satisfy desired household practices, thereby putting the future of the shared aquifer at great risk of total depletion with attendant multiplying effects on the people and the environment and population continues to soar.Keywords: boreholes, groundwater, household water practices, self-supply
Procedia PDF Downloads 12724290 One-off Separation of Multiple Types of Oil-in-Water Emulsions with Surface-Engineered Graphene-Based Multilevel Structure Materials
Authors: Han Longxiang
Abstract:
In the process of treating industrial oil wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM has a wide range of applications in oil-in-water emulsions separation in industry and environmental science.Keywords: emulsion, filtration, graphene, one-step
Procedia PDF Downloads 8624289 Removal of Heavy Metals from Aqueous Solutions by Low-Cost Materials: A Review
Authors: I. Nazari, B. Shaabani, P. Abaasifar
Abstract:
In small quantities certain heavy metals are nutritionally essential for a healthy life. The heavy metals linked most often to human poisoning are lead, mercury, arsenic, and cadmium. Other heavy metals including copper, zinc and chromium are actually required by the body in small quantity but can also be toxic in large doses. Nowadays, we have contamination to this heavy metals in some untreated industrial waste waters and even in several populated cities drinking waters around the world. The contamination of ground and underground water sources to heavy metals can be concentrated and travel up to food chain by drinking water and agricultural products. In recent years, the need for safe and economical methods for removal of heavy metals from contaminated water has necessitated research interest towards the finding low-cost alternatives. Bio-adsorbents have emerged as low-cost and efficient materials for the removal of heavy metals from waste and ground waters. The bio-adsorbents have an affinity for heavy metals ions to form metal complexes or chelates due to having functional groups including carboxyl, hydroxyl, imidazole, and etc. The objective of this study is to review researches in less expensive adsorbents and their utilization possibilities for various low-cost bio-adsorbents such as coffee beans, rice husk, and saw dust for the removal of heavy metals from contaminated waters.Keywords: heavy metals, water pollution, bio-adsorbents, low cost adsorbents
Procedia PDF Downloads 36524288 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry
Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci
Abstract:
In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.Keywords: enamel coating, membrane, reuse, wastewater reclamation
Procedia PDF Downloads 32924287 Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper
Authors: Sh. Foroughi, V. Karamzadeh, M. Packirisamy
Abstract:
This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.Keywords: electro thermal actuator, MEMS, microgripper, MOEMS
Procedia PDF Downloads 16924286 Effect of Integrity of the Earthing System on the Rise of Earth Potential
Authors: N. Ullah, A. Haddad, F. Van Der Linde
Abstract:
This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.Keywords: bonding, earthing, EPR, integrity, system
Procedia PDF Downloads 33224285 Security Features for Remote Healthcare System: A Feasibility Study
Authors: Tamil Chelvi Vadivelu, Nurazean Maarop, Rasimah Che Yusoff, Farhana Aini Saludin
Abstract:
Implementing a remote healthcare system needs to consider many security features. Therefore, before any deployment of the remote healthcare system, a feasibility study from the security perspective is crucial. Remote healthcare system using WBAN technology has been used in other countries for medical purposes but in Malaysia, such projects are still not yet implemented. This study was conducted qualitatively. The interview results involving five healthcare practitioners are further elaborated. The study has addressed four important security features in order to incorporate remote healthcare system using WBAN in Malaysian government hospitals.Keywords: remote healthcare, IT security, security features, wireless sensor application
Procedia PDF Downloads 31024284 Deriving an Index of Adoption Rate and Assessing Factors Affecting Adoption of an Agroforestry-Based Farming System in Dhanusha District, Nepal
Authors: Arun Dhakal, Geoff Cockfield, Tek Narayan Maraseni
Abstract:
This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75% of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal.Keywords: agroforestry, adoption index, determinants of adoption, step-wise linear regression, Nepal
Procedia PDF Downloads 50824283 The Impact of Oxytetracycline on the Aquaponic System, Biofilter, and Plants
Authors: Hassan Alhoujeiri, Angele Matrat, Sandra Beaufort, Claire joaniss Cassan, Jerome Silvester
Abstract:
Aquaponics is a sustainable food production technology, and its transition to industrial-scale systems has created several challenges that require further investigation in order to make it a robust process. One of the critical concerns is the potential accumulation of compounds from veterinary treatments, phytosanitary agents, fish feed, or simply from contaminated water sources. The accumulation of these substances could negatively impact fish health, microbial biofilters, and plant growth, thereby disrupting the system’s overall balance and functionality. The lack of legislation and knowledge regarding the presence of such compounds in aquaponic systems raises concerns about their potential impact on both system balance and food safety. In this study, we focused on the effects of oxytetracycline (OTC), an antibiotic commonly used in aquaculture, on both the microbial biofilter and plant growth. Although OTC is rarely applied in aquaponics today, the fish compartment may need to be isolated from the system during treatment, as it inhibits specific bacterial populations, which could affect the microbial biofilter's efficiency. However, questions remain about the aquaponic system's tolerance threshold, particularly in cases of treatment or residual OTC traces post-treatment. This study results indicated a decline in microbial biofilter activity to 20% compared to the control, potentially corresponding to treatments of 41 mg/L of OTC. Analysis of microbial populations in the biofilter, using flow cytometry and microscopy (confocal and scanning electron microscopy), revealed an increase in bacterial mortality without disrupting the microbial biofilm. Additionally, OTC exposure led to noticeable changes in plant morphology (e.g., color) and growth, though it did not fully inhibit development. However, no significant effects were observed on seed germination at the tested concentrations despite a measurable impact on subsequent plant growth.Keywords: aquaponic, oxytetracycline, nitrifying biofilter, plant, micropollutants, sustainability
Procedia PDF Downloads 2824282 Secure Image Encryption via Enhanced Fractional Order Chaotic Map
Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi
Abstract:
in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.Keywords: image encryption, logistic map, fibonacci matrix, grayscale images
Procedia PDF Downloads 32024281 Design of Raw Water Reservoir on Sandy Soil
Authors: Venkata Ramana Pamu
Abstract:
This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.Keywords: raw water reservoir, seepage, seismic analysis, slope stability
Procedia PDF Downloads 50124280 Molecular-Dynamics Study of H₂-C₃H₈-Hydrate Dissociation: Non-Equilibrium Analysis
Authors: Mohammad Reza Ghaani, Niall English
Abstract:
Hydrogen is looked upon as the next-generation clean-energy carrier; the search for an efficient material and method for storing hydrogen has been, and is, pursued relentlessly. Clathrate hydrates are inclusion compounds wherein guest gas molecules like hydrogen are trapped in a host water-lattice framework. These types of materials can be categorised as potentially attractive hosting environments for physical hydrogen storage (i.e., no chemical reaction upon storage). Non-equilibrium molecular dynamics (NEMD) simulations have been performed to investigate thermal-driven break-up of propane-hydrate interfaces with liquid water at 270-300 K, with the propane hydrate containing either one or no hydrogen molecule in each of its small cavities. In addition, two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water: a 001-direct surface cleavage and one with completed cages. The geometric hydrate-ice-liquid distinction criteria of Báez and Clancy were employed to distinguish between the hydrate, ice lattices, and liquid-phase. Consequently, the melting temperatures of interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. The different hydrate-edge terminations for the hydrate-water interface led to statistically-significant differences in the observed melting point and dissociation profile: it was found that the clathrate with the planar interface melts at around 280 K, whilst the melting temperature of the cage-completed interface was determined to be circa 270 K.Keywords: hydrogen storage, clathrate hydrate, molecular dynamics, thermal dissociation
Procedia PDF Downloads 28024279 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms
Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli
Abstract:
In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding
Procedia PDF Downloads 29324278 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
Authors: Rade M. Ciric, Nikola L. J. Rajakovic
Abstract:
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.Keywords: distributed generation, renewable energy sources, energy policy, curriculum
Procedia PDF Downloads 36024277 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater
Authors: M. Abouleish, R. Umer, Z. Sara
Abstract:
Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.Keywords: biosorption, nitrates, plant material, water, and wastewater treatment
Procedia PDF Downloads 16024276 Simulation of Surface Runoff in Mahabad Dam Basin, Iran
Authors: Leila Khosravi
Abstract:
A major part of the drinking water in North West of Iran is supplied from Mahabad reservoir 80 km northwest of Mahabad. This reservoir collects water from 750 km-catchment which is undergoing accelerated changes due to deforestation and urbanization. The main objective of this study is to develop a catchment modeling platform which translates ongoing land-use changes, soil data, precipitation and evaporation into surface runoff of the river discharging into the reservoir: Soil and Water Assessment Tool, SWAT, model along with hydro -meteorological records of 1997–2011. A variety of statistical indices were used to evaluate the simulation results for both calibration and validation periods; among them, the robust Nash–Sutcliffe coefficients were found to be 0.52 and 0.62 in the calibration and validation periods, respectively. This project has developed a reliable modeling platform with the benchmark land physical conditions of the Mahabad dam basin.Keywords: simulation, surface runoff, Mahabad dam, SWAT model
Procedia PDF Downloads 20824275 Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast
Authors: Sawsan Eissa, Omnia Kabbany
Abstract:
The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance.Keywords: hydrodynamics, morphology, Togo, Delft3D, SWAN, XBeach, coastal erosion, detached breakwaters
Procedia PDF Downloads 7424274 Reshaping of Indian Education System with the Help of Multi-Media: Promises and Pitfalls
Authors: Geetu Gahlawat
Abstract:
The education system accustomed information on daily basis in term of variety i.e Multimedia channel. This can create a challenge to pedagogue to get hold on learner. Multimedia enhance the education system with its technology. Educators deliver their content effectively and beyond any limit through multimedia elements on another side it gives easy learning to learners and they are able to get their goals fast. This paper gives an overview of how multimedia reshape the Indian education system with its promises and pitfalls.Keywords: multimedia, technology, techniques, development, pedagogy
Procedia PDF Downloads 28624273 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid
Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong
Abstract:
Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function
Procedia PDF Downloads 10624272 Income Analysis of Beef Cattle Breeders for Traditional Profit-Sharing System, Tesang, in South Sulawesi Province
Authors: Sitti Nurani Sirajuddin, Muh. Aminawar, Siti Nurlaelah, Amidah Amrawaty
Abstract:
This study aimed to determine the income of beef cattle breeders from the traditional profit-sharing system named Tesang. This study was conducted in the province of South Sulawesi start from April to July 2014, used quantitative methods and data analysis is of income. The population is all beef cattle breeders who perform for the traditional profit-sharing system (Tesang) in Barru Regency and Bone Regency, province of South Sulawesi. Samples are beef cattle breeders who breeding the cattle with the traditional profit-sharing system (Tesang) in Barru Regency and Bone Regency using breeding system and cattle enlargement system (expense) by fifty breeders. The results showed beef cattle breeder’s income from the profit-sharing system (Tesang) where enlargement system (expense) at6th month maintenance periods higher than the profit-sharing system (Tesang) with using breeding the cattle.Keywords: income, beef cattle, profit-sharing system, Teseng
Procedia PDF Downloads 28924271 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks
Authors: Ali Etemadi, Claudia Fernanda Yasar
Abstract:
Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform
Procedia PDF Downloads 15424270 Intelligent Adaptive Learning in a Changing Environment
Authors: G. Valentis, Q. Berthelot
Abstract:
Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment
Procedia PDF Downloads 42624269 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities
Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu
Abstract:
This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.Keywords: fragility, friction pendulum bearing, nonstructural component, seismic
Procedia PDF Downloads 15424268 Effect on Yield and Yield Components of Different Irrigation Levels in Edible Seed Pumpkin Growing
Authors: Musa Seymen, Duran Yavuz, Nurcan Yavuz, Önder Türkmen
Abstract:
Edible seed pumpkin (Cucurbita pepo L.) is one of the important edibles preferred by consumer in Turkey due to its higher nutrient contents. However, there is almost very few study on water consumption and irrigation water requirement of confectionary edible seed pumpkin in Turkey. Therefore, a 2-year study (2013-2014) was conducted to determine the effects of irrigation levels on the seed yield and yield components of drip-irrigated confectionary edible seed pumpkin under Turkey conditions. In the study, the experimental design was made in randomized blocks with three replications. Treatments consisted of five irrigation water levels that compensated for the 100% (I100, full irrigation), 75% (I75), 50% (I50), 25% (I25) and 0% (I0, no irrigation) of crop water requirements at 14-day irrigation intervals. Seasonal evapotranspiration of treatments varied from 194.2 to 625.2 mm in 2013 and from 208.6 to 556.6 mm in 2014. In both years, the highest seasonal evapotranspiration was obtained in I100 treatment. Average across years, the seed yields ranged between 1090 (I100) and 422 (I0) kg ha-1. The irrigation treatments were found to significantly affect the yield parameters such as the seed yield, oil seed yield number of seeds per fruit, seed size, seed width, fruit size, fruit width and fruit index.Keywords: irrigation level, edible seed pumpkin, seed quality, seed yield
Procedia PDF Downloads 303