Search results for: UAV-based hyperspectral data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25349

Search results for: UAV-based hyperspectral data

21869 Nurse-Identified Barriers and Facilitators to Delivering End-of-Life Care in a Cardiac Intensive Care Unit: A Qualitative Study

Authors: Elena Ivany, Leanne Aitken

Abstract:

Little is known about the delivery of end-of-life care in cardiac intensive care unit (CICU) settings. The aims of this study were to highlight the nurse-identified barriers and facilitators to delivering end-of-life care in the CICU, and to identify whether any of the barriers and/or facilitators are specific to the CICU setting. This was an exploratory qualitative study utilizing semi-structured individual interviews as the data collection method and inductive thematic analysis to structure the data. Six CICU nurses took part in the study. Five key themes were identified, each theme including both barriers and facilitators. The five key themes are as follows: patient-centered care, emotional challenges, reaching concordance, nursing contribution and the surgical intensive care unit.

Keywords: end-of-life, cardiovascular disease, cardiac surgery, critical care

Procedia PDF Downloads 271
21868 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity

Procedia PDF Downloads 145
21867 Impact of Capital Structure, Dividend Policy and Sustainability on Value of Firm: A Case Study of Spinning Textile Sector of Pakistan

Authors: Zahid Ahmad, Samia Yousaf

Abstract:

The main purpose of this study is to evaluate and assess the financial position, operating performance, and recent outlook of the companies. This study investigates the impact of capital structure, dividend policy and sustainability on the value of firms of textile spinning sector of Pakistan which is listed on Pakistan stock exchange. The panel data technique has been applied to this group of textile sector which is textile spinning. This study covers the last ten years of time period. All the data related to the variables have been collected from the annual reports and financial statements of the textile sector firms. There are differently related determinants to measure the capital structure which are fixed assets turnover ratio, debt ratio, equity ratio, debt to equity ratio, assets tangibility, and shareholder’s equity. Dividend policy is being measured by two determinants which are earning per share (EPS) and dividend payout ratio. Sustainability is being measured by three suitable factors which are sales growth, gross profit margin ratio and firm size. These are three independent variables and their determinants of this study. Value of firm is measured through the return on asset (ROA). Capital structure is at the top of the list among all the three variables. According to the results of this research work, somewhere all the three variables generates positive and significant effect on the firm’s performance and its growth.

Keywords: capital structure, dividend policy, panel data, sustainability

Procedia PDF Downloads 235
21866 Incorporating Moving Authority Limits Into Driving Advice

Authors: Peng Zhou, Peter Pudney

Abstract:

Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways.

Keywords: railway transportation, energy efficient train operation, optimal train control, safe separation

Procedia PDF Downloads 16
21865 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 151
21864 Youth and Employment: An Outlook on Challenges of Demographic Dividend

Authors: Vidya Yadav

Abstract:

India’s youth bulge is now sharpest at the critical 15-24 age group, even as its youngest, and oldest age groups begin to narrow. As the ‘single year, age data’ for the 2011 Census releases the data on the number of people at each year of age in the population. The data shows that India’s working age population (15-64 years) is now 63.4 percent of the total, as against just short of 60 percent in 2001. The numbers also show that the ‘dependency ratio’ the ratio of children (0-14) and the elderly (65 above) to those in the working age has shrunk further to 0.55. “Even as the western world is in ageing situation, these new numbers show that India’s population is still very young”. As the fertility falls faster in urban areas, rural India is younger than urban India; while 51.73 percent of rural Indians are under the age of 24 and 45.9 percent of urban Indians are under 24. The percentage of the population under the age of 24 has dropped, but many demographers say that it should not be interpreted as a sign of the youth bulge is shrinking. Rather it is because of “declining fertility, the number of infants and children reduces first, and this is what we see with the number of under age 24. Indeed the figure shows that the proportion of children in the 0-4 and 5-9 age groups has fallen in 2011 compared to 2001. For the first time, the percentage of children in the 10-14 age group has also fallen, as the effect of families reducing the number of children they have begins to be felt. The present paper key issue is to examine that “whether this growing youth bulge has the right skills for the workforce or not”. The study seeks to examine the youth population structure and employment distribution among them in India during 2001-2011 in different industrial category. It also tries to analyze the workforce participation rate as main and marginal workers both for male and female workers in rural and urban India by utilizing an abundant source of census data from 2001-2011. Result shows that an unconscionable number of adolescents are working when they should study. In rural areas, large numbers of youths are working as an agricultural labourer. Study shows that most of the youths working are in the 15-19 age groups. In fact, this is the age of entry into higher education, but due to economic compulsion forces them to take up jobs, killing their dreams of higher skills or education. Youths are primarily engaged in low paying irregular jobs which are clearly revealed by census data on marginal workers. That is those who get work for less than six months in a year. Large proportions of youths are involved in the cultivation and household industries works.

Keywords: main, marginal, youth, work

Procedia PDF Downloads 294
21863 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 68
21862 Quantification of the Non-Registered Electrical and Electronic Equipment for Domestic Consumption and Enhancing E-Waste Estimation: A Case Study on TVs in Vietnam

Authors: Ha Phuong Tran, Feng Wang, Jo Dewulf, Hai Trung Huynh, Thomas Schaubroeck

Abstract:

The fast increase and complex components have made waste of electrical and electronic equipment (or e-waste) one of the most problematic waste streams worldwide. Precise information on its size on national, regional and global level has therefore been highlighted as prerequisite to obtain a proper management system. However, this is a very challenging task, especially in developing countries where both formal e-waste management system and necessary statistical data for e-waste estimation, i.e. data on the production, sale and trade of electrical and electronic equipment (EEE), are often lacking. Moreover, there is an inflow of non-registered electronic and electric equipment, which ‘invisibly’ enters the EEE domestic market and then is used for domestic consumption. The non-registration/invisibility and (in most of the case) illicit nature of this flow make it difficult or even impossible to be captured in any statistical system. The e-waste generated from it is thus often uncounted in current e-waste estimation based on statistical market data. Therefore, this study focuses on enhancing e-waste estimation in developing countries and proposing a calculation pathway to quantify the magnitude of the non-registered EEE inflow. An advanced Input-Out Analysis model (i.e. the Sale–Stock–Lifespan model) has been integrated in the calculation procedure. In general, Sale-Stock-Lifespan model assists to improve the quality of input data for modeling (i.e. perform data consolidation to create more accurate lifespan profile, model dynamic lifespan to take into account its changes over time), via which the quality of e-waste estimation can be improved. To demonstrate the above objectives, a case study on televisions (TVs) in Vietnam has been employed. The results show that the amount of waste TVs in Vietnam has increased four times since 2000 till now. This upward trend is expected to continue in the future. In 2035, a total of 9.51 million TVs are predicted to be discarded. Moreover, estimation of non-registered TV inflow shows that it might on average contribute about 15% to the total TVs sold on the Vietnamese market during the whole period of 2002 to 2013. To tackle potential uncertainties associated with estimation models and input data, sensitivity analysis has been applied. The results show that both estimations of waste and non-registered inflow depend on two parameters i.e. number of TVs used in household and the lifespan. Particularly, with a 1% increase in the TV in-use rate, the average market share of non-register inflow in the period 2002-2013 increases 0.95%. However, it decreases from 27% to 15% when the constant unadjusted lifespan is replaced by the dynamic adjusted lifespan. The effect of these two parameters on the amount of waste TV generation for each year is more complex and non-linear over time. To conclude, despite of remaining uncertainty, this study is the first attempt to apply the Sale-Stock-Lifespan model to improve the e-waste estimation in developing countries and to quantify the non-registered EEE inflow to domestic consumption. It therefore can be further improved in future with more knowledge and data.

Keywords: e-waste, non-registered electrical and electronic equipment, TVs, Vietnam

Procedia PDF Downloads 249
21861 The Visualization of Hydrological and Hydraulic Models Based on the Platform of Autodesk Civil 3D

Authors: Xiyue Wang, Shaoning Yan

Abstract:

Cities in China today is faced with an increasingly serious river ecological crisis accompanying with the development of urbanization: waterlogging on account of the fragmented urban natural hydrological system; the limited ecological function of the hydrological system caused by a destruction of water system and waterfront ecological environment. Additionally, the eco-hydrological processes of rivers are affected by various environmental factors, which are more complex in the context of urban environment. Therefore, efficient hydrological monitoring and analysis tools, accurate and visual hydrological and hydraulic models are becoming more important basis for decision-makers and an important way for landscape architects to solve urban hydrological problems, formulating sustainable and forward-looking schemes. The study mainly introduces the river and flood analysis model based on the platform of Autodesk Civil 3D. Taking the Luanhe River in Qian'an City of Hebei Province as an example, the 3D models of the landform, river, embankment, shoal, pond, underground stream and other land features were initially built, with which the water transfer simulation analysis, river floodplain analysis, and river ecology analysis were carried out, ultimately the real-time visualized simulation and analysis of rivers in various hypothetical scenarios were realized. Through the establishment of digital hydrological and hydraulic model, the hydraulic data can be accurately and intuitively simulated, which provides basis for rational water system and benign urban ecological system design. Though, the hydrological and hydraulic model based on Autodesk Civil3D own its boundedness: the interaction between the model and other data and software is unfavorable; the huge amount of 3D data and the lack of basic data restrict the accuracy and application range. The hydrological and hydraulic model based on Autodesk Civil3D platform provides more possibility to access convenient and intelligent tool for urban planning and monitoring, a solid basis for further urban research and design.

Keywords: visualization, hydrological and hydraulic model, Autodesk Civil 3D, urban river

Procedia PDF Downloads 299
21860 Dietary Diversity Practice and Associated Facrors Among Hypertension Patients at Tirunesh Beijing Hospital

Authors: Wudneh Asegedech Ayele

Abstract:

Background: Dietary diversity is strongly related with non-communicable disease (NCDs). Diet plays a key role as a risk factor for hypertension. Diets rich in fruits, vegetables, and low-fat dairy products that include whole grains, poultry, fish, and nuts, that contain only small amounts of red meat, sweets, and sugar-containing beverages, and that contain decreased amounts of total and saturated fat and cholesterol have been found to have a protective effect against hypertension. Methods: hospital based Cross-sectional study design was employed from June 1-June 25, 2021. Sampling technique was Systematic random sampling and data were collected using an interview method. Data were entered into Epi Data version 3.1 and exported to SPSS version 25 for processed and analysis respectively. Descriptive statistics were used to summarize data. Bivariate and multivariate logistic regression will employed to determine dietary diversity among hypertension patients. Results: Adequate dietary diversity score were 96 (24.68%). Most of them cereal, white roots and tubers, dark green leafy vegetables, Vitamin A rich fruits ,meat, egg and coffee or tea more intakes. Hypertensive patients who didn’t consume cereals four times less likely adequate dietary diversity than who consumed cereals [AOR= 4.083, 95%: CI (2.096 -7.352)]. Hypertensive patients who didn’t consume white roots and tubers 14 times less likely adequate dietary diversity than who consumed white roots and tubers [AOR= 13.733, 95% CI: (5.388-34.946)]. Conclusion and recommendation the study showed one of fourth part reported adequate dietary diversity score. Cereals, fruits, vegetables and milk and milk products were statistically associated with dietary diversity practice. Health education about dietary modifications and behavioral change to dietary diversity

Keywords: dietary diversity practice and associated facrors among hypertension patients at tirunesh beijing hospital, hypertension, dietary, diversity and tirunesh beijing hospital, associated facrors among hypertension patient, at tirunesh beijing hospita

Procedia PDF Downloads 46
21859 Role of Social Media for Institutional Branding: Ethics of Communication Review

Authors: Iva Ariani, Mohammad Alvi Pratama

Abstract:

Currently, the world of communication experiences a rapid development. There are many ways of communication utilized in line with the development of science which creates many technologies that encourage a rapid development of communication system. However, despite giving convenience for the society, the development of communication system is not accompanied by the development of applicable values and regulations. Therefore, it raises many issues regarding false information or hoax which can influence the society’s mindset. This research aims to know the role of social media towards the reputation of an institution using a communication ethics study. It is a qualitative research using interview, observation, and literature study for collecting data. Then, the data will be analyzed using philosophical methods which are hermeneutic and deduction methods. This research is expected to show the role of social media in developing an institutional reputation in ethical review.

Keywords: social media, ethics, communication, reputation

Procedia PDF Downloads 212
21858 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 87
21857 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 158
21856 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model

Procedia PDF Downloads 394
21855 Green Building Practices: Harmonizing Non-Governmental Organizations Roles and Energy Efficiency

Authors: Abimbola A. Adebayo, Kikelomo I. Adebayo

Abstract:

Green buildings provide serious challenges for governments all over the world with regard to achieving energy efficiency in buildings. Energy efficient buildings are needed to keep up with minimal impacts on the environment throughout their cycle and to enhance sustainable development. The lack of awareness and benefits of energy efficient buildings have given rise to NGO’s playing important role in filling data gaps, publicizing information, and undertaking awareness raising and policy engagement activities. However, these roles are countered by concerns about subsidies for evaluations, incentives to facilitate data-sharing, and incentives to finance independent research. On the basis of literature review on experiences with NGO’s involvement in energy efficient buildings, this article identifies governance strategies that stimulate the harmonization of NGO’s roles in green buildings with the objective to increase energy efficiency in buildings.

Keywords: energy efficiency, green buildings, NGOs, sustainable development

Procedia PDF Downloads 243
21854 Enhanced Analysis of Spatial Morphological Cognitive Traits in Lidukou Village through the Application of Space Syntax

Authors: Man Guo

Abstract:

This paper delves into the intricate interplay between spatial morphology and spatial cognition in Lidukou Village, utilizing a combined approach of spatial syntax and field data. Through a comparative analysis of the gathered data, it emerges that the spatial integration level of Lidukou Village exhibits a direct positive correlation with the spatial cognitive preferences of its inhabitants. Specifically, the areas within the village that exhibit a higher degree of spatial cognition are predominantly distributed along the axis primarily defined by Shuxiang Road. However, the accessibility to historical relics remains limited, lacking a coherent systemic relationship. To address the morphological challenges faced by Lidukou Village, this study proposes optimization strategies that encompass diverse perspectives, including the refinement of spatial mechanisms and the shaping of strategic spatial nodes.

Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem

Procedia PDF Downloads 48
21853 Impact of Crises on Official Statistics: Environmental Statistics at Statistical Centre for the Cooperation Council for the Arab Countries of the Gulf during the COVID-19 Pandemic: A Case Study

Authors: Ibtihaj Al-Siyabi

Abstract:

The crisis of COVID-19 posed enormous challenges to the statistical providers. While official statistics were disrupted by the pandemic and related containment measures, there was a growing and pressing need for real-time data and statistics to inform decisions. This paper gives an account of the way the pandemic impacted the operations of the National Statistical Offices (NSOs) in general in terms of data collection and methods used and the main challenges encountered by them based on international surveys. It highlights the performance of the Statistical Centre for the Cooperation Council for the Arab Countries of the Gulf, GCC-STAT, and its responsiveness to the pandemic placing special emphasis on environmental statistics. The paper concludes by confirming the GCC-STAT’s resilience and success in facing the challenges.

Keywords: NSO, COVID-19, statistics, crisis, pandemic

Procedia PDF Downloads 144
21852 Awareness and Utilization of E-Learning Technologies in Teaching and Learning of Human Kinetics and Health Education Courses in Nigeria Universities

Authors: Ibrahim Laro ABUBAKAR

Abstract:

The study examined the Availability and Utilization of E-Learning Technologies in Teaching of Human Kinetics and Health Education courses in Nigerian Universities, specifically, Universities in Kwara State. Two purposes were formulated to guide the study from which two research questions and two hypotheses were raised. The descriptive research design was used in the research. Three Hundred respondents (100 Lecturers and 200 Students) made up the population for the study. There was no sampling, as the population of the study was not much. A structured questionnaire tagged ‘Availability and Utilization of E-Learning Technologies in Teaching and Learning Questionnaire’ (AUETTLQ) was used for data collection. The questionnaire was subjected to face and content validation, and it was equally pilot tested. The validation yielded a reliability coefficient of 0.78. The data collected from the study were statistically analyzed using frequencies and percentage count for personal data of the respondents, mean and standard deviation to answer the research questions. The null hypotheses were tested at 0.05 level of significance using the independent t-test. One among other findings of this study showed that lecturers and Student are aware of synchronous e-learning technologies in teaching and learning of Human Kinetics and Health Education but often utilize the synchronous e-learning technologies. It was recommended among others that lecturers and Students should be sensitized through seminars and workshops on the need to maximally utilize available e-learning technologies in teaching and learning of Human Kinetics and Health Education courses in Universities.

Keywords: awareness, utilization, E-Learning, technologies, human kinetics synchronous

Procedia PDF Downloads 125
21851 Epidemiological Profile of Acute Respiratory Infections Hospitalized in Infants and Children Under 15 Years of Age, Hospital Immaculée, Cayes, Haiti, 2019-2021

Authors: Edna Ariste, Richard Standy Coqmar

Abstract:

Background: Acute respiratory infections are a major public health problem in the world, mainly in vulnerable populations such as newborns, children under five years of age, and the elderly. The objective of this study was to Characterize the cases of acute respiratory infections in infants and under 15 years old hospitalized at the Immaculée Conception Hospital in Cayes from January 1, 2019, to December 31, 2021. Methods: A retrospective descriptive study was conducted on the epidemiology profile of acute respiratory infections hospitalized in the pediatric ward at Immaculée Conception Hospital in Les Cayes from January 2019 to December 2021. The study population consisted of all newborns, infants, and children under 15 years of age diagnosed with respiratory infections at the pediatric service. Data were collected from the hospitalization registers and patient records of this unit. A database was created and used for data collection. Excel and Epi info 7.2 were used for data analysis. Results: A total of 588 cases were identified during the 2019-2021 year. 43.5% (256) were female, and 56.5% (332) were male. The average age was 4, 3. The most affected age group was 1-4 years. The male/female sex ratio was 1.2. The most frequent respiratory infections were respectively pneumonia 44.9%, bronchitis 16.5%, and respiratory distress 10.5%. The mortality rate recorded during this period was 4.4%. Conclusion: Acute respiratory infections are more frequent in young children. It is, therefore, necessary to practice hand hygiene. Reinforce the surveillance of severe acute respiratory infections.

Keywords: acute respiratory infections, pediatrics, cayes, haiti

Procedia PDF Downloads 92
21850 Signaling Using Phase Shifting in Wi-Fi Backscatter System

Authors: Chang-Bin Ha, Young-Min Ko, Seongjoo Lee, Hyoung-Kyu Song

Abstract:

In this paper, the signaling scheme using phase shifting is proposed for the improved performance of the Wi-Fi backscatter system. Because the communication in the Wi-Fi backscatter system is based on on-off modulation and impedance modulation by unit of packet, the data rate is very low compared to the conventional wireless systems. Also, because the Wi-Fi backscatter system is based on the RF-powered device, the achievement of high reliability is difficult. In order to increase the low data rate, the proposed scheme transmits information of multiple bits during one packet period. Also, in order to increase the reliability, the proposed scheme shifts the phase of signal in according to the transmitting information. The simulation result shows that the proposed scheme has the improved throughput performance.

Keywords: phase shifting, RF-powered device, Wi-Fi backscatter system, IoT

Procedia PDF Downloads 445
21849 Environmental Related Mortality Rates through Artificial Intelligence Tools

Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas

Abstract:

The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.

Keywords: air quality, artificial inteligence, climatic conditions, mortality

Procedia PDF Downloads 120
21848 Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis

Authors: Mohamed F. Sadek, Safaa M. Hassan, Safwat S. Gabr

Abstract:

Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas.

Keywords: pan-african, Egypt, landsat-8; ASTER, gold, alteration zones

Procedia PDF Downloads 130
21847 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 79
21846 Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data

Authors: Elzbieta Babula, Juhyun Park

Abstract:

Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory.

Keywords: binary choice experiment, cumulative prospect theory, decision weights, parameter interactions

Procedia PDF Downloads 220
21845 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 135
21844 A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis

Authors: N. Naga Subrahmanyeswara Rao, Parag Arvind Deshpande

Abstract:

Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed.

Keywords: mechanism, nucleotide, organism, tuberculosis

Procedia PDF Downloads 337
21843 Peripheral Nerves Cross-Sectional Area for the Diagnosis of Diabetic Polyneuropathy: A Meta-Analysis of Ultrasonographic Measurements

Authors: Saeed Pourhassan, Nastaran Maghbouli

Abstract:

1) Background It has been hypothesized that, in individuals with diabetes mellitus, the peripheral nerve is swollen due to sorbitol over-accumulation. Additionally growing evidence supported electro diagnostic study of diabetes induced neuropathy as a method having some challenges. 2) Objective To examine the performance of sonographic cross-sectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN). 3) Data Sources Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020. 4) Study Selection Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included. 5) Data Extraction Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement. 6) Data Synthesis Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from five studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and mid-arm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from two studies for Sural nerve were 0.78 (95% CI, 0.68–0.89), and 0.68 (95% CI, 0.53–0.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve. 7) Conclusions The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24 mm2, this value can be considered as a cutoff point for diagnosing DPN.

Keywords: diabetes, diagnosis, polyneuropathy, ultrasound

Procedia PDF Downloads 140
21842 Child Labour: Enforcement of Right to Promote Child Development in Nigeria

Authors: G. Salavwa, P. Erhijakpor Jr., H. Ukwu

Abstract:

This study will explore child labour issues in Nigeria because it is capable of affecting the physical and general well-being of children who perform hazardous work. This feat will be achieved through qualitative research methodology. Data collection shall be elicited by oral interviews and documental content analysis to delve on the application of the Convention on the Rights of the Child (CRC), International Labour Organization ILO and Geneva Convention relating to child labour practices in Nigeria. This will include the relevance of present domestic laws relating to child labour as implemented in Nigeria, together with factors that contribute to the practice of child labour in the country. The oral interview data analysis will be performed by breaking the interview data into significant statements and themes. This shall be done by comparing and determining the commonalities that are prevalent in the participants’ views regarding child labour menace in Nigeria. Presumably, findings from this study shall unveil that a poor educational policy, a widespread poverty level which is mostly prevalent amongst families in the rural areas of the country, a lack of employment for adults, have led to the ineffectiveness of the local child labour laws in Nigeria. These has in turn culminated into a somewhat non-implementation of the international laws of the CRC, ILO and Geneva Declaration on child labour to which the Nigerian government is a signatory. Based on the finding, this study will calls on the government of Nigeria to extend its free educational policy from the elementary, secondary to tertiary educations. The government also has to ensure that offenders of children’s rights should face a severe punishment.

Keywords: commonalities, tertiary, constitution, qualitative

Procedia PDF Downloads 214
21841 The Effect of Fixing Kinesiology Tape onto the Plantar Surface during Loading Phase of Gait

Authors: Albert K. Chong, Jasim Ahmed Ali Al-Baghdadi, Peter B. Milburn

Abstract:

Precise capture of plantar 3D surface of the foot at the loading gait phases on rigid substrate was found to be valuable for the assessment of the physiology, health and problems of the feet. Photogrammetry, a precision 3D spatial data capture technique is suitable for this type of dynamic application. In this research, the technique is utilised to study of the effect on the plantar deformation for having a strip of kinesiology tape on the plantar surface while going through the loading phase of gait. For this pilot study, one healthy adult male subject was recruited under the USQ University human research ethics guidelines for this preliminary study. The 3D plantar deformation data of both with and without applying the tape were analysed. The results and analyses are presented together with the detail of the findings.

Keywords: gait, human plantar, plantar loading, photogrammetry, kinesiology tape

Procedia PDF Downloads 496
21840 Prevalence and Associated Factors of Attention Deficit Hyperactivity Disorder among Children Age 6 to 17 Years Old Living in Girja District, Oromia Regional State, Rural Ethiopia: Community Based Cross-Sectional Study

Authors: Hirbaye Mokona, Abebaw Gebeyehu, Aemro Zerihun

Abstract:

Introduction: Attention deficit hyperactivity disorder is serious public health problem affecting millions of children throughout the world. Method: A cross-sectional study conducted from May to June 2015 among children age 6 to 17 years living in rural area of Girja district. Multi-stage cluster sampling technique was used to select 1302 study participants. Disruptive Behavior Disorder rating scale was used to collect the data. Data were coded, entered and cleaned by Epi-Data version 3.1 and analyzed by SPSS version 20. Logistic regression analysis was used and Variables that have P-values less than 0.05 on multivariable logistic regression was considered as statistically significant. Results: Prevalence of Attention deficit hyperactivity disorder (ADHD) among children age 6 to 17 years was 7.3%. Being male [AOR=1.81, 95%CI: (1.13, 2.91)]; living with single parent [AOR=5.0, 95%CI: (2.35, 10.65)]; child birth order/rank [AOR=2.35, 95%CI: (1.30, 4.25)]; low family socio-economic status [AOR= 2.43, 95%CI: (1.29, 4.59)]; maternal alcohol/khat use during pregnancy [AOR=3.14, 95%CI: (1.37, 7.37)] and complication at delivery [AOR=3.56, 95%CI: (1.19, 10.64)] were more likely to develop Attention deficit hyperactivity disorder. Conclusion: In this study, the prevalence of Attention deficit hyperactivity disorder was similar with worldwide prevalence. Prevention and early management of its modifiable risk factors should be carryout alongside increasing community awareness.

Keywords: attention deficit hyperactivity disorder, ADHD, associated factors, children, prevalence

Procedia PDF Downloads 191