Search results for: inhibition concentration
2275 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 3652274 Chloride Ion Channels Play a Role in Mediating Immune Response during Pseudomonas aeruginosa Infection
Authors: Hani M. Alothaid, Louise Robson, Richmond Muimo
Abstract:
Cystic fibrosis (CF) is a disease that affects respiratory function and in EU it affects about 1 in 2,500 live births with an average 40-year life expectancy. This disease caused by mutations within the gene encoding the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel leading to dysregulation of epithelial fluid transport and chronic lung inflammation, suggesting functional alterations of immune cells. In airways, CFTR been found to form a functional complex with S100A10 and AnxA2 in a cAMP/PKA dependent manner. The multiprotein complex of AnxA2-S100A10 and CFTR is also regulated by calcineurin. The aim of this study was i) to investigate whether chloride ion (Cl−) channels are activated by Pseudomonas aeruginosa lipopolysaccharide (LPS from PA), ii) if this activation is regulated by cAMP/PKA/calcineurin pathway and iii) to investigate the role of LPS-activated Cl− channels in the release of pro-inflammatory cytokines by immune cells. Human peripheral blood monocytes were used in the study. Whole-cell patch records showed that LPS from PA can activate Cl− channels, including CFTR and outwardly-rectifying Cl− channel (ORCC). This activation appears to require an intact PKA/calcineurin signalling pathway. The Gout in the presence of LPS was significantly inhibited by diisothiocyanatostilbene-disulfonic acid (DIDS), an ORCC blocker (p<0.001). The Gout was further suppressed by CFTR(inh)-172, a specific inhibitor for CFTR channels (p<0.001). Monocytes pre-incubated with PKA inhibitor or calcineurin inhibitor before stimulated with LPS from PA that were resulted in DIDS and CFTR(inh)-172 insensitive currents. Activation of both ORCC and CFTR was however, observed in response to monocytes exposure to LPS. Additionally, ELISA showed that the CFTR and ORCC play a role in mediating the release of pro-inflammatory cytokines such as IL-1β upon exposure of monocytes to LPS. However, this secretion was significantly inhibited due to CFTR and ORCC inhibition. However, Cl− may play a role in IL-1β release independent of cAMP/PKA/calcineurin signalling due to the enhancement of IL-1β secretion even when cAMP/PKA/calcineurin pathway was inhibited. In conclusion, our data confirmed that LPS from PA activates Cl− channels in human peripheral blood monocytes. Our data also confirmed that Cl− channels were involved in IL-1β release in monocytes upon exposure to LPS. However, it has been found that PKA and calcineurin does not seem to influence the Cl− dependent cytokine release.Keywords: cystic fibrosis, CFTR, Annexin A2, S100A10, PP2B, PKA, outwardly-rectifying Cl− channel, Pseudomonas aeruginosa
Procedia PDF Downloads 1772273 Calcium Release- Activated Calcium Channels as a Target in Treatment of Allergic Asthma
Authors: Martina Šutovská, Marta Jošková, Ivana Kazimierová, Lenka Pappová, Maroš Adamkov, Soňa Fraňová
Abstract:
Bronchial asthma is characterized by increased bronchoconstrictor responses to provoking agonists, airway inflammation and remodeling. All these processes involve Ca2+ influx through Ca2+-release-activated Ca2+ channels (CRAC) that are widely expressed in immune, respiratory epithelium and airway smooth muscle (ASM) cells. Our previous study pointed on possible therapeutic potency of CRAC blockers using experimental guinea pigs asthma model. Presented work analyzed complex anti-asthmatic effect of long-term administered CRAC blocker, including impact on allergic inflammation, airways hyperreactivity, and remodeling and mucociliary clearance. Ovalbumin-induced allergic inflammation of the airways according to Franova et al. was followed by 14 days lasted administration of CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA) in the dose 1.5 mg/kg bw. For comparative purposes salbutamol, budesonide and saline were applied to control groups. The anti-inflammatory effect of FPCA was estimated by serum and bronchoalveolar lavage fluid (BALF) changes in IL-4, IL-5, IL-13 and TNF-α analyzed by Bio-Plex® assay as well as immunohistochemical staining focused on assessment of tryptase and c-Fos positivity in pulmonary samples. The in vivo airway hyperreactivity was evaluated by Pennock et al. and by organ tissue bath methods in vitro. The immunohistochemical changes in ASM actin and collagen III layer as well as mucin secretion evaluated anti-remodeling effect of FPCA. The measurement of ciliary beat frequency (CBF) in vitro using LabVIEW™ Software determined impact on mucociliary clearance. Long-term administration of FPCA to sensitized animals resulted in: i. Significant decrease in cytokine levels, tryptase and c-Fos positivity similar to budesonide effect; ii.Meaningful decrease in basal and bronchoconstrictors-induced in vivo and in vitro airway hyperreactivity comparable to salbutamol; iii. Significant inhibition of airway remodeling parameters; iv. Insignificant changes in CBF. All these findings confirmed complex anti-asthmatic effect of CRAC channels blocker and evidenced these structures as the rational target in the treatment of allergic bronchial asthma.Keywords: allergic asthma, CRAC channels, cytokines, respiratory epithelium
Procedia PDF Downloads 5212272 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy
Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai
Abstract:
Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy
Procedia PDF Downloads 1412271 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents
Authors: Amesh P, Suneesh A S, Venkatesan K A
Abstract:
The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment
Procedia PDF Downloads 1682270 Effect of Electron Beam Irradiated Cottonseed Meal on Carcass and Blood Parameters of Broiler Chickens
Authors: Somayyeh Salari, Marziyeh Nayefi, Mohsen Sari, Mehdi Behgar
Abstract:
This study was conducted to evaluate the effect of electron beam- irradiated cottonseed meal at a dose of 30 KGy on carcass characteristics and some blood parameters of broiler chicks. Various levels of cottonseed meal (CSM) (0, 12, and 24%, radiation and no radiation) were used with 5 dietary treatments, 4 replicates and 10 birds of each for 42 days in completely randomized design. At 42 d of age, two birds per pen were randomly selected for determination of carcass characteristics and blood parameters. Relative weights of liver, gastrointestinal tract (GI), pancreatic, gizzard and abdominal fat were increased with increasing levels of CSM in the diet (p<0/05). Glucose, cholesterol, HDL, triglyceride, and phosphorous concentrations increased and LDL concentration decreased as the dietary CSM levels increased (p<0/05). But radiation had not significant effect on blood parameters. Electron irradiation seems to be a good procedure to improve the nutritional quality of CSM but it seems higher dose of it was needed to improve blood parameters of chickens.Keywords: blood parameters, carcass characteristics, cottonseed meal, electron beam
Procedia PDF Downloads 4832269 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field
Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso
Abstract:
Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate
Procedia PDF Downloads 2592268 Building Teacher Capacity: Including All Students in Mathematics Experiences
Authors: Jay-R M. Mendoza
Abstract:
In almost all mathematics classrooms, students demonstrated discrepancies in their knowledge, skills, and understanding. OECD reports predicted that this continued to aggravate as not all teachers were sufficiently trained to handle this concentration. In response, the paper explored the potential of reSolve’s professional learning module 3 (PLM3) as an affordable and accessible professional development (PD) resource. Participants’ hands-on experience and exposure to PLM3 were audio recorded. After it was transcribed and examined and their work samples were analysed, there were four issues emerged: (1) criticality of conducting preliminary data collections and increasing the validity of inferences about what students can and cannot do by addressing the probabilistic nature of their performance; (2) criticality of the conclusion: a > b and/or (a-b) ∈ Z⁺ among students’ algebraic reasoning; (3) enabling and extending prompts provided by reSolve were found useful; and (4) dynamic adaptation of reSolve PLM3 through developing transferable skills and collaboration among teachers. PLM3 provided valuable insights on assessment, teaching, and planning to include all students in mathematics experiences.Keywords: algebraic reasoning, building teacher capacity, including all students in mathematics experiences, professional development
Procedia PDF Downloads 1242267 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution
Authors: Ali Aydin
Abstract:
Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli
Procedia PDF Downloads 2942266 Design, Development and Characterization of Pioglitazone Transdermal Drug Delivery System
Authors: Dwarakanadha Reddy Peram, D. Swarnalatha, C. Gopinath
Abstract:
The main aim of this research work was to design and development characterization of Pioglitazone transdermal drug delivery system by using various polymers such as Olibanum with different concentration by solvent evaporation technique. The prepared formulations were evaluated for different physicochemical characteristics like thickness, folding endurance, drug content, percentage moisture absorption, percentage moisture loss, percentage elongation break test and weight uniformity. The diffusion studies were performed by using modified Franz diffusion cells. The result of dissolution studies shows that formulation, F3 (Olibanum with 50 mg) showed maximum release of 99.95 % in 12hrs, whereas F1 (Olibanum and EC backing membrane) showed minimum release of 93.65% in 12 hr. Based on the drug release and physicochemical values obtained the formulation F3 is considered as an optimized formulation which shows higher percentage of drug release of 99.95 % in 12 hr. The developed transdermal patches increase the therapeutic efficacy and reduced toxic effect of pioglitazone.Keywords: pioglitazone, olibanum, transdermal drug delivery system, drug release percantage
Procedia PDF Downloads 2092265 Environmental, Climate Change, and Health Outcomes in the World
Authors: Felix Aberu
Abstract:
The high rate of greenhouse gas (CO₂) emission and increased concentration of Carbon Dioxide in the atmosphere are not unconnected to both human and natural activities. This has caused climate change and global warming in the world. The adverse effect of these climatic changes has no doubt threatened human existence. Hence, this study examined the effects of environmental and climate influence on mortality and morbidity rates, with particular reference to the world’s leading CO₂ emission countries, using both the pre-estimation, estimation, and post-estimation techniques for more dependable outcomes. Hence, the System Generalized Method of Moments (SGMM) was adopted as the main estimation technique for the data analysis from 1996 to 2023. The coefficient of carbon emissions confirmed a positive and significant relationship among CO₂ emission, mortality, and morbidity rates in the world’s leading CO₂ emissions countries, which implies that carbon emission has contributed to mortality and morbidity rates in the world. Therefore, significant action should be taken to facilitate the expansion of environmental protection and sustainability initiatives in any CO₂ emissions nations of the world.Keywords: environmental, mortality, morbidity, health outcomes, carbon emissions
Procedia PDF Downloads 542264 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels
Authors: Özge Yılmaz Gel, Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın
Abstract:
In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels.Keywords: absorbance, heavy metal, removal of heavy metals, fruit peels
Procedia PDF Downloads 752263 Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process
Authors: Moaz H. Ali, Ahmed H. Al-Saadi
Abstract:
Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, lightweight, and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provide a serious challenge for cutting tool material during the machining process. The reduction in cutting temperature distributions leads to an increase in tool life and a decrease in wear rate. Hence, the chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The result of low thermal conductivity and diffusivity of this alloy in the concentration of high temperatures at the tool-work-piece and tool-chip interface. Consequently, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. Otherwise, the result will be accelerating tool wear, increasing manufacturing cost and time consuming.Keywords: machinability, titanium alloy (ti-6al-4v), chip formation, milling process
Procedia PDF Downloads 4512262 Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study
Authors: Mohd Adil, Rosina Khan, Asad U. Khan, Vasantha Rupasinghe HP
Abstract:
The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases.Keywords: biofilm, quorum sensing, Streptococcus mutans, Syzygium aromaticum extract
Procedia PDF Downloads 3072261 Internal Family Systems Parts-Work: A Revolutionary Approach to Reducing Suicide Lethality
Authors: Bill D. Geis
Abstract:
Even with significantly increased spending, suicide rates continue to climb—with alarming increases among traditionally low-risk groups. This has caused clinicians and researchers to call for a complete rethinking of all assumptions about suicide prevention, assessment, and intervention. A form of therapy--Internal Family Systems Therapy--affords tremendous promise in sustained diminishment of lethal suicide risk. Though a form of therapy that is most familiar to trauma therapists, Internal Family Systems Therapy, involving direct work with suicidal parts, is a promising therapy for meaningful and sustained reduction in suicide deaths. Developed by Richard Schwartz, Internal Family Systems Therapy proposes that we are all influenced greatly by internal parts, frozen by development adversities, and these often-contradictory parts contribute invisibly to mood, distress, and behavior. In making research videos of patients from our database and discussing their suicide attempts, it is clear that many persons who attempt suicide are in altered states at the time of their attempt and influenced by factors other than conscious intent. Suicide intervention using this therapy involves direct work with suicidal parts and other interacting parts that generate distress and despair. Internal Family Systems theory posits that deep experiences of pain, fear, aloneness, and distress are defended by a range of different parts that attempt to contain these experiences of pain through various internal activities that unwittingly push forward inhibition, fear, self-doubt, hopelessness, desires to cut and engage in destructive behavior, addictive behavior, and even suicidal actions. These suicidal parts are often created (and “frozen”) at young ages, and these very young parts do not understand the consequences of this influence. Experience suggests that suicidal parts can create impulsive risk behind the scenes when pain is high and emotional support reduced—with significant crisis potential. This understanding of latent suicide risk is consistent with many of our video accounts of serious suicidal acts—compiled in a database of 1104 subjects. Since 2016, consent has been obtained and records kept of 23 highly suicidal patients, with initial Intention-to-Die ratings (0= no intent, 10 = conviction to die) between 5 and 10. In 67% of these cases using IFST parts-work intervention, these highly suicidal patients’ risk was reduced to 0-1, and 83% of cases were reduced to 4 or lower. There were no suicide deaths. Case illustrations will be offered.Keywords: suicide, internal family systems therapy, crisis management, suicide prevention
Procedia PDF Downloads 422260 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth
Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie
Abstract:
Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic
Procedia PDF Downloads 1832259 Precious and Rare Metals in Overburden Carbonaceous Rocks: Methods of Extraction
Authors: Tatyana Alexandrova, Alexandr Alexandrov, Nadezhda Nikolaeva
Abstract:
A problem of complex mineral resources development is urgent and priority, it is aimed at realization of the processes of their ecologically safe development, one of its components is revealing the influence of the forms of element compounds in raw materials and in the processing products. In view of depletion of the precious metal reserves at the traditional deposits in the XXI century the large-size open cast deposits, localized in black shale strata begin to play the leading role. Carbonaceous (black) shales carry a heightened metallogenic potential. Black shales with high content of carbon are widely distributed within the scope of Bureinsky massif. According to academician Hanchuk`s data black shales of Sutirskaya series contain generally PGEs native form. The presence of high absorptive towards carbonaceous matter gold and PGEs compounds in crude ore results in decrease of valuable components extraction because of their sorption into dissipated carbonaceous matter.Keywords: сarbonaceous rocks, bitumens, precious metals, concentration, extraction
Procedia PDF Downloads 2462258 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli
Procedia PDF Downloads 3472257 Antimicrobial Properties of SEBS Compounds with Copper Microparticles
Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana
Abstract:
Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.Keywords: air conditioner, antimicrobial, cooper, SEBS
Procedia PDF Downloads 2822256 Buoyancy Effects in Pressure Retarded Osmosis with Extremely High Draw Solution Concentration
Authors: Ivonne Tshuma, Ralf Cord-Ruwisch, Wendell Ela
Abstract:
Water crisis is a world-wide problem because of population growth and climate change. Hence, desalination is a solution to water scarcity, which threatens the world. Reverse osmosis (RO) is the most used technique for desalination; unfortunately, this process, usually requires high-pressure requirement hence requires a lot of energy about 3 – 5.5 KWhr/m³ of electrical energy. The pressure requirements of RO can be alleviated by the use of PRO (pressure retarded osmosis) to drive the RO process. This paper proposes a process of utilizing the energy directly from PRO to drive an RO process. The paper mostly analyses the PRO process parameters such as cross-flow velocity, density, and buoyancy and how these have an effect on PRO hence ultimately the RO process. The experimental study of the PRO with various feed solution concentrations and cross-flow velocities at fixed applied pressure with different orientations of the PRO cell was performed. The study revealed that without cross-flow velocity, buoyancy effects were observed but not with cross-flow velocity.Keywords: cross-flow velocity, pressure retarded osmosis, density, buoyancy
Procedia PDF Downloads 1372255 Corrosion Fatigue of Al-Mg Alloy 5052 in Sodium Chloride Solution Contains Some Inhibitors
Authors: Khalid Ahmed Eldwaib
Abstract:
In this study, Al-Mg alloy 5052 was used as the testing material. Corrosion fatigue life was studied for the alloy in 3.5% NaCl (pH=1, 3, 5, 7, 9, and 11), and 3.5% NaCl (pH=1) with inhibitors. The compound inhibitors were composed mainly of phosphate (PO4³-), adding a certain proportion of other nontoxic inhibitors so as to select alternatives to environmentally hazardous chromate (Cr2O7²-). The inhibitors were sodium dichromate Na2Cr2O7, sodium phosphate Na3PO4, sodium molybdate Na2MoO4, and sodium citrate Na3C6H5O7. The total amount of inhibiting pigments was at different concentrations (250,500,750, and 1000 ppm) in the solutions. Corrosion fatigue behavior was studied by using plane-bending corrosion fatigue machine with stress ratio R=0.5 and under the constant frequency of 13.3 Hz. Results show that in 3.5% NaCl the highest fatigue life (number of cycles to failure Nf) is obtained at pH=5 where the oxide film on aluminum has very low solubility, and the lowest number of cycles is obtained at pH=1, where the media is too aggressive (extremely acidic). When the concentration of inhibitor increases the cycles to failure increase. The surface morphology and fracture section of the specimens had been characterized through scanning electron microscope (SEM).Keywords: Al-Mg alloy 5052, corrosion, fatigue, inhibitors
Procedia PDF Downloads 4602254 Can Urbanisation Be the Cause for Increasing Urban Poverty: An Exploratory Analysis for India
Authors: Sarmistha Singh
Abstract:
An analysis of trend of urbanization and urban poverty in recent decades is showing that a distinctly reducing rural poverty and increasing in urban areas. It can be argued that the higher the urbanization fuelled by the urban migration to city, which is picking up people from less skilled, education so they faced obstacle to enter into the mainstream economy of city. The share of workforce in economy is higher; in contrast it remains as negligence. At the same time, less wages, absence of social security, social dialogue make them insecure. The vulnerability in their livelihood found. So the paper explores the relation of urbanization and urban poverty in the city, in other words how the urbanization process affecting the urban space in creating the number of poor people in the city. The central focus is the mobility of people with less education and skilled with motive of job search and better livelihood. In many studies found the higher the urbanization and higher the urban poverty in city. In other words, poverty is the impact of urbanization. The strategy of urban inequality through ‘dispersal of concentration’ by the World Bank and others, need to be examined.Keywords: urbanization, mobility, urban poverty, informal settlements, informal worker
Procedia PDF Downloads 4142253 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1512252 Heavy Metals in Selected Infant Milk Formula
Authors: Suad M. Abuzariba, M. Gazette
Abstract:
To test for the presence of toxic heavy metals, specifically Arsenic, Lead, and Mercury in formula milk available in Misrata city north of Libya for infants aged 6-12 months through Atomic Absorption Spectrophotometer,30 samples of imported milk formula in Libyan markets subjected to test to accurate their pollution with heavy metals, We get concentration of Hg, Ar, Pb in milk formula samples was between 0.002-1.37, 1.62-0.04–2.16, 0.15–0.65 respectively, when compared the results with Libyan &WHO standards ,they were within standards of toxic heavy metals. The presence or absence of toxic heavy metals (Lead, Arsenic, and Mercury) in selected infant formula milk and their levels within or beyond standards set by the WHO. The three infant formulas tested, all were negative for Arsenic and Lead, while two out of the three infant formulas tested positive for Mercury with levels of 0.6333ppm and 0.8333ppm. The levels of Mercury obtained, expressed in parts per million (ppm), from the two infant formulas tested were above the Provisional Tolerable Weekly Intake of total Mercury, which is 0.005ppm, as set by the FAO, WHO, and JECFA.Keywords: heavy metals, milk formula, Libya, toxic
Procedia PDF Downloads 5102251 Microplastics in Urban Environment – Coimbra City Case Study
Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen
Abstract:
Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.Keywords: microplastics, cities, sources, pathways, vegetation
Procedia PDF Downloads 592250 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer
Authors: K. V. Kalinichenko, G. N. Nikovskaya
Abstract:
The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments.Keywords: fertilizer, heavy metals, leaching, sewage sludge
Procedia PDF Downloads 3892249 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice
Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi
Abstract:
Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.Keywords: Carrot juice, Dead end, Microfiltration, Ultrasound
Procedia PDF Downloads 3192248 The Effect of Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity
Authors: Jessica Maiuolo, Irene Bava, Micaela Gliozzi, Vincenzo Mollace
Abstract:
Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Polyphenols have a wide range of beneficial properties, and particular importance is given to Oleuropein, one of the main polyphenolic compounds of olive oil. The biological mechanisms involved and the role of the endoplasmic reticulum were examined. Olive oil extract and Oleuropein were able to decrease the damage induced by exposure to doxorubicin. In particular, this natural compound was found to reduce cell mortality and oxidative damage, increase lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin. The protection afforded by pre-treatment with the natural compound of interest, following the early damage induced by DOXO, provided valuable information regarding the potential use of these substances along with chemotherapy treatment.Keywords: Olea europea L., oleuropein, doxorubicin, endoplasmic reticulum, nutraceutical support
Procedia PDF Downloads 1102247 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform
Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung
Abstract:
Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing
Procedia PDF Downloads 2262246 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency
Authors: A. G. More
Abstract:
Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate
Procedia PDF Downloads 135