Search results for: statistical features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7668

Search results for: statistical features

4248 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)

Procedia PDF Downloads 214
4247 A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates

Authors: Serge B. Provost

Abstract:

Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples.

Keywords: density estimation, log-density, polynomial adjustments, sample moments

Procedia PDF Downloads 166
4246 Effects of Transcutaneous Electrical Pelvic Floor Muscle Stimulation on Peri-Vulva Area on Stress Urinary Incontinence: A Preliminary Study

Authors: Kim Ji-Hyun, Jeon Hye-Seon, Kwon Oh-Yun, Park Eun-Young, Hwang Ui-Jae, Gwak Gyeong-Tae, Yoon Hyeo-Bin

Abstract:

Stress urinary incontinence (SUI), a common women health problem, is an involuntary leakage of urine while sneezing, coughing, or physical exertion caused by insufficient strength of the pelvic floor and sphincter muscles. SUI also leads to decrease in quality of life and limits sexual activities. SUI is related to the increased bladder neck angle, bladder neck movement, funneling index, urethral width, and decreased urethral length. Various pelvic floor muscle electrical stimulation (ES) interventions have been applied to improve the symptoms of the people with SUI. ES activates afferent fibers of pudendal nerve and smoothly induces contractions of the pelvic floor muscles such as striated periurethral muscles and striated pelvic floor muscles. ES via intravaginal electrodes are the most frequently used types of the pelvic floor muscle ES for the female SUI. However, inserted electrode is uncomfortable and it increases the risks of infection. The purpose of this preliminary study was to determine if the 8-week transcutaneous pelvic floor ES would be effective to improve the symptoms and satisfaction of the females with SUI. Easy-K, specially designed ES equipment for the people with SUI, was used in this study. The oval shape stimulator can be placed on a toilet seat, and the surface has invaded electrode fit to contact with the entire vulva area while users are sitting on the stimulator. Five women with SUI were included in this experiment. Prior to the participation, subjects were instructed about procedures and precautions in using the ES. They have used the stimulator once a day for 20 minutes for each session at home. Outcome data was collected 3 times at the baseline, 4 weeks and 8 weeks after the intervention. Intravaginal sonography was used to measure the bladder neck angle, bladder neck movement, funneling index, thickness of an anterior rhabdosphincter and a posterior rhabdosphincter, urethral length, and urethral width. Leavator ani muscle (LAM) contraction strength was assessed by manual palpation according to the oxford scoring system. In addition, incontinence quality of life (IQOL) and female sexual function index (FSFI) questionnaires were used to obtain addition subjective information. Friedman test, a nonparametric statistical test, was used to determine the effectiveness of the ES. The Wilcoxon test was used for the post-hoc analysis and the significance level was set at .05. The bladder neck angle, funneling index and urethral width were significantly decreased after 8-weeks of intervention (p<.05). LAM contraction score, urethral length and anterior and posterior rhabdosphicter thickness were statistically increased by the intervention (p<.05). However, no significant change was found in the bladder neck movement. Although total score of the IQOL did not improve, the score of the ‘avoidance’ subscale of IQOL had significant improved (p<.05). FSFI had statistical difference in FSFI total score and ‘desire’ subscale (p<.05). In conclusion, 8-week use of a transcutaneous ES on peri-vulva area improved dynamic mechanical structures of the pelvic floor musculature as well as IQOL and conjugal relationship.

Keywords: electrical stimulation, Pelvic floor muscle, sonography, stress urinary incontinence, women health

Procedia PDF Downloads 153
4245 Study of Radioactivity of Oil and Gas

Authors: Harish Aryal, Thalia Balderas, Alondra Rodriguez

Abstract:

Radioactivity present in nature possess a major challenge to public health and occupational concerns. Even at low doses, NORM can cause radiation-induced cancers, heritable diseases, genetic defects, etc. There have not been enough radiological studies and consequently, there is a lack of supportive data. In addition, there is no universal medical surveillance program for low-level doses and there is a need for NORM management guidelines for appropriate control. Naturally Occurring Radioactive Material (NORM) is present everywhere during oil/gas exploration. Currently, there is limited data available to quantify radioactivity. This research presents the study of radioactivity in different areas in the United States to be encouraged to be used for further study in Texas or similar areas within the oil and gas industry. Many materials that are found in the oil and gas industry are NORM (Naturally Occurring Radioactive Materials). The NORM is made of various types of materials, including Radium 226, Radium 228, and Radon 222. Efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation in this area of study. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessments have been conducted. To further comprehend how to measure radioactivity in oil and gas, it will be essential to understand the amount and type of radioactivity that is wasted on the water and soil of the industry.

Keywords: NORM, radium 226, radon 222, radionuclides, geological formations

Procedia PDF Downloads 97
4244 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases

Authors: Mahdi Rahaie

Abstract:

MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.

Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases

Procedia PDF Downloads 155
4243 The Effect Study of Meditation Music in the Elderly

Authors: Metee Pigultong

Abstract:

The research aims at 1) composition of meditation music, 2) study of the meditation time reliability. The population is the older adults who meditated practitioners in the Thepnimitra Temple, Don Mueang District, Bangkok. The sample group was the older persons who meditated practitioners from the age of 60 with five volunteers. The research methodology was time-series to conduct the research progression. The research instruments included: 1) meditation music, 2) brain wave recording form. The research results found that 1) the music combines the binaural beats suitable for the meditation of the older persons, consisting of the following features: a) The tempo rate of the meditation music is no more than 60 beats per minute. b) The musical instruments for the meditation music arrangement include only 4-5 pieces. c) The meditation music arrangement needs to consider the nature of the right instrument. d) Digital music instruments are suitable for composition. e) The pure-tone sound combined in music must generate a brain frequency at the level of 10 Hz. 2) After the researcher conducted a 3-weeks brain training procedure, the researcher performed three tests for the reliability level using Cronbach's Alpha method. The result showed that the meditation reliability had the level = .475 as a moderate concentration.

Keywords: binaural beats, music therapy, meditation, older person, the Buddhist meditated practitioners

Procedia PDF Downloads 192
4242 Determinants of Income Diversification among Support Zone Communities of National Parks in Nigeria

Authors: Daniel Etim Jacob, Samuel Onadeko, Edem A. Eniang, Imaobong Ufot Nelson

Abstract:

This paper examined determinants of income diversification among households in support zones communities of national parks in Nigeria. This involved the use household data collected through questionnaires administered randomly among 1009 household heads in the study area. The data obtained were analyzed using probability and non-probability statistical analysis such as regression and analysis of variance to test for mean difference between parks. The result obtained indicates that majority of the household heads were male (92.57%0, between the age class of 21 – 40 years (44.90%), had non-formal education (38.16%), were farmers (65.21%), owned land (95.44%), with a household size of 1 – 5 (36.67%) and an annual income range of ₦401,000 - ₦600,000 (24.58%). Mean Simpson index of diversity showed a general low (0.375) level of income diversification among the households. Income, age, off-farm dependence, education, household size and occupation where significant (p<0.01) factors that affected households’ income diversification. The study recommends improvement in the existing infrastructures and social capital in the communities as avenues to improve the livelihood and ensure positive conservation behaviors in the study area.

Keywords: income diversification, protected area, livelihood, poverty, Nigeria

Procedia PDF Downloads 145
4241 Effect of a Chatbot-Assisted Adoption of Self-Regulated Spaced Practice on Students' Vocabulary Acquisition and Cognitive Load

Authors: Ngoc-Nguyen Nguyen, Hsiu-Ling Chen, Thanh-Truc Lai Huynh

Abstract:

In foreign language learning, vocabulary acquisition has consistently posed challenges to learners, especially for those at lower levels. Conventional approaches often fail to promote vocabulary learning and ensure engaging experiences alike. The emergence of mobile learning, particularly the integration of chatbot systems, has offered alternative ways to facilitate this practice. Chatbots have proven effective in educational contexts by offering interactive learning experiences in a constructivist manner. These tools have caught attention in the field of mobile-assisted language learning (MALL) in recent years. This research is conducted in an English for Specific Purposes (ESP) course at the A2 level of the CEFR, designed for non-English majors. Participants are first-year Vietnamese students aged 18 to 20 at a university. This quasi-experimental study follows a pretest-posttest control group design over five weeks, with two classes randomly assigned as the experimental and control groups. The experimental group engages in chatbot-assisted spaced practice with SRL components, while the control group uses the same spaced practice without SRL. The two classes are taught by the same lecturer. Data are collected through pre- and post-tests, cognitive load surveys, and semi-structured interviews. The combination of self-regulated learning (SRL) and distributed practice, grounded in the spacing effect, forms the basis of the present study. SRL elements, which concern goal setting and strategy planning, are integrated into the system. The spaced practice method, similar to those used in widely recognized learning platforms like Duolingo and Anki flashcards, spreads out learning over multiple sessions. This study’s design features quizzes progressively increasing in difficulty. These quizzes are aimed at targeting both the Recognition-Recall and Comprehension-Use dimensions for a comprehensive acquisition of vocabulary. The mobile-based chatbot system is built using Golang, an open-source programming language developed by Google. It follows a structured flow that guides learners through a series of 4 quizzes in each week of teacher-led learning. The quizzes start with less cognitively demanding tasks, such as multiple-choice questions, before moving on to more complex exercises. The integration of SRL elements allows students to self-evaluate the difficulty level of vocabulary items, predict scores achieved, and choose appropriate strategy. This research is part one of a two-part project. The initial findings will determine the development of an upgraded chatbot system in part two, where adaptive features in response to the integration of SRL components will be introduced. The research objectives are to assess the effectiveness of the chatbot-assisted approach, based on the combination of spaced practice and SRL, in improving vocabulary acquisition and managing cognitive load, as well as to understand students' perceptions of this learning tool. The insights from this study will contribute to the growing body of research on mobile-assisted language learning and offer practical implications for integrating chatbot systems with spaced practice into educational settings to enhance vocabulary learning.

Keywords: mobile learning, mobile-assisted language learning, MALL, chatbots, vocabulary learning, spaced practice, spacing effect, self-regulated learning, SRL, self-regulation, EFL, cognitive load

Procedia PDF Downloads 23
4240 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal

Authors: Belayneh Matebie, Michael Melese

Abstract:

The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.

Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF

Procedia PDF Downloads 58
4239 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 215
4238 Formulation and Evaluation of Silver Nanoparticles as Drug Carrier for Cancer Therapy

Authors: Abdelhadi Adam Salih Denei

Abstract:

Silver nanoparticles (AgNPs) have been used in cancer therapy, and the area of nanomedicine has made unheard-of strides in recent years. A thorough summary of the development and assessment of AgNPs for their possible use in the fight against cancer is the goal of this review. Targeted delivery methods have been designed to optimise therapeutic efficacy by using AgNPs' distinct physicochemical features, such as their size, shape, and surface chemistry. Firstly, the study provides an overview of the several synthesis routes—both chemical and green—that are used to create AgNPs. Natural extracts and biomolecules are used in green synthesis techniques, which are becoming more and more popular since they are biocompatible and environmentally benign. It is next described how synthesis factors affect the physicochemical properties of AgNPs, emphasising how crucial it is to modify these parameters for particular therapeutic uses. An extensive analysis is conducted on the anticancer potential of AgNPs, emphasising their capacity to trigger apoptosis, impede angiogenesis, and alter cellular signalling pathways. The analysis also investigates the potential benefits of combining AgNPs with currently used cancer treatment techniques, including radiation and chemotherapy. AgNPs' safety profile for use in clinical settings is clarified by a comprehensive evaluation of their cytotoxicity and biocompatibility.

Keywords: silver nanoparticles, cancer, nanocarrier system, targeted delivery

Procedia PDF Downloads 69
4237 The Effect of Al Andalus Improvement Model on the Teachers Performance and Their High School Students' Skills Acquiring

Authors: Sobhy Fathy A. Hashesh

Abstract:

The study was carried out in the High School Classes of Andalus Private Schools, boys section, using control and experimental groups that were randomly assigned. The study investigated the effect of Al-Andalus Improvement Model (AIM) on the development of students’ skills acquiring. The society of the study composed of Al-Andalus Private Schools, high school students, boys Section (N=700), while the sample of the study composed of four randomly assigned groups two groups of teachers (N=16) and two groups of students (N=42) with one experimental group and one control group for teachers and their students respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences in teachers’ performances and students' skills acquiring for the favor of the experimental groups and there was a strong correlation between the teachers performances and the students skills acquiring. The study recommended the implementation of the AIM model for the sake of teachers performances and students’ learning outcomes.

Keywords: AIM, improvement model, Classera, Al-Andalus Improvement Model.

Procedia PDF Downloads 168
4236 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia PDF Downloads 181
4235 The Mediation Role of Loneliness in the Relationship between Interpersonal Trust and Empathy

Authors: Ghazal Doostmohammadi, Susan Rahimzadeh

Abstract:

Aim: This research aimed to investigate the relationship between empathy and interpersonal trust and recognize the mediating role of loneliness between them in both genders. Methods: With a correlational descriptive design, 192 university students (130 female and 62 male) responded to the questionnaires on “empathy quotient,” “loneliness,” and “interpersonal trust” tests. These tests were designed and validated by experts in the field. Data were analysed using Pearson correlation and path analysis, which is a statistical technique that uses standard linear regression equations to determine the degree of conformity of a theoretical causal model with reality. Results: The data analysis showed that there was no significant correlation between interpersonal trust, both with loneliness (t=0.169) and empathy (t=0.186), while there was a significant negative correlation (t=0.359) between empathy and loneliness. This means that there is an inverse correlation between empathy and loneliness. The path analysis confirmed the hypothesis of the research about the mediating role of loneliness between empathy and interpersonal trust. But gender did not play a role in this relationship. Conclusion: As an outcome, clinical professionals and education trainers should pay more attention to interpersonal trust as a basic need and try to recreate and shape it to prevent people's social breakdown, and on the other hand, self-disclosure training (especially in Men), expression of feelings and courage should be given double importance to prevent the consequences of loneliness.

Keywords: empathy, loneliness, interpersonal trust, gender

Procedia PDF Downloads 87
4234 Data Integrity: Challenges in Health Information Systems in South Africa

Authors: T. Thulare, M. Herselman, A. Botha

Abstract:

Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.

Keywords: data integrity, data integrity challenges, hospital information systems, South Africa

Procedia PDF Downloads 182
4233 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 233
4232 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 97
4231 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 568
4230 Visitors’ Attitude towards the Service Marketing Mix and Frequency of Visits to Bangpu Recreation Centre, Thailand

Authors: Siri-Orn Champatong

Abstract:

This research paper was aimed to examine the relationship between visitors’ attitude towards the service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre. Based on a large and uncalculated population, the number of samples was calculated according to the formula to obtain a total of 385 samples. In collecting the samples, systematic random sampling was applied and by using of a Likert five-scale questionnaire for, a total of 21 days to collect the needed information. Mean, Standard Deviation, and Pearson’s basic statistical correlations were utilized in analyzing the data. This study discovered a high level of visitors’ attitude product and service of Bangpu Recreation Centre, price, place, promotional activities, people who provided service and physical evidence of the centre. The attitude towards process of service was discovered to be at a medium level. Additionally, the finding of an examination of a relationship between visitors’ attitude towards service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre presented that product and service, people, physical evidence and process of service provision showed a relationship with the visitors’ frequency of visit to the centre per year.

Keywords: frequency of visit, visitor, service marketing mix, Bangpu Recreation Centre

Procedia PDF Downloads 373
4229 Anatomical Features of Internal Pudendal Artery

Authors: Adel Yasky, Waseem Al-Talalwah, Shorok Al Dorazi, Roger Soames

Abstract:

The internal pudendal artery is a standard branch of the anterior division of the internal iliac artery. The current study includes 41 cadavers to investigate the origin and branches of the internal pudendal artery and its clinical significances. The internal pudendal artery arose directly from the anterior division of the internal iliac artery in 48.3% while it arose indirectly in 48.5%. However, the internal pudendal artery arose from the posterior division of internal iliac artery in 1.6%. Moreover, it arose internal iliac artery bifurcation site in 1.6%. Further, the internal pudendal artery supplied the urinary bladder in 17.1%. Also, the internal pudendal artery supplied the rectum 33.5% respectively. It gave uterine and vaginal arteries in 9.4% and 7.8% respectively. Finally, it supplied the sciatic nerve via giving lateral sacral branch in 1.6%. Internists, surgeons and radiologists have to be aware of the variability to decrease iatrogenic injury. Therefore, unnecessary proximal ligation should be avoided at the site of indirect origin of the internal pudendal artery to prevent sciatic neuropathy. Further, intrapelvic bleeding as result of laceration of internal pudendal branches during hysterectomy, prostatectomy or proctectomy should be expected. Therefore, this study increases the awareness of surgeons leading to minimize iatrogenic faults,

Keywords: internal pudendal artery, inferior gluteal artery, superior gluteal artery, internal iliac artery, impotence, decreased libido

Procedia PDF Downloads 358
4228 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Authors: E. Osorio Schmied

Abstract:

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Keywords: architecture, design statements, nature, perception

Procedia PDF Downloads 344
4227 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid

Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi

Abstract:

Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.

Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer

Procedia PDF Downloads 143
4226 Experience Level and Adoption of Interpretation Strategies by Iranian Interpreters

Authors: Niloofar Fathizaviyehkord

Abstract:

Just as two hands cannot make a good boxer, knowing two or more languages cannot make a skillful interpreter. Interpreting, either consecutive or simultaneous, is a cognitively demanding task requiring not only linguistic and discourse knowledge but also strategic competence. Moreover, experience level can play a very crucial role in the strategies interpreters may employ since translation and interpretation quality is a matter of experience, besides other factors, as well. With regard to the significance of strategic competence, this study investigated what strategies are mainly employed by interpreters, what strategies are employed more frequently, and whether experience level can affect the choice of strategies by interpreters or not. To collect the necessary data, the first retrospective interviews were held with 20 interpreters experienced more or less in simultaneous and consecutive interpretation to see what strategies other than those classified in the literature are employed by interpreters. Then, several classifications of strategies in literature were merged with those emerging from the retrospective interviews to come up with a comprehensive questionnaire on interpreting strategies. After seeking five experts’ opinions regarding the wording/content of the questionnaire, it was given to 60 interpreters. The statistical analysis of the questionnaire data and experience level through ANOVA showed experience level could affect the choice of strategies. This study closes with the theoretical/practical implications of the findings for interpreter training.

Keywords: experience level, consecutive and simultaneous, interpretation strategies, translation

Procedia PDF Downloads 140
4225 Person-Environment Fit (PE Fit): Evidence from Brazil

Authors: Jucelia Appio, Danielle Deimling De Carli, Bruno Henrique Rocha Fernandes, Nelson Natalino Frizon

Abstract:

The purpose of this paper is to investigate if there are positive and significant correlations between the dimensions of Person-Environment Fit (Person-Job, Person-Organization, Person-Group and Person-Supervisor) at the “Best Companies to Work for” in Brazil in 2017. For that, a quantitative approach was used with a descriptive method being defined as a research sample the "150 Best Companies to Work for", according to data base collected in 2017 and provided by Fundação Instituto of Administração (FIA) of the University of São Paulo (USP). About the data analysis procedures, asymmetry and kurtosis, factorial analysis, Kaiser-Meyer-Olkin (KMO) tests, Bartlett sphericity and Cronbach's alpha were used for the 69 research variables, and as a statistical technique for the purpose of analyzing the hypothesis, Pearson's correlation analysis was performed. As a main result, we highlight that there was a positive and significant correlation between the dimensions of Person-Environment Fit, corroborating the H1 hypothesis that there is a positive and significant correlation between Person-Job Fit, Person-Organization Fit, Person-Group Fit and Person-Supervisor Fit.

Keywords: Human Resource Management (HRM), Person-Environment Fit (PE), strategic people management, best companies to work for

Procedia PDF Downloads 145
4224 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks

Authors: Jiajun Wang, Xiaoge Li

Abstract:

The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.

Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree

Procedia PDF Downloads 223
4223 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages

Authors: Adithya Jaikumar, Sudarsan Jayasingh

Abstract:

The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.

Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media

Procedia PDF Downloads 323
4222 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 366
4221 Automatic Assignment of Geminate and Epenthetic Vowel for Amharic Text-to-Speech System

Authors: Tadesse Anberbir, Felix Bankole, Tomio Takara, Girma Mamo

Abstract:

In the development of a text-to-speech synthesizer, automatic derivation of correct pronunciation from the grapheme form of a text is a central problem. Particularly deriving phonological features which are not shown in orthography is challenging. In the Amharic language, geminates and epenthetic vowels are very crucial for proper pronunciation but neither is shown in orthography. In this paper, we proposed and integrated a morphological analyzer into an Amharic Text-to-Speech system, mainly to predict geminates and epenthetic vowel positions, and prepared a duration modeling method. Amharic Text-to-Speech system (AmhTTS) is a parametric and rule-based system that adopts a cepstral method and uses a source filter model for speech production and a Log Magnitude Approximation (LMA) filter as the vocal tract filter. The naturalness of the system after employing the duration modeling was evaluated by sentence listening test and we achieved an average Mean Opinion Score (MOS) 3.4 (68%) which is moderate. By modeling the duration of geminates and controlling the locations of epenthetic vowel, we are able to synthesize good quality speech. Our system is mainly suitable to be customized for other Ethiopian languages with limited resources.

Keywords: Amharic, gemination, speech synthesis, morphology, epenthesis

Procedia PDF Downloads 91
4220 Application of Metakaolin from Northeast of Thailand Used as Binder in Casting Process of Rice Polishing Cylinder

Authors: T. Boonkang, C. Santhaweesuk, N. Pianthong, P. Neeramon, A. Phimhlo, S. Bangphan

Abstract:

The objective of this research was to apply metakaolin from northeast of Thailand as a binder in the casting process of rice polishing cylinder in replacement of the imported calcined magnesite cement and to reduce the production cost of the cylinder. Metakaolin was obtained from three different regions (Udon Thani, Nakhon Phanom, and Ubon Ratchathani). The design of experiment analysis using the MINITAB Release 14 based on the compressive strength and tensile strength testing was conducted. According to the analysis results, it was found that the optimal proportions were calcined magnesite cement: metakaolin from Udon Thani, Nakhon Phanom and Ubon Ratchathani equal to 63:37, 71:29, and 100:0, respectively. When used this formula to cast the cylinder and test the rice milling, it was found that the average broken rice percent was 32.52 and 38.29 for the cylinder contained the metakaolin from Udon Thani and Nakhon Phanom, respectively, which implied that the cylinder which contained the metakaolin from Udon Thani has higher efficiency than the cylinder which contained the metakaolin from Nakhon Phanom at 0.05 level of statistical significance. Whereas, the average wear rate of cylinder from both resources were 7.27 and 6.53 g/h, respectively.

Keywords: binder, casting, metakaolin, rice polishing cylinder

Procedia PDF Downloads 306
4219 The Impact of Information and Communication Technologies on Teaching Performance at an Iranian University

Authors: Yusef Hedjazi, Saeedeh Nazari Nooghabi

Abstract:

New information and communication technologies (ICT) as one of the main needs of Faculty members in the process of teaching and learning has used in Irans higher education system since 2000.The main purpose of this study is to investigate the role of information and communication technologies (ICT) in teaching performance of Agricultural and Natural Resources Faculties at University of Tehran. The statistical population of the study consisted of all 250 faculties in Agriculture and Natural Resources Colleges and a questionnaire was used to collect data. The reliability of the questionnaire was confirmed by computing of Cronbachs Alpha coefficient at greater than .72. The study showed a significant relationship between agricultural Faculty members teaching performance and competency in using ICT. The results of the regression analysis also explained 51.7% of the variance, teaching performance. The six independent variables that accounted for the explained variance were experience in using educational websites or software, use of educational multimedia (e.g. film and CD, etc), making a presentation using PowerPoint, familiarity with online education websites, using News group to discuss on educational subjects with colleagues and students, and using Electronic communication (messengers) to solve studentsproblems.

Keywords: information and communication technologies, agricultural and natural resources, faculties, teaching performance

Procedia PDF Downloads 336