Search results for: flow rate measurement
10565 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic
Procedia PDF Downloads 20710564 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments
Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni
Abstract:
Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil
Procedia PDF Downloads 32310563 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition
Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi
Abstract:
Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.Keywords: porous medium, power law fluids, surface heat flux, vertical wedge
Procedia PDF Downloads 31210562 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal
Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota
Abstract:
This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.Keywords: temperature, precipitation, water discharge, water balance, global warming
Procedia PDF Downloads 34410561 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator
Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra
Abstract:
We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics
Procedia PDF Downloads 14310560 Using Econometric Methods to Explore Obesity Stigma and Avoidance of Breast and Cervical Cancer Screening
Authors: Stephanie A. Schauder, Gosia Sylwestrzak
Abstract:
Overweight and obese women report avoiding preventive care due to fear of weight-related bias from medical professionals. Gynecological exams, due to their sensitive and personally invasive nature, are especially susceptible to avoidance. This research investigates the association between body mass index (BMI) and screening rates for breast and cervical cancer using claims data from 1.3 million members of a large health insurance company. Because obesity is associated with increased cancer risk, screenings for these cancers should increase as BMI increases. However, this paper finds that the distribution of cancer screening rates by BMI take an inverted U-shape with underweight and obese members having the lowest screening rates. For cervical cancer screening, those in the target population with a BMI of 23 have the highest screening rate at 68%, while Obese Class III members have a screening rate of 50%. Those in the underweight category have a screening rate of 58%. This relationship persists even after controlling for health and demographic covariates in regression analysis. Interestingly, there is no association between BMI and BRCA (BReast CAncer gene) genetic testing. This is consistent with the narrative that stigma causes avoidance because genetic testing does not involve any assessment of a person’s body. More work must be done to determine how to increase cancer screening rates in those who may feel stigmatized due to their weight.Keywords: cancer screening, cervical cancer, breast cancer, weight stigma, avoidance of care
Procedia PDF Downloads 20210559 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines
Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin
Abstract:
Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.
Procedia PDF Downloads 9710558 Erosion and Deposition of Terrestrial Soil Supplies Nutrients to Estuaries and Coastal Bays: A Flood Simulation Study of Sediment-Nutrient Flux
Authors: Kaitlyn O'Mara, Michele Burford
Abstract:
Estuaries and coastal bays can receive large quantities of sediment from surrounding catchments during flooding or high flow periods. Large river systems that feed freshwater into estuaries can flow through several catchments of varying geology. Human modification of catchments for agriculture, industry and urban use can contaminate soils with excess nutrients, trace metals and other pollutants. Land clearing, especially clearing of riparian vegetation, can accelerate erosion, mobilising, transporting and depositing soil particles into rivers, estuaries and coastal bays. In this study, a flood simulation experiment was used to study the flux of nutrients between soil particles and water during this erosion, transport and deposition process. Granite, sedimentary and basalt surface soils (as well as sub-soils of granite and sedimentary) were collected from eroding areas surrounding the Brisbane River, Australia. The <63 µm size fraction of each soil type was tumbled in freshwater for 3 days, to simulation flood erosion and transport, followed by stationary exposure to seawater for 4 weeks, to simulate deposition into estuaries. Filtered water samples were taken at multiple time points throughout the experiment and analysed for water nutrient concentrations. The highest rates of nutrient release occurred during the first hour of exposure to freshwater and seawater, indicating a chemical reaction with seawater that may act to release some nutrient particles that remain bound to the soil during turbulent freshwater transport. Although released at a slower rate than the first hour, all of the surface soil types showed continual ammonia, nitrite and nitrate release over the 4-week seawater exposure, suggesting that these soils may provide ongoing supply of these nutrients to estuarine waters after deposition. Basalt surface soil released the highest concentrations of phosphates and dissolved organic phosphorus. Basalt soils are found in much of the agricultural land surrounding the Brisbane River and contributed largely to the 2011 Brisbane River flood plume deposit in Moreton Bay, suggesting these soils may be a source of phosphate enrichment in the bay. The results of this study suggest that erosion of catchment soils during storm and flood events may be a source of nutrient supply in receiving waterways, both freshwater and marine, and that the amount of nutrient release following these events may be affected by the type of soil deposited. For example, flooding in different catchments of a river system over time may result in different algal and food web responses in receiving estuaries.Keywords: flood, nitrogen, nutrient, phosphorus, sediment, soil
Procedia PDF Downloads 18510557 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR
Authors: Md. Nurul Islam Siddique, A. W. Zularisam
Abstract:
The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane
Procedia PDF Downloads 35510556 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach
Authors: Md. Asif Ullah, M. A. R. Sarkar
Abstract:
This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer
Procedia PDF Downloads 36010555 Psychometric Properties of Several New Positive Psychology Measures
Authors: Lauren Benyo Linford, Jared Warren, Jeremy Bekker, Gus Salazar
Abstract:
In order to accurately identify areas needing improvement and track growth, the availability of valid and reliable measures of different facets of well-being is vital. Because no specific measures currently exist for many facets of well-being, the purpose of this study was to construct and validate measures of the following constructs: Purpose, Values, Mindfulness, Savoring, Gratitude, Optimism, Supportive Relationships, Interconnectedness, Compassion, Community, Contribution, Engaged Living, Personal Growth, Flow Experiences, Self-Compassion, Exercise, Meditation, and an overall measure of subjective well-being—the Survey on Flourishing. In order to assess their psychometric properties, each measure was examined for internal consistency estimates, and items with poor item-test correlations were dropped. Additionally, the convergent validity of the Survey on Flourishing (SURF) was assessed. Total score correlations of SURF and other commonly used measures of well-being such as the Positive and Negative Affect Schedule (PANAS), The Satisfaction with Life Scale (SWLS), the PERMA Profiler (measure of Positive Emotion, Engagement, Relationships, Meaning, and Achievement) were examined to establish convergent validity. The Kessler Psychological distress scale (K6) was also included to determine the divergent validity of the SURF measure. Three week test-retest reliability was also assessed for the SURF measure. Additionally, normative data from general population samples was collected for both the Self-Compassion and Survey on Flourishing (SURF) measures. The purpose of this study is to introduce each of these measures, divulge the psychometric findings of this study, as well as explore additional psychometric properties of the SURF measure in particular. This study will highlight how these measures can be used in future research exploring these positive psychology constructs. Additionally, this study will discuss the utility of these measures to guide individuals in their use of the online self-directed, self-administered My Best Self 101 positive psychology resources developed by the researchers. The goal of My Best Self 101 is to disseminate real, research-based measures and tools to individuals who are seeking to increase their well-being.Keywords: measurement, psychometrics, test validation, well-Being
Procedia PDF Downloads 18810554 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics
Authors: A. Abbas, X. Tridon, J. Michelon
Abstract:
In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film
Procedia PDF Downloads 15910553 Numerical Investigations on the Coanda Effect
Authors: Florin Frunzulica, Alexandru Dumitrache, Octavian Preotu
Abstract:
The Coanda effect consists of the tendency of a jet to remain attached to a sufficiently long/large convex surface. Flows deflected by a curved surface have caused great interest during last fifty years a major interest in the study of this phenomenon is caused by the possibility of using this effect to aircraft with short take-off and landing, for thrust vectoring. It is also used in applications involving mixing two of more fluids, noise attenuation, ventilation, etc. The paper proposes the numerical study of an aerodynamic configuration that can passively amplify the Coanda effect. On a wing flaps with predetermined configuration, a channel is applied between two particular zones, a low-pressure one and a high-pressure another one, respectively. The secondary flow through this channel yields a gap between the jet and the convex surface, maintaining the jet attached on a longer distance. The section altering-based active control of the secondary flow through the channel controls the attachment of the jet to the surface and automatically controls the deviation angle of the jet. The numerical simulations have been performed in Ansys Fluent for a series of wing flaps-channel configurations with varying jet velocity. The numerical results are in good agreement with experimental results.Keywords: blowing jet, CFD, Coanda effect, circulation control
Procedia PDF Downloads 34610552 Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis
Authors: Manjunatha Bangeppagari, Lee Sang Joon
Abstract:
Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment.Keywords: apoptosis, cardiovascular toxicity, globin expression, pristine graphene, zebrafish embryos
Procedia PDF Downloads 13110551 Comparison of Mcgrath, Pentax, and Macintosh Laryngoscope in Normal and Cervical Immobilized Manikin by Novices
Authors: Jong Yeop Kim, In Kyong Yi, Hyun Jeong Kwak, Sook Young Lee, Sung Yong Park
Abstract:
Background: Several video laryngoscopes (VLs) were used to facilitate tracheal intubation in the normal and potentially difficult airway, especially by novice personnel. The aim of this study was to compare tracheal intubation performance regarding the time to intubation, glottic view, difficulty, and dental click, by a novice using McGrath VL, Pentax Airway Scope (AWS) and Macintosh laryngoscope in normal and cervical immobilized manikin models. Methods: Thirty-five anesthesia nurses without previous intubation experience were recruited. The participants performed endotracheal intubation in a manikin model at two simulated neck positions (normal and fixed neck via cervical immobilization), using three different devices (McGrath VL, Pentax AWS, and Macintosh direct laryngoscope) at three times each. Performance parameters included intubation time, success rate of intubation, Cormack Lehane laryngoscope grading, dental click, and subjective difficulty score. Results: Intubation time and success rate at the first attempt were not significantly different between the 3 groups in normal airway manikin. In the cervical immobilized manikin, the intubation time was shorter (p = 0.012) and the success rate with the first attempt was significantly higher (p < 0.001) when using McGrath VL and Pentax AWS compared with Macintosh laryngoscope. Both VLs showed less difficulty score (p < 0.001) and more Cormack Lehane grade I (p < 0.001). The incidence of dental clicks was higher with McGrath VL than Macintosh laryngoscope in the normal and cervical immobilized airway (p = 0.005, p < 0.001, respectively). Conclusion: McGrath VL and Pentax AWS resulted in shorter intubation time, higher first attempt success rate, compared with Macintosh laryngoscope by a novice intubator in a cervical immobilized manikin model. McGrath VL could be reduced the risk of dental injury compared with Macintosh laryngoscope in this scenario.Keywords: intubation, manikin, novice, videolaryngoscope
Procedia PDF Downloads 15810550 Exploring the Compatibility of The Rhizome and Complex Adaptive System (CAS) Theory as a Hybrid Urban Strategy Via Aggregation, Nonlinearity, and Flow
Authors: Sudaff Mohammed, Wahda Shuker Al-Hinkawi, Nada Abdulmueen Hasan
Abstract:
The compatibility of the Rhizome and Complex Adaptive system theory as a strategy within the urban context is the essential interest of this paper since there are only a few attempts to establish a hybrid, multi-scalar, and developable strategy based on the concept of the Rhizome and the CAS theory. This paper aims to establish a Rhizomic CAS strategy for different urban contexts by investigating the principles, characteristics, properties, and mechanisms of Rhizome and Complex Adaptive Systems. The research focused mainly on analyzing three properties: aggregation, non-linearity, and flow through the lens of Rhizome, Rhizomatization of CAS properties. The most intriguing result is that the principal and well-investigated characteristics of Complex Adaptive systems can be ‘Rhizomatized’ in two ways; highlighting commonalities between Rhizome and Complex Adaptive systems in addition to using Rhizome-related concepts. This paper attempts to emphasize the potency of the Rhizome as an apparently stochastic and barely anticipatable structure that can be developed to analyze cities of distinctive contexts for formulating better customized urban strategies.Keywords: rhizome, complex adaptive system (CAS), system Theory, urban system, rhizomatic CAS, assemblage, human occupation impulses (HOI)
Procedia PDF Downloads 4210549 Enhancement of Pool Boiling Regimes by Sand Deposition
Authors: G. Mazor, I. Ladizhensky, A. Shapiro, D. Nemirovsky
Abstract:
A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3.Keywords: heat transfer enhancement, nucleate boiling, film boiling, transfer boiling
Procedia PDF Downloads 12810548 Anti-Cancerous Activity of Sargassum siliquastrum in Cervical Cancer: Choreographing the Fly's Danse Macabre
Authors: Sana Abbasa, Shahzad Bhattiab, Nadir Khan
Abstract:
Sargassum siliquastrum is brown seaweed with traditional claims for some medicinal properties. This research was done to investigate the methanol extract of S. siliquastrum for antiproliferative activity against human cervical cancer cell line, HeLa and its mode of cell death. From methylene blue assay, S. siliquastrum exhibited antiproliferative activity on HeLa cells with IC50 of 3.87 µg/ml without affecting non-malignant cells. Phase contrast microscopy indicated the confluency reduction in HeLa cells and changes on the cell shape. Nuclear staining with Hoechst 33258 displayed the formation of apoptotic bodies and fragmented nuclei. S. siliquastrum also induced early apoptosis event in HeLa cells as confirmed by FITC-Annexin V/propidium iodide staining by flow cytometry analysis. Cell cycle analysis indicated growth arrest of HeLa cells at G1/S phase. Protein study by flow cytometry indicated the increment of p53, slight increase of Bax and unchanged level of Bcl-2. In conclusion, S. siliquastrum demonstrated an antiproliferative activity in HeLa cell by inducing G1/S cell cycle arrest via p53-mediated pathway.Keywords: sargassum siliquastrum, cervical cancer, P53, antiproleferation
Procedia PDF Downloads 63210547 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 11910546 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach
Authors: Ching-Feng Chen
Abstract:
The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio
Procedia PDF Downloads 7510545 Using Crude Actinidin Protease Extract of Kiwifruit to Improve Some Quality Attributes of Awassi Rams Meats
Authors: Hatem H.Saleh
Abstract:
The aim of the study was to examine the effect of different concentrations of crude actinidin enzyme extract from kiwifruit juice and distilled water on some quality attributes of Awassi rams meats. Twelve Awassi rams were divided into four groups, After exsanguinations of rams carcasses they were infused (10% body weight) with crude of actinidin enzyme extract of kiwifruit juice with 10 and 15% of extract, and other group was infused with distilled water and were compared with other groups a non infusion treatment which were acted as a control. Thereafter samples from two main muscles, namely longissimus dorsi (LD) and Semimembranosus (SM) of the carcasses was chilled then stored in freezing, until testing time . The results showed a decrease in the rate pH decline on LD and SM muscle which was measured at time (0, 3, 6, 9, 12, 24 hours) postmortem among different treatments, It also reported lower values of the rate pH on the LD and SM muscle during the first of 12 hrs postmortem. No significant differences of the rate internal meat temperature in LD and SM muscle were observed among treatments postmortem except decreased of internal meat temperature during 3 hours postmortem when treated with enzyme extract. The results recorded higher values of glycolysis rate (R-value) in LD and SM muscle when treated with enzyme extract. Treated LD and LM muscle samples with 10 and 15% of crude actinidin enzyme extract of kiwifruit juice led to improve water holding capacity and higher significant differences in total tyrosine/ tryptophan index (T.T/T) in LD and SM muscles comparison with treatment control. It could be concluded that extract of kiwifruit juice infusion is could be used to improve of meat tenderization.Keywords: extract of kiwifruit, decline of pH and Temperature , R-value, tyrosine / tryptophan index, sheep meat
Procedia PDF Downloads 54310544 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 31610543 Outcome of Anastomosis of Mechanically Prepared vs Mechanically Unprepared Bowel in Laparoscopic Anterior Resection in Surgical Units of Teaching Hospital Karapitiya ,Sri Lanka
Authors: K. P. v. R. de Silva, R. W. Senevirathna, M. M. A. J. Kumara, J. P. M. Kumarasinghe, R. L. Gunawardana, S. M. Uluwitiya, G. C. P. Jayawickrama, W. K. T. I. Madushani
Abstract:
Introduction: The limited literature supporting the utilization of mechanical bowel preparation (MBP) for patients undergoing laparoscopic anterior resection (LAR) remains a notable issue. This study was conducted to examine the clinical consequences of anastomosis in colorectal surgery with MBP compared to cases where MBP was not utilized (no-MBP) in the context of LAR. Methods: This was a retrospective comparative study conducted in the professorial surgical wards of the teaching hospital karapitiya (THK). Colorectal cancer patients(n=306) participated in the study, including 151 MBP patients and 155 no-MBP patients, where the postoperative complications and mortality rates were compared. Results: The anastomotic leakage rate was 2.6%(n=4) in the no-MBP group and 6.0%(n=9) in the MBP group (p=0.143). The postoperative paralytic ileus rate was 18.5%(n=28) and 5.8%(n=9) in the MBP group and no-MBP group, respectively, displaying a statistically significant difference (p=0.001). Wound infection, pneumonia, urinary tract infection, and cardiac complication rates also were higher in the MBP group. The overall mortality rate was 1.3%(n=3) in the no-MBP group and 2.0%(n=2) in the MBP group. Conclusions: The evidence concludes that MBP increases post-operative complications. Therefore, prophylactic MBP in LAR has not been proven to benefit patients. However, further research is necessary to understand the comparative effects of MBP versus no preparation comprehensively.Keywords: MBP, anastomosis, LAR, paralytic ileus
Procedia PDF Downloads 9210542 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles
Authors: Herath M. P. C. Jayaweera, Samer Hanoun
Abstract:
Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.Keywords: drones, force field methods, obstacle avoidance, path planning
Procedia PDF Downloads 9310541 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo
Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis
Abstract:
Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cellsKeywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks
Procedia PDF Downloads 13210540 A Parametric Study on Aerodynamic Performance of Tyre Using CFD
Authors: Sowntharya L.
Abstract:
Aerodynamics is the most important factor when it comes to resistive forces such as lift, drag and side forces acting on the vehicle. In passenger vehicles, reducing the drag will not only unlock the door for higher achievable speed but will also reduce the fuel consumption of the vehicle. Generally, tyre contributes significantly to the overall aerodynamics of the vehicle. Hence, understanding the air-flow behaviour around the tyre is vital to optimize the aerodynamic performance in the early stage of design process. Nowadays, aerodynamic simulation employing Computational Fluid Dynamics (CFD) is gaining more importance as it reduces the number of physical wind-tunnel experiments during vehicle development process. This research develops a methodology to predict aerodynamic drag of a standalone tyre using Numerical CFD Solver and to validate the same using a wind tunnel experiment. A parametric study was carried out on different tread pattern tyres such as slick, circumferential groove & patterned tyre in stationary and rotating boundary conditions. In order to represent wheel rotation contact with the ground, moving reference frame (MRF) approach was used in this study. Aerodynamic parameters such as drag lift & air flow behaviour around the tire were simulated and compared with experimental results.Keywords: aerodynamics, CFD, drag, MRF, wind-tunnel
Procedia PDF Downloads 19410539 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy
Authors: Dhara Adhnandya Kumara, Novrizal Novrizal
Abstract:
Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock
Procedia PDF Downloads 21710538 Myomectomy and Blood Loss: A Quality Improvement Project
Authors: Ena Arora, Rong Fan, Aleksandr Fuks, Kolawole Felix Akinnawonu
Abstract:
Introduction: Leiomyomas are benign tumors that are derived from the overgrowth of uterine smooth muscle cells. Women with symptomatic leiomyomas who desire future fertility, myomectomy should be the standard surgical treatment. Perioperative hemorrhage is a common complication in myomectomy. We performed the study to investigate blood transfusion rate in abdominal myomectomies, risk factors influencing blood loss and modalities to improve perioperative blood loss. Methods: Retrospective chart review was done for patients who underwent myomectomy from 2016 to 2022 at Queens hospital center, New York. We looked at preoperative patient demographics, clinical characteristics, intraoperative variables, and postoperative outcomes. Mann-Whitney U test were used for parametric and non-parametric continuous variable comparisons, respectively. Results: A total of 159 myomectomies were performed between 2016 and 2022, including 1 laparoscopic, 65 vaginal and 93 abdominal. 44 patients received blood transfusion during or within 72 hours of abdominal myomectomy. The blood transfusion rate was 47.3%. Blood transfusion rate was found to be twice higher than the average documented rate in literature which is 20%. Risk factors identified were black race, preoperative hematocrit<30%, preoperative blood transfusion within 72 hours, large fibroid burden, prolonged surgical time, and abdominal approach. Conclusion: Preoperative optimization with iron supplements or GnRH agonists is important for patients undergoing myomectomy. Interventions to decrease intra operative blood loss should include cell saver, tourniquet, vasopressin, misoprostol, tranexamic acid and gelatin-thrombin matrix hemostatic sealant.Keywords: myomectomy, perioperative blood loss, cell saver, tranexamic acid
Procedia PDF Downloads 8510537 Health Promotion Programs for Fifteen Years Decreased Loneliness and Increased Happiness for Elementary School Children in Yuzawa Town, Japan
Authors: Takeo Shibata, Arihito Endo, Chika Hiraga, Akemi Kunimatsu, Yoko Shimizu
Abstract:
Introduction: A health promotion program, Yuzawa family health plan, was initiated in 2002. It has been held for fifteen years. Yuzawa Town is famous with hot springs and ski resorts. We evaluated the changes in mental status in elementary school children. Methods: questionnaires survey had been held every five years. 196 questionnaires were corrected (94 boys and 102 girls). Changes for their anxieties, loneliness, confiding, problem-solving, risk breaching, communications, happiness, and life satisfaction were evaluated by chi-square test. Results: The rate of loneliness and life dissatisfactions decreased. The rates of happiness, confiding in grandparents, and risk breaching, increased. Especially, happiness rates increased for boys, loneliness rate decreased for girls, confiding in grandparents and risk breaching rate increased for girls. Conclusion: Our health promotion programs could increase mental health status in elementary school children.Keywords: health promotion, mental status, elementary school, loneliness, happiness
Procedia PDF Downloads 27610536 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers
Authors: Murat Çeşme
Abstract:
For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition
Procedia PDF Downloads 98