Search results for: learning and teaching environment
12727 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 28112726 Effects of Ergonomics on Labor Productivity in Office Design
Authors: Abdullah Erden, Filiz Erden
Abstract:
In the present information society era, a change is seen in every field together with changing technology. Along with this change, importance given to information and human who is the producer of information increased. Work life and working conditions included in these changes have also been affected. The most important factors that disturb employees in offices are lighting, ventilation, noise and office furniture. Upon arrangement of these according to ergonomic principles, performance and efficiency of employees will increase. Fatigue and stress resulting from office environment are harmful for employees. Attention and efficiency of employee who feels bad will decrease. It should be noted that office employees are human and affected from environment. It should be allowed them to work in comfortable, healthy and peaceful environment. As a result, efficiency will increase and target will be reached. In this study, it has been focused on basic concepts such as office management and efficiency, effects of ergonomics on office efficiency has been examined. Also, a place is given to the factors affecting operational efficiency and effects of physical environment on employees.Keywords: ergonomics, efficiency, office design, office
Procedia PDF Downloads 46712725 Digital Environment as a Factor of the City's Competitiveness in Attracting Tourists: The Case of Yekaterinburg
Authors: Alexander S. Burnasov, Anatoly V. Stepanov, Maria Y. Ilyushkina
Abstract:
In the conditions of transition to the digital economy, the digital environment of the city becomes one of the key factors of its tourism attractiveness. Modern digital environment makes travelling more accessible, improves the quality of travel services and the attractiveness of many tourist destinations. The digitalization of the industry allows to use resources more efficiently, to simplify business processes, to minimize risks, and to improve travel safety. The city promotion as a tourist destination in the foreign market becomes decisive in the digital environment. Information technologies are extremely important for the functioning of not only any tourist enterprise but also the city as a whole. In addition to solving traditional problems, it is also possible to implement some innovations from the tourism industry, such as the availability of city services in international systems of booking tickets and booking rooms in hotels, the possibility of early booking of theater and museum tickets, the possibility of non-cash payment by cards of international payment systems, Internet access in the urban environment for travelers. The availability of the city's digital services makes it possible to reduce ordering costs, contributes to the optimal selection of tourist products that meet the requirements of the tourist, provides increased transparency of transactions. The users can compare prices, features, services, and reviews of the travel service. The ability to share impressions with friends thousands of miles away directly affects the image of the city. It is possible to promote the image of the city in the digital environment not only through world-scale events (such as World Cup 2018, international summits, etc.) but also through the creation and management of services in the digital environment aimed at supporting tourism services, which will help to improve the positioning of the city in the global tourism market.Keywords: competitiveness, digital environment, travelling, Yekaterinburg
Procedia PDF Downloads 13612724 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 13012723 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 30612722 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 6412721 Integration of Technology for Enhanced Learning among Generation Y and Z Nursing Students
Authors: Tarandeep Kaur
Abstract:
Generation Y and Z nursing students have a much higher need for technology-based stimulation than previous generations, as they may find traditional methods of education boring and disinterested. These generations prefer experiential learning and the use of advanced technology for enhanced learning. Therefore, nursing educators must acquire knowledge to make better use of technology and technological tools for instruction. Millennials and generation are digital natives, optimistic, assertive, want engagement, instant feedback, and collaborative approach. The integration of technology and the efficacy of its use can be challenging for nursing educators. The SAMR (substitution, augmentation, modification, and redefinition) model designed and developed by Dr. Ruben Puentedura can help nursing educators to engage their students in different levels of technology integration for effective learning. Nursing educators should understand that technology use in the classroom must be purposeful. The influx of technology in nursing education is ever-changing; therefore, nursing educators have to constantly enhance and develop technical skills to keep up with the emerging technology in the schools as well as hospitals. In the Saskatchewan Collaborative Bachelor of Nursing (SCBSCN) program at Saskatchewan polytechnic, we use technology at various levels using the SAMR model in our program, including low and high-fidelity simulation labs. We are also exploring futuristic options of using virtual reality and gaming in our classrooms as an innovative way to motivate, increase critical thinking, create active learning, provide immediate feedback, improve student retention and create collaboration.Keywords: generations, nursing, SAMR, technology
Procedia PDF Downloads 11012720 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities
Authors: Sayed Hadi Sadeghi
Abstract:
This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.Keywords: support services, e-Network practice, Australian universities, United States universities
Procedia PDF Downloads 16312719 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam A. Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model
Procedia PDF Downloads 41912718 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis
Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali
Abstract:
Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.Keywords: child pedestrian, collisions, primary school, road injuries
Procedia PDF Downloads 16412717 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 18212716 Thinking about Drawing: The Evolution of Architectural Education in China After 1949
Authors: Wang Yanze
Abstract:
Architectural design results from the interaction between space and drawing. Stemming from the Beaux-Arts architectural education, drawing kept its dominant position in teaching and learning process for centuries. However, this education system is being challenged in the present time due to the development of the times. Based on the architectural education of China after 1949, a brief introduction to the history of the evolution of the design concept and drawing is given in this paper. Illustrating with the reference to the students’ works in Nanjing Institute of Technology, the predecessor of Southeast University, in China, the paper analyses the relationship between concept and representation, as well as the participation of Space, the modernism discourse. This process contains the transmission of the character of architects, the renovation of drawing skills and the profound social background. With different purposes, the emphasis on representation tends to be combined with the operation on space, and the role of drawing in architectural design process also changes. Therefore, based on the continuity of the traditional architectural education system, the discussion on the “Drawing of Space” in contemporary education system is proposed.Keywords: architectural education, beaux-arts, drawing, modernism
Procedia PDF Downloads 48612715 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques
Procedia PDF Downloads 7512714 The Impact of Work-Related Crime on the Work Environment
Authors: Monica Kaltenbrunner
Abstract:
Work-related crime has severe consequences for individual employees and society, and the problem has received widespread attention. For those who work where this type of criminality occurs, it can deteriorate the work environment. The purpose of the systematic literature review is to collate and enhance knowledge about work-related crime and its consequences for the work environment, primarily from an employee perspective. A comprehensive literature search was conducted in three databases, with the final search in May 2024. Grey literature was searched for on relevant websites. Only literature conducted in the EU, Norway, and Canada between 2013 and 2024 was included. Industries represented are land-based industry, hotel and restaurant, health and welfare/domestic work, construction, vehicles and transport, and cleaning. The literature review includes 39 publications, of which 33 are scientific studies. The results show that both men and women work in a work-related crime setting, most from Central and Eastern Europe, Asia, Africa, and South America. The results demonstrate that, regardless of workers’ gender or industry, workers are being exploited. Their work environment is characterized by high demand, low influence and low support. It is also common for the work environment to involve different risks, such as safety problems and risks of harassment and discrimination. This systematic literature review is one of few that focuses on the employee perspective on the work environment in workplaces where work-related crime occurs and collates existing research within the field.Keywords: occupational safety and health, undeclared work, migrant, exploitation
Procedia PDF Downloads 612713 Modeling Child Development Factors for the Early Introduction of ICTs in Schools
Authors: K. E. Oyetade, S. D. Eyono Obono
Abstract:
One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.Keywords: child development factors, child development theories, ICTs, theory
Procedia PDF Downloads 41312712 Obstacles and Ways-Forward to Upgrading Nigeria Basic Nursing Schools: A Survey of Perception of Teaching Hospitals’ Nurse Trainers and Stakeholders
Authors: Chijioke Oliver Nwodoh, Jonah Ikechukwu Eze, Loretta Chika Ukwuaba, Ifeoma Ndubuisi, Ada Carol Nwaneri, Ijeoma Lewechi Okoronkwo
Abstract:
Presence of nursing workforce with unequal qualification and status in Nigeria has undermined the growth of nursing profession in the country. Upgrading of the existing basic and post-basic nursing schools to degree-awarding institutions in Nigeria is a way-forward to solving this inequality problem and Nigeria teaching hospitals are in vantage position for this project due to the already existing supportive structure and manpower in those hospitals. What the nurse trainers and the stakeholders of the teaching hospitals may hold for or against the upgrading is a determining factor for the upgrading project, but that is not clear and has not been investigated in Nigeria. The study investigated the perception of nurse trainers and stakeholders of teaching hospitals in Enugu State of Nigeria on the obstacles and ways-forward to upgrading nursing schools to degree-awarding institutions in Nigeria. The study specifically elicited what the subjects may view as obstacles to upgrading basic and post-basic nursing schools to degree-awarding institutions in Nigeria and ascertained their suggestions on the possible ways of overcoming the obstacles. By utilizing cross-sectional descriptive design and a purposive sampling procedure, 78 accessible subjects out of a total population of 87 were used for the study. The generated data from the subjects were analyzed using frequencies, percentages and mean for the research questions and Pearson’s chi-square for the hypotheses, with the aid of Statistical Package for Social Sciences Version 20.0. The result showed that lack of extant policy, fund, and disunity among policy makers and stakeholders of nursing profession are the main obstacles to the upgrading. However, the respondents did not see items like: stakeholders and nurse trainers of basic and post-basic schools of nursing; fear of admitting and producing poor quality nurses; and so forth, as obstacles to the upgrading project. Institution of the upgrading policy by Nursing and Midwifery Council of Nigeria, funding, awareness creation for the upgrading and unison among policy makers and stakeholders of nursing profession are the major possible ways to overcome the obstacles. The difference in the subjects’ perceptions between the two hospitals was found to be statistically insignificant (p > 0.05). It is recommended that the policy makers and stakeholders of nursing in Nigeria should unite and liaise with Federal Ministries of Health and Education for modalities and actualization of upgrading nursing schools to degree-awarding institutions in Nigeria.Keywords: nurse trainers, obstacles, perception, stakeholders, teaching hospital, upgrading basic nursing schools, ways-forward
Procedia PDF Downloads 14412711 The Antecedents That Effect to the Adventure Tourism in Krabi, Thailand
Authors: Autjira Songjan, Vimolsri Sansuk
Abstract:
The research aim to study the possible negative environmental impact by adventure tourism in Krabi, Thailand, which is a popular destination for adventure tourism. The research is carried out through quantitative and qualitative methods. Questionnaires are distributed to 400 adventure tourists: 160 Thai and 240 international tourists. Questions involved experiences and opinions towards the environment and certain practices which influence a protection or degradation of environment from tour guides, tour operators and tourists. Furthermore, in-depth interviews were carried out with 21 adventure tour operators operating 5 main adventure tours. The finding shows the various types of adventure activities in Krabi involve different kinds of nature, therefore the characteristics of the different adventure activities are likely to affect the physical environment in different level. Kayaking tours are managed inside the mangrove forests, and may lead to negative impact on the ecosystem of mangroves, through loud noise, pulling out the mangrove population.Keywords: adventure activities, Krabi province in Thailand, physical environment, adventure tourism
Procedia PDF Downloads 26912710 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities
Authors: Shoba Rathilal
Abstract:
High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development
Procedia PDF Downloads 7712709 Elitism: Navigating Professional Diversity Barriers
Authors: Rachel Nir, Tina Mckee
Abstract:
In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies
Procedia PDF Downloads 23712708 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 17012707 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 7912706 Expectations and Perceptions of Students of English Department at the University of Halabja as Future Teachers regarding Viewing and Practicing Program
Authors: Barzan Hadi Hama Karim
Abstract:
In recent years, an increasing number of faculties and colleges of basic education are established by the universities and ministry of Higher Education and Scientific Research of Iraqi Kurdistan to graduate English teachers to teach in the basic and high schools. One central consideration of this study is to what extent graduate teachers receive adequate preparation from these faculties and college of basic education. An important program which is offered in the department of English language in these colleges and faculties is Viewing and Practicing. The purpose of this research is to explore how students of basic education colleges and faculties are using the program of Viewing and Practicing to support the educational process. This study provides a general framework about educational uses of the program as a pedagogical tool to teach English Language in the basic schools and describes the different perceptions of the students at the final stage of their education. A survey is used to collect responses from a group of students to determine their expectations and perceptions about the program. The results display that the program has several aspects of strengths, such as improving English teaching and speaking proficiency, cultivating subject knowledge related to applied linguistics and promoting research engagement. The findings of the study address the following questions: Is Viewing and Practicing Program beneficial for students to experience English language for future career at schools? To what extent do the students prefer teaching English Language in the schools?Keywords: teaching experience, viewing and practicing, perception, expectation
Procedia PDF Downloads 30312705 Fapitow: An Advanced AI Agent for Travel Agent Competition
Authors: Faiz Ul Haque Zeya
Abstract:
In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented.Keywords: agent, travel agent competition, bidding, TAC
Procedia PDF Downloads 10812704 A Syntactic Errors Analysis in the Malaysian ESL Learners' Written Composition
Authors: Annie Gedion, Johan Severinus Tati, Jacinta Caroline Peter
Abstract:
Syntax error analysis studies have a significant role in English language teaching especially in the second language. This study investigates the syntax errors in written composition by 50 multilingual ESL learners in Politeknik Kota Kinabalu Sabah, Malaysia. The subjects speak their own dialect, Malay as their second language and English as their third or foreign language. Data were collected from the written discourse in the form of descriptive essays. The subjects were asked to write in the classroom within 45 minutes. 15 categories of errors were classified into a set of syntactic categories and were analysed based on the five steps of the syntactic analysis procedure. The findings of the study showed that the mother tongue interference, as well as lack of vocabulary and grammar knowledge, were the major sources of syntax errors in the learners’ written composition. Learners should be exposed to the differentiation of Malay and English grammar to avoid interference and effective learning of second language writing.Keywords: errors analysis, syntactic analysis, English as a second language, ESL writing
Procedia PDF Downloads 28312703 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit
Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari
Abstract:
Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.Keywords: framework, mobile technology, augmented reality, pre-literacy skills
Procedia PDF Downloads 59512702 Women in Teaching Profession: Impacts and Challenges
Authors: A. M. Sultana, Norhirdawati Binti Mhd Zahir, Norzalan Hadi Yaacob
Abstract:
Recently in Malaysia, women's participation in teaching profession has increased. The increasing trend of women’s participation in the teaching profession poses challenges in families, especially in the developing countries like Malaysia. One of these challenges, concerns in balancing their role between family and job responsibility that faced by many women teachers. The purpose of this study is to discover how women teachers' impact on family happiness and the challenges faced by them in balancing their role between family and job responsibility. The findings presented in this study are based on survey research in a secondary school Dato’ Bijaya Setia in the district of Gugusan Manjoi which is located in Kedah, Malaysia. The study found that employment of women in economic activity has several beneficial impacts of improving the economic condition of the family. The results also revealed that in low income earning families, both husbands and wives’ employment contribute to the family income that less likely to experience of family poverty. The study also showed despite women's teachers’ significant role towards the overall development of the family, the majority of women teachers encountered a number of difficulties in balancing their role between family and job responsibility especially when they need to work more than the normal working time. Therefore, it is common for the majority of women suffering from psychological stress when they are unable to complete the task at a fixed time. The present study also suggests implication of family friendly policy and its appropriate practice to support the women teachers who are significantly contributing to family, community and the country.Keywords: emotional exhaustion, family friendly policy, work family conflict, women teacher
Procedia PDF Downloads 43212701 Neuronal Mechanisms of Observational Motor Learning in Mice
Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho
Abstract:
Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive
Procedia PDF Downloads 8812700 Educatronic Prototype for Learning Geometry, Based on a Multitouch Surface
Authors: Vicario Marina, Bustos Freddy, Olivares Jesús, Gómez Pilar
Abstract:
This paper presents a didactic model and a tool as educational resources to support the learning of geometry; they focus on topics difficult to understand. The target population is elementary school students. The tool is based on a collaborative educational approach using multi-touch devices. The proposal is based on the challenges found in the instructional design and prototype implementation. Traditionally, elementary students have had many problems assimilating mathematical topics; this new Educatronic prototype facilitates the learning experience using exercises and they were tested with different children demonstrating the benefits of the prototype by improving their mathematical skills.Keywords: educatronic prototype, geometry, multitouch surface, educational computing, primary school, mathematics, educational informatics
Procedia PDF Downloads 31912699 The Effect of Observational Practice on the Volleyball Service Learning with Emphasis on the Role of Self–Efficacy
Authors: Majed Zobairy, Payam Mohammadpanahi
Abstract:
Introduction: Skill movement education is one of extremely important duty for sport coaches and sport teachers. Researchers have done lots of studies in this filed to gain the best methodology in movement learning. One of the essential aspects in skill movement education is observational learning. Observational learning, or learning by watching demonstrations, has been characterized as one of the most important methods by which people learn variety of skill and behaviours.The purpose of this study was determined the effect of observational practice on the volleyball service learning with emphasis on the Role of Self–Efficacy. Methods: The Sample consisted of100 male students was assigned accessible sampling technique and homogeneous manner with emphasis on the Role of Self–Efficacy level to 4 groups. The first group performed physical training, the second group performed observational practice task, the third practiced physically and observationally and the fourth group served as the control group. The experimental groups practiced in a one day acquisition and performed the retention task, after 72 hours. Kolmogorov-Smirnov test and independent t-test were used for Statistical analyses. Results and Discussion: Results shows that observation practice task group can significantly improve volleyball services skills acquisition (T=7.73). Also mixed group (physically and observationally) is significantly better than control group regarding to volleyball services skills acquisition (T=7.04). Conclusion: Results have shown observation practice task group and mixed group are significantly better than control group in acquisition test. The present results are in line with previous studies, suggesting that observation learning can improve performance. On the other hand, results shows that self-efficacy level significantly effect on acquisition movement skill. In other words, high self-efficacy is important factor in skill learning level in volleyball service.Keywords: observational practice, volleyball service, self–efficacy, sport science
Procedia PDF Downloads 39412698 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 126