Search results for: annual and daily flow duration curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10450

Search results for: annual and daily flow duration curve

7090 Assessment of Zinc Content in Nuts by Atomic Absorption Spectrometry Method

Authors: Katarzyna Socha, Konrad Mielcarek, Grzegorz Kangowski, Renata Markiewicz-Zukowska, Anna Puscion-Jakubik, Jolanta Soroczynska, Maria H. Borawska

Abstract:

Nuts have high nutritional value. They are a good source of polyunsaturated fatty acids, dietary fiber, vitamins (B₁, B₆, E, K) and minerals: magnesium, selenium, zinc (Zn). Zn is an essential element for proper functioning and development of human organism. Due to antioxidant and anti-inflammatory properties, Zn has an influence on immunological and central nervous system. It also affects proper functioning of reproductive organs and has beneficial impact on the condition of skin, hair, and nails. The objective of this study was estimation of Zn content in edible nuts. The research material consisted of 10 types of nuts, 12 samples of each type: almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios, and walnuts. The samples of nuts were digested in concentrated nitric acid using microwave mineralizer (Berghof, Germany). The concentration of Zn was determined by flame atomic absorption spectrometry method with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. For comparison between the groups, t-Student test was used. The highest content of Zn was shown in pine nuts and cashews: 78.57 ± 21.9, 70.02 ± 10,2 mg/kg, respectively, significantly higher than in other types of nuts. The lowest content of Zn was found in macadamia nuts: 16.25 ± 4.1 mg/kg. The consumption of a standard 42-gram portion of almonds, brazil nuts, cashews, peanuts, pecans, and pine nuts covers the daily requirement for Zn above 15% of recommended daily allowances (RDA) for women, while in the case of men consumption all of the above types of nuts, except peanuts. Selected types of nuts can be a good source of Zn in the diet.

Keywords: atomic absorption spectrometry, microelement, nuts, zinc

Procedia PDF Downloads 196
7089 Implementing Total Quality Management in Higher Education

Authors: Abbos Utkirov

Abstract:

Total Quality Management (TQM) in the context of educational institutions requires careful planning and the implementation of an annual quality program to achieve its vision effectively. By applying TQM concepts, the higher education system can experience significant improvements. This study aims to examine TQM in higher education, focusing on Critical Success Factors (CSF) and their implementation across all areas. The study ultimately concludes that CSF and their execution play a crucial role in higher education institutions. Some institutions have already benefited from TQM methods by dedicating themselves to the system and using it to achieve their objectives. Through this review, recent studies shed light on how the TQM system can employ various strategies and hypotheses to empower employees, foster a positive and supportive environment, and emphasize the importance of enabling students to unleash their full potential.

Keywords: total quality management (TQM), critical success factor (CSF), organizational performance, quality management practices

Procedia PDF Downloads 89
7088 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 182
7087 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber

Abstract:

The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 122
7086 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 179
7085 Complete Enumeration Approach for Calculation of Residual Entropy for Diluted Spin Ice

Authors: Yuriy A. Shevchenko, Konstantin V. Nefedev

Abstract:

We consider the antiferromagnetic systems of Ising spins located at the sites of the hexagonal, triangular and pyrochlore lattices. Such systems can be diluted to a certain concentration level by randomly replacing the magnetic spins with nonmagnetic ones. Quite recently we studied density of states (DOS) was calculated by the Wang-Landau method. Based on the obtained data, we calculated the dependence of the residual entropy (entropy at a temperature tending to zero) on the dilution concentration for quite large systems (more than 2000 spins). In the current study, we obtained the same data for small systems (less than 20 spins) by a complete search of all possible magnetic configurations and compared the result with the result for large systems. The shape of the curve remains unchanged in both cases, but the specific values of the residual entropy are different because of the finite size effect.

Keywords: entropy, pyrochlore, spin ice, Wang-Landau algorithm

Procedia PDF Downloads 264
7084 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 218
7083 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 410
7082 Comparison of Performance of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies Prepared from 10 and 15-Micron Proton Exchange Membranes

Authors: Yingjeng James Li, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC) applications were prepared by using 10 and 15 um PEMs. Except for different membrane thicknesses, these MEAs were prepared by the same conditions. They were prepared by using catalyst coated membrane (CCM) process. The catalyst employed is 40% Pt/C, and the Pt loading is 0.5mg/cm² for the sum of anode and cathode. Active area of the MEAs employed in this study is 5cm*5cm=25cm². In polarization measurements, the flow rates were always set at 1.2 stoic for anode and 3.0 stoic for cathode. The outlets were in open-end mode. The flow filed is tri-serpentine design. The cell temperatures and the humidification conditions were varied for the purpose of MEA performance observations. It was found that the performance of these two types of MEAs is about the same at fully or partially humidified operation conditions; however, 10um MEA exhibits higher current density in dry or low humidified conditions. For example, at 70C cell, 100% RH, and 0.6V condition, both MEAs have similar current density which is 1320 and 1342mA/cm² for 15um and 10um product, respectively. However, when in operation without external humidification, 10um MEA can produce 1085mA/cm²; whereas 15um MEA produces only 720mA/cm².

Keywords: fuel cell, membrane electrode assembly, PEFC, PEMFC, proton exchange membrane

Procedia PDF Downloads 241
7081 Alternatives to the Disposal of Sludge from Water and Wastewater Treatment Plants

Authors: Lima Priscila, Gianotto Raiza, Arruda Leonan, Magalhães Filho Fernando

Abstract:

Industrialization and especially the accentuated population growth in developing countries and the lack of drainage, public cleaning, water and sanitation services has caused concern about the need for expansion of water treatment units and sewage. However, these units have been generating by-products, such as the sludge. This paper aims to investigate aspects of operation and maintenance of sludge from a wastewater treatment plant (WWTP - 90 L.s-1) and two water treatment plants (WTPs; 1.4 m3.s-1 and 0.5 m3.s-1) for the purpose of proper disposal and reuse, evaluating their qualitative and quantitative characteristics, the Brazilian legislation and standards. It was concluded that the sludge from the water treatment plants is directly related to the quality of raw water collected, and it becomes feasible for use in construction materials, and to dispose it in the sewage system, improving the efficiency of the WWTP regarding precipitation of phosphorus (35% of removal). The WTP Lageado had 55,726 kg/month of sludge production, more than WTP Guariroba (29,336 kg/month), even though the flow of WTP Guariroba is 1,400 L.s-1 and the WTP Lagedo 500 L.s-1, being explained by the quality that influences more than the flow. The WWTP sludge have higher concentrations of organic materials due to their origin and could be used to improve the fertility of the soil, crop production and recovery of degraded areas. The volume of sludge generated at the WWTP was 1,760 ton/month, with 5.6% of solid content in the raw sludge and in the dewatered sludge it increased its content to 23%.

Keywords: disposal, sludge, water treatment, wastewater treatment

Procedia PDF Downloads 322
7080 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar

Abstract:

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel

Procedia PDF Downloads 135
7079 Formula Student Car: Design, Analysis and Lap Time Simulation

Authors: Rachit Ahuja, Ayush Chugh

Abstract:

Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.

Keywords: aerodynamic performance, front wing, laptime simulation, t-wing

Procedia PDF Downloads 197
7078 Endocardial Ultrasound Segmentation using Level Set method

Authors: Daoudi Abdelaziz, Mahmoudi Saïd, Chikh Mohamed Amine

Abstract:

This paper presents a fully automatic segmentation method of the left ventricle at End Systolic (ES) and End Diastolic (ED) in the ultrasound images by means of an implicit deformable model (level set) based on Geodesic Active Contour model. A pre-processing Gaussian smoothing stage is applied to the image, which is essential for a good segmentation. Before the segmentation phase, we locate automatically the area of the left ventricle by using a detection approach based on the Hough Transform method. Consequently, the result obtained is used to automate the initialization of the level set model. This initial curve (zero level set) deforms to search the Endocardial border in the image. On the other hand, quantitative evaluation was performed on a data set composed of 15 subjects with a comparison to ground truth (manual segmentation).

Keywords: level set method, transform Hough, Gaussian smoothing, left ventricle, ultrasound images.

Procedia PDF Downloads 465
7077 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 154
7076 Sense of Involvement and Support in Persons with Cognitive Decline in Ordinary Dwelling

Authors: Annika Kjallman Alm, Ove Hellzen, Malin Rising-Holmstrom

Abstract:

Worldwide, the number of people who are living with dementia is increasing because of an aging population, which leads to increased financial and social costs, including reduced quality of life for people with dementia and their care partners. Most people who have dementia reside in the community. Aging in place could be described as having the health and social supports and services you need to live safely and independently in your home or your society for as long as you wish and are able. People with dementia are not different than people without dementia where they want to remain at home, if possible, with a sense of familiarity and engagement in typical everyday activities. So how do persons with dementia or cognitive decline see their possibilities to be socially involved and experience support? The aim of this study was to explore persons with cognitive decline's sense of involvement and support living in the ordinary dwelling. The study was approved by the Ethical Review Authority in Sweden prior to the interviews. Interviews were conducted with 20 persons living at home, either alone or in a relationship. The persons had perceived cognitive decline; some were under investigation or already had a diagnose of early dementia. Thematic analysis was used to identify, analyze, and report patterns within the data. Researchers extracted three main themes through participants’ interviews: a) Importance of social involvement with family and friends. b) Hindrances for social involvement. c) Struggling mentally with a new life situation. Results found that going to activity centers, staying involved, and meeting friends and family enhanced the sense of involvement and support. There were also hindrances to a sense of involvement and support as they struggled with the diagnose and the changes in daily life, such as physical problems, mental problems, or economic issues. The mental struggle of accepting the cognitive decline and the changes in daily life it brought was also an issue for some of the participants. A multidimensional support should be provided by the community to enable persons with cognitive decline to stay involved in family and community in the comfort of their own homes.

Keywords: aging in place, cognitive decline, dementia, sense of involvement

Procedia PDF Downloads 139
7075 CO2 Emissions Quantification of the Modular Bridge Superstructure

Authors: Chanhyuck Jeon, Jongho Park, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge.

Keywords: modular bridge, CO2 emission, environmentally friendly, quantification, carbon emission factor, LCA (Life Cycle Assessment)

Procedia PDF Downloads 555
7074 A Holistic Study of the Beta Lyrae Systems V0487 Lac, V0566 Hya and V0666 Lac

Authors: Moqbil S. Alenazi, Magdy. M. Elkhateeb

Abstract:

A comprehensive photometric study and evolutionary state for the newly discovered Beta Lyr systems V0487 Lac, V0566 Hya, and V0666 Lac were carried out by means of their first photometric observations. New times of minima were estimated from the observed light curves, and first (O-C) curves were established for all systems. A windows interface version of the Wilson and Devinney code (W-D) based on model atmospheres and a pass band prescription have been used for the radiative treatment. The accepted models reveal some absolute parameters for the studied systems, which are used in adopting the spectral type of the system's components and their evolutionary status. Distances to each system were calculated, and physical properties were estimated. Locations of the systems on the theoreticalmass–luminosity and mass–radius relations revealed a good fit for all systems components except for the secondary component of the system V0487 Lac.

Keywords: eclipsing binaries, light curve modelling, evolutionary state

Procedia PDF Downloads 78
7073 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand

Authors: Sudip Kumar Kundu, Charu Singh

Abstract:

As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.

Keywords: global warming, rainfall, CMIP5, CORDEX, NWH

Procedia PDF Downloads 169
7072 Definition of Service Angle of Android’S Robot Hand by Method of Small Movements of Gripper’S Axis Synthesis by Speed Vector

Authors: Valeriy Nebritov

Abstract:

The paper presents a generalized method for determining the service solid angle based on the assigned gripper axis orientation with a stationary grip center. Motion synthesis in this work is carried out in the vector of velocities. As an example, a solid angle of the android robot arm is determined, this angle being formed by the longitudinal axis of a gripper. The nature of the method is based on the study of sets of configuration positions, defining the end point positions of the unit radius sphere sweep, which specifies the service solid angle. From this the spherical curve specifying the shape of the desired solid angle was determined. The results of the research can be used in the development of control systems of autonomous android robots.

Keywords: android robot, control systems, motion synthesis, service angle

Procedia PDF Downloads 196
7071 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids

Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje

Abstract:

Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.

Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise

Procedia PDF Downloads 128
7070 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia

Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud

Abstract:

Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.

Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma

Procedia PDF Downloads 64
7069 Study on Media Literacy and Its Role in Iranian Society (Case Study: Students of Mahmoudabad City)

Authors: Enayat Davoudi

Abstract:

This paper is about the study of media literacy and its role in Iranian society. Determine the research hypothesis by the use of James Patter theory and us stratification and also culture theory. By the use of traversal method and by the aim of the survey on 375 students in Mahmoudabad which was selected randomly, the data was gathered and analyzed by SPSS software. Coefficient alpha for Crohn Bach is used in order to reach to the justifiability of indexes. The research findings show that the variable like duration, rate and type of media use, the realization of media content, audience goal and motivation, economical and social base and the rate of education has a meaningful relation with media literacy.

Keywords: media, media literacy, Iranian society, Mahmoudabad students

Procedia PDF Downloads 297
7068 Desalination via Electrodialysis: A Newly Designed Fixed Bed Reactor Powered by Renewable Energy Source

Authors: Hend Mesbah, Yehia Youssef, Ibrahim Hassan, Shaaban Nosier, Ahmed El-Shazly, Ahmed Helal

Abstract:

The problem of drinking water shortage is becoming more crucial nowadays as a result of the increased demand due to the population growth and the rise in the standard living. In recent years, desalination using electrodialysis powered by solar energy (PV-ED) is being widely used to help provide treated water and reduce the scarcity in water supply. In the present study, a water desalination laboratory scale ED cell with a fixed bed circulation system was designed, developed, and tested. The effect of three parameters (namely, cell voltage , flowrate, and salt concentration) on the removal percentage of salt ions was studied. The cell voltage was adjusted at 3 , 4 and 6 V. A flow rate of 5, 10, and 20 ml/s and an initial salt concentration of 2000, 5000, and 7000 ppm were investigated. The maximum salt percentage removal obtained was 52.5% at the lowest initial concentration (2000 ppm) and at the highest cell voltage (6 V). There was no significant effect of the flow rate on the removal percentage. A model of PV module has also been developed to calculate the dimensions of a solar cell based on the amount of energy consumed and it was calculated from the Overall ED cell voltage.

Keywords: desalination, electrodialysis, solar desalination, photovoltaic electrodialysis

Procedia PDF Downloads 147
7067 The Effect of the 2015 Revision to the Corporate Governance Code on Japanese Listed Firms

Authors: Tomotaka Yanagida

Abstract:

The Corporate Governance Code, revised in 2015, requires firms listed within the first and second sections of Japan’s Tokyo stock exchange to select two or more independent outside directors (the Corporate Governance Code4-8). Therefore, Japanese listed firms must do this or explain the reason why they are not able to do so. This study investigates how the Corporate Governance Code affects Japanese listed firms. We find that the Corporate Governance Code increases the ratio of outside directors by nearly 8.8% for a sample of Japanese firms comprising nearly 4,200 firm-year observations from 2014 to 2015 using a difference-in-differences approach. This implies that they felt it would have been difficult to explain why it was not appropriate to have an outside director at the annual shareholders' meeting. Moreover, this suggests that they appoint outside directors as defined by the Corporate Governance Code, but maintain board size. This situation shows that compliance in Japan may simply be 'window dressing,' that is, more form than substance.

Keywords: board structure, comply or explain, corporate governance code, soft law

Procedia PDF Downloads 173
7066 The Nursing Profession in Algeria between Humane Treatment and Work Environment Problems - A Field Study

Authors: Bacha Zakaria

Abstract:

This study aimed to investigate the reality of humane treatment and work environment problems for nurses in public hospitals and their repercussions on the patients arriving there. In this curve, our field study was based on a sample of nurses in Algiers hospitals estimated at 100 nurses. The questionnaire prepared by the two researchers was applied face to face with the nurses, and after obtaining and analyzing the data, we concluded the most important results: The presence of many problems in the work environment, such as work pressures, lack of appreciation, verbal and physical violence, risk of infection, poor salary and incentives, working during fatigue, administrative problems etc. And accordingly, The embodiment of humane dealing with patients requires providing a humane work environment for nurses and dealing with them humanely so that they embody positive behaviors while dealing with patients.

Keywords: nursing, future, family-focused care, health equity

Procedia PDF Downloads 92
7065 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372
7064 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus

Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri

Abstract:

Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.

Keywords: natural convection, concentric, eccentric, Nusselt number, annulus

Procedia PDF Downloads 370
7063 Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria

Authors: Sanam Pudasaini, A. T. K. Perera, Ahmed Syed Shaheer Uddin, Sum Huan Ng, Chun Yang

Abstract:

Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum.

Keywords: electroporation, high-efficiency, inactivation, microfluidics, micropillar

Procedia PDF Downloads 180
7062 Efficacy of Ergonomics Ankle Support on Squatting Pushing Skills during the Second Stage of Labor

Authors: Yu-Ching Lin, Meei-Ling Gau, Ghi-Hwei Kao, Hung-Chang Lee

Abstract:

Objective: To compare the pushing experiences and birth outcomes of three different pushing positions during the second stage of labor. The three positions were: semi-recumbent, squatting, and squatting with the aid of ergonomically designed ankle supports. Methods: A randomized controlled trial was conducted at a regional teaching hospital in northern Taiwan. Data were collected from 168 primiparous women in their 38th to 42nd gestational week. None of the participants received epidural analgesia during labor and all were free of pregnancy and labor-related complications. Intervention: During labor, after full cervical dilation and when the fetal head had descended to at least the +1 station and had turned to the occiput anterior position, the experimental group was asked to push in the squatting position while wearing the ergonomically designed ankle supports; comparison group A was asked to push in the squatting position without the use of these supports; and comparison group B was asked to push in a standard semi-recumbent position. Measures: The participants completed a demographic and obstetrics datasheet, the Short Form McGill Pain Questionnaire (MPQ-SF), and the Labor Pushing Experience scale within 4-hours postpartum. Conclusion: In terms of delivery time, the duration between the start of pushing to crowning for the experimental group (squatting with ankle supports) averaged 25.52 minutes less (F =6.02, p< .05) than the time for comparison group B (semi-recumbent). Furthermore, the duration between the start of pushing to infant birth averaged 25.21 minutes less for the experimental group than for comparison group B (F =6.14, p< .05). Moreover, the experimental group had a lower average VAS pain score (5.05±3.22) than comparison group B and the average McGill pain score for the experimental group was lower than both comparison groups (F=18.12, p< .001). In summary, the participants in the group that delivered from a squatting position with ankle supports had better labor pushing experiences than their peers in the comparison groups. Results: In comparison to both unsupported squatting and semi-recumbent pushing, squatting with the aid of ergonomically designed ankle supports reduced pushing times, ameliorated labor pain, and improved the pushing experience. Clinical application and suggestion: The squatting with ankle-support intervention introduced in the present study may significantly reduce tiredness and difficulties in maintaining balance as well as increase pushing efficiency. Thus, this intervention may reduce the caring needs of women during the second stage of labor. This intervention may be introduced in midwifery education programs and in clinical practice as a method to improve the care of women during the second stage of labor.

Keywords: second stage of labor, pushing, squatting with ankle supports, squatting

Procedia PDF Downloads 275
7061 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 404