Search results for: human behaviors of learning and cooperation
13343 Prevalence and Antimicrobial Susceptibility of Thermophilic Campylobacter Strains Isolated from Humans and Poultry in Batna
Authors: Baali Mohamed
Abstract:
Campylobacter are among the most common human bacterial gastroenteritis cases in many countries, and poultry meat is considered as a major source of human campylobacteriosis. This study is conducted, on one hand, to determine the prevalence of infection with thermotolerant Campylobacter both in broiler flocks and men, and to study their sensitivity to antibiotics, and secondly for comparing the two methods of isolation of Campylobacter thermotolerant: technique of passive filtration and selective isolation technique using the Karmali medium. This study examined 310 samples, 260 of avian origin and 50 of human origin, during the period from June 2011 to March 2012. Detecting Campylobacter thermotolerant is conducted using the standard ISO 10272. The results show that 66% (95% CI : 60-72%) of avian samples are contaminated with C. TT (172/260). The study of antibiotic susceptibility revealed that all strains (100%) are resistant to ampicillin and amoxicillin/clavulanic acid, 90% to erythromycin, 66.3% to tetracycline, 53.3% to chloramphenicol and 46.7% to enrofloxacin. However, no resistance is noted to gentamycin. In human samples, three strains of C. thermotolerant are detected, with a contamination rate of 6%. The results of the statistical analysis using the chi-square test (χ2) showed that Campylobacter infection, on the one hand, had seasonal variation with a summer peak (p < 0.05) and, on the other hand, are not influenced by the size of the herd.Keywords: thermotolerant campylobacter, broiler, man, Karmali
Procedia PDF Downloads 39513342 Removing Barriers in Assessment and Feedback for Blind Students in Open Distance Learning
Authors: Sindile Ngubane-Mokiwa
Abstract:
This paper addresses two questions: (1) what barriers do the blind students face with assessment and feedback in open distance learning contexts? And (2) How can these barriers be removed? The paper focuses on the distance education through which most students with disabilities elevate their chances of accessing higher education. Lack of genuine inclusion is also evident in the challenges the blind students face during the assessment. These barriers are experienced at both formative and summative stages. The insights in this paper emanate from a case study that was carried out through qualitative approaches. The data was collected through in-depth interview, life stories, and telephonic interviews. The paper provides a review of local, continental and international views on how best assessment barriers can be removed. A group of five blind students, comprising of two honours students, two master's students and one doctoral student participated in this study. The data analysis was done through thematic analysis. The findings revealed that (a) feedback to the assignment is often inaccessible; (b) the software used is incompatible; (c) learning and assessment are designed in exclusionary approaches; (d) assessment facilities are not conducive; and (e) lack of proactive innovative assessment strategies. The article concludes by recommending ways in which barriers to assessment can be removed. These include addressing inclusive assessment and feedback strategies in professional development initiatives.Keywords: assessment design, barriers, disabilities, blind students, feedback, universal design for learning
Procedia PDF Downloads 36013341 Reducing Defects through Organizational Learning within a Housing Association Environment
Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton
Abstract:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.Keywords: defects, new homes, housing association, organizational learning
Procedia PDF Downloads 31613340 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance
Authors: Habtamu Tkubet Ebuy
Abstract:
Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort
Procedia PDF Downloads 10413339 Making ‘Space’ For Work-integrated Learning In Singapore: Recognising The Next Wave Of Talents Through Skillsfuture Movement
Authors: Catherine Chua, Kashif Raza
Abstract:
Work-integrated learning (WIL) has been heightened in the last few years across countries. With a specific attention on working adults, the key objective is to integrate work experiences with academic studies so that they will be given more opportunities to advance, gather relevant skills and credentials to enable them to contribute more positively to the labour market. In Singapore, developing talent through WIL aims to develop specialist and enduring skills for the industries. Collaborating with the institutes of higher education in Singapore, the Integrated Work Study Programs (IWSP) seek to harmonize classroom learning with practical work experiences so that adult students can develop skills and knowledge that are needed in the existing and future workplaces. Local higher education institutions will also work closely with industry partners, and design courses that support these students to deepen their skills. Using Critical Discourse Analysis, this paper examines the Singapore government policies in WIL and argues that despite the various supports and interventions provided by the government, it is equally important to create a ‘space’ in the society whereby there is a greater recognition for WIL as a valuable education approach, i.e., “continuous meritocracy”. This is especially so in Singapore where academic excellence and conventional front-loaded approach to education are valued.Keywords: work-integrated learning, adult learners, continuous meritocracy, skillsfuture singapore
Procedia PDF Downloads 6613338 Integrating Generic Skills into Disciplinary Curricula
Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi
Abstract:
There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.Keywords: curriculum, employability, generic skills, graduate attributes, higher education, information technology
Procedia PDF Downloads 25613337 Expectation for Professionalism Effects Reality Shock: A Qualitative And Quantitative Study of Reality Shock among New Human Service Professionals
Authors: Hiromi Takafuji
Abstract:
It is a well-known fact that health care and welfare are the foundation of human activities, and human service professionals such as nurses and child care workers support these activities. COVID-19 pandemic has made the severity of the working environment in these fields even more known. It is high time to discuss the work of human service workers for the sustainable development of the human environment. Early turnover has been recognized as a long-standing issue in these fields. In Japan, the attrition rate within three years of graduation for these occupations has remained high at about 40% for more than 20 years. One of the reasons for this is Reality Shock: RS, which refers to the stress caused by the gap between pre-employment expectations and the post-employment reality experienced by new workers. The purpose of this study was to academically elucidate the mechanism of RS among human service professionals and to contribute to countermeasures against it. Firstly, to explore the structure of the relationship between professionalism and workers' RS, an exploratory interview survey was conducted and analyzed by text mining and content analysis. The results showed that the expectation of professionalism influences RS as a pre-employment job expectation. Next, the expectations of professionalism were quantified and categorized, and the responses of a total of 282 human service work professionals, nurses, child care workers, and caregivers; were finalized for data analysis. The data were analyzed using exploratory factor analysis, confirmatory factor analysis, multiple regression analysis, and structural equation modeling techniques. The results revealed that self-control orientation and authority orientation by qualification had a direct positive significant impact on RS. On the other hand, interpersonal helping orientation and altruistic orientation were found to have a direct negative significant impact and an indirect positive significant impact on RS.; we were able to clarify the structure of work expectations that affect the RS of welfare professionals, which had not been clarified in previous studies. We also explained the limitations, practical implications, and directions for future research.Keywords: human service professional, new hire turnover, SEM, reality shock
Procedia PDF Downloads 9913336 Perceptions and Governance of One Health in African Countries: A Workshop Report
Authors: Menouni Aziza, Chbihi Kaoutar, El Jaafari Samir
Abstract:
There is strong evidence connecting epidemics with the disruption of the human-animal-environment interaction. Despite the fact that several cases of emerging and endemic zoonotic diseases indifferent parts of Africa have been documented, there is limited data regarding which specific interventions are effective in preventing and managing the associated risks using a One Health approach. The aim of this study is to better understand perceptions and ongoing research related to interventions in Africa through the implementation of suitable projects and policies. A bibliometric review of the scientific literature on one health studies with a focus on African countries was conducted, followed by a qualitative survey among stakeholders involved in fields related to One Health research or management in the Africa, including veterinary experts, public health professionals, environmentalists and policy makers, to learn about determinants of their perceptions, as well as barriers to and promoters of successful interventions and governance. The project was concluded with an international workshop in March 2023, where a broad range of topics relevant to One Health were discussed. 94% of the respondents were aware of the importance of the One Health approach and strongly endorse it within their respective countries. The top reported barriers to One Health development in Africa included paucity of data, weak linkages and institutional communication between the different departments and the lack of funding. Key areas of improvement identified were the impact evaluation of current initiatives, awareness raising campaigns among citizens targeted at behavioral changes, capacity building of relevant professionals and stakeholders, as well as the implementation of adequate policies and enforcement of national and continental regulations, allowing for better coordination on the African level. All One Health sectors in Africa require strong governance and leadership, as well as inter-ministerial, inter-sectoral, and interdisciplinary cooperation.Keywords: one health, perceptions, governance, Africa
Procedia PDF Downloads 6813335 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 13913334 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 4013333 Survey of the Role of Contextualism in the Designing of Cultural Constructions Based on Rapoport Views
Authors: E. Zarei, M. Bazaei, A. Seifi, A. Keshavarzi
Abstract:
Amos Rapoport, based on his anthropology approach, believed that the space origins from the human body and influences on human body mutually. As a holistic approach in architecture, Contextualism describes a collection of views in philosophy which emphasize the context in which an action, utterance, or expression occurs, and argues that, in some important respect, the action, utterance, or expression can only be understood relative to that context. In this approach, the main goal – studying the role of cultural component in the Contextualism construction shaping up, based on Amos Rapoport’s anthropology approach- has being done by descriptive- analytic method. The results of the research indicate that in the field of Contextualism designing, referring to the cultural aspects are as necessary as the physical dimensions of a construction. Rapoport believes that the shape of a construction is influenced by cultural aspects and he suggests a kind of mutual interaction between human and environment that should be considered in housing. The mail goal of contextual architecture is to establish an interaction between environment, human and culture. According to this approach, a desirable design should be in harmony with this approach.Keywords: Amos Rapoport, anthropology, contextual architecture, culture
Procedia PDF Downloads 40013332 Parental Drinking and Risky Alcohol Related Behaviors: Predicting Binge Drinking Trajectories and Their Influence on Impaired Driving among College Students
Authors: Shiran Bord, Assaf Oshri, Matthew W. Carlson, Sihong Liu
Abstract:
Background: Alcohol-impaired driving (AID) and binge drinking are major health concerns among college students. Although the link between binge drinking and AID is well established, knowledge regarding binge drinking patterns, the factors influencing binge drinking, and the associations between consumption patterns and alcohol-related risk behaviors is lacking. Aims: To examine heterogeneous trajectories of binge drinking during college and tests factors that might predict class membership as well as class membership outcomes. Methods: Data were obtained from a sample of 1,265 college students (Mage = 18.5, SD = .66) as part of the Longitudinal Study of Violence Against Women (N = 1,265; 59.3% female; 69.2% white). Analyses were completed in three stages. First, a growth curve analysis was conducted to identify trajectories of binge drinking over time. Second, growth curve mixture modeling analyses were pursued to assess unobserved growth trajectories of binge drinking without predictors. Lastly, parental drinking variables were added to the model as predictors of class membership, and AID and being a passenger of a drunk driver were added to the model as outcomes. Results: Three binge drinking trajectories were identified: high-convex, medium concave and low-increasing. Parental drinking was associated with being in high-convex and medium-concave classes. Compared to the low-increasing class, the high convex and medium concave classes reported more AID and being a passenger of a drunk driver more frequently. Conclusions: Parental drinking may affect children’s later engagement in AID. Efforts should focus on parents' education regarding the consequences of parental modeling of alcohol consumption.Keywords: alcohol impaired driving, alcohol consumption, binge drinking, college students, parental modeling
Procedia PDF Downloads 28013331 The Impact of CO2 on Learning and Memory Duration of Bombus terrestris
Authors: Gholizadeh F. F., Goldansaz S. H., Bandani A. R., A. Ashouri
Abstract:
This study aimed to investigate the direct effects of increasing carbon dioxide (CO₂) concentration on the behavior of Bombus terrestris bumblebees in laboratory conditions to understand the outcomes of the augmentation of this gas in the Earth's atmosphere on the decline of populations of these pollinators. Learning and memory duration of bumblebees were evaluated as two main behavioral factors in social insects at different concentrations of CO₂. In both series of experiments, the behavior of bees under the influence of CO₂ changes compared to the control. Insects kept at high CO₂ concentrations learn less than control bees and spend more time identifying and navigating to discover their food source and access time (nectar consumption). These results showed that bees maybe lose some of their food resources due to poorer identification and act weaker on searching due to less memory and avoiding the enemy in higher CO₂ concentration. Therefore, CO₂ increasing concentration can be one of the reasons for the decline of these pollinating insects' populations by negatively affecting their fitness.Keywords: Bombus terrestris, CO₂, learning, memory duration
Procedia PDF Downloads 17913330 Social Movements of Central-Eastern Europe: Examining Trends of Cooperation and Antagonism by Using Big Data
Authors: Reka Zsuzsanna Mathe
Abstract:
The globalization and the Europeanization have significantly contributed to a change in the role of the nation-states. The global economic crisis, the climate changes, and the recent refugee crisis, are just a few among many challenges that cannot be effectively addressed by the traditional role of the nation-states. One of the main roles of the states is to solve collective action problems, however due to their changing roles; apparently this is getting more and more difficult. Depending on political culture, collective action problems are solved either through cooperation or conflict. The political culture of Central and Eastern European (CEE) countries is marked by low civic participation and by a weak civil society. In this type of culture collective action problems are likely to be induced through conflict, rather than the democratic process of dialogue and any type of social change is probably to be introduced by social movements. Several studies have been conducted on the social movements of the CEE countries, yet, it is still not clear if the most significant social movements of the region tend to choose rather the cooperative or the conflictual way as action strategy. This study differentiates between a national and a European action field, having different social orders. The actors of the two fields are the broadly understood civil society members, conceptualized as social movements. This research tries to answer the following questions: a) What are the norms that best characterize the CEE countries’ social order? b) What type of actors would prefer a change and in which areas? c) Is there a significant difference between the main actors active in the national versus the European field? The main hypotheses are that there are conflicting norms defining the national and the European action field, and there is a significant difference between the action strategies adopted by social movements acting in the two different fields. In mapping the social order, the study uses data provided by the European Social Survey. Big data of the Global Data on Events, Location and Tone (GDELT) database offers information regarding the main social movements and their preferred type of action. The unit of the analysis is the so called ‘Visegrad 4’ countries: Poland, Czech Republic, Slovakia and Hungary and the research uses data starting from 2005 (after the European accession of these four countries) until May, 2017. According to the data, the main hypotheses were confirmed.Keywords: big data, Central and Eastern Europe, civil society, GDELT, social movements
Procedia PDF Downloads 16113329 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom
Authors: Yen-Hui Lu
Abstract:
In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning
Procedia PDF Downloads 8313328 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 18313327 The Significance of Translating Folklore in Teaching and Learning Open Distance e-Learning
Authors: M. A. Mabasa, O. Ramokolo, M. Z. Mnikathi, D. Mathabatha, T. Manyapelo
Abstract:
The study examines the importance of translating South African folklore from Oral into Written Literature in a Multilingual Education. Therefore, the study postulates that translation can be regarded as a valuable tool when oral and written literature is transmitted from one generation to another. The study entails that translation does not take place in a haphazard fashion; for that reason, skills such as translation principles are required to translate folklore significantly and effectively. The purpose of the study is to indicate the significance of using translation relating to folklore in teaching and learning. The study also observed that Modernism in literature should be shared amongst varieties of cultures because folklore is interactive in narrating stories, folktales and myths to sharpen the reader’s knowledge and intellect because they are informative and educative in nature. As a technological tool, the study points out that translation is of paramount importance in the sense that the meanings of different data can be made available in all South African official languages using oral and written forms of folklore. The study opines that tradition and customary beliefs and practices in the institution of higher learning. The study envisages the way in which literature of folklore can be juxtaposed to ensure that translated folklore is of quality assured standards. The study alludes that well-translated folklore can serve as oral and written literature, which may contribute to the child’s learning and acquisition of knowledge and insights during cognitive development toward maturity. Methodologically, the study selects a qualitative research approach and selects content analysis as an instrument for data gathering, which will be analyzed qualitatively in consideration of the significance of translating folklore as written and spoken literature in a documented way. The study reveals that the translation of folktales promotes functional multilingualism in high-function formal contexts like a university. The study emphasizes that translated and preserved literary folklore may serve as a language repository from one generation to another because of the archival and storage of information in the form of a term bank.Keywords: translation, editing, teaching, learning, folklores
Procedia PDF Downloads 3213326 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 15913325 Efficacy of Clickers in L2 Interaction
Authors: Ryoo Hye Jin Agnes
Abstract:
This study aims to investigate the efficacy of clickers in fostering L2 class interaction. In an L2 classroom, active learner-to-learner interactions and learner-to-teacher interactions play an important role in language acquisition. In light of this, introducing learning tools that promote such interactions would benefit L2 classroom by fostering interaction. This is because the anonymity of clickers allows learners to express their needs without the social risks associated with speaking up in the class. clickers therefore efficiently help learners express their level of understanding during the process of learning itself. This allows for an evaluative feedback loop where both learners and teachers understand the level of progress of the learners, better enabling classrooms to adapt to the learners’ needs. Eventually this tool promotes participation from learners. This, in turn, is believed to be effective in fostering classroom interaction, allowing learning to take place in a more comfortable yet vibrant way. This study is finalized by presenting the result of an experiment conducted to verify the effectiveness of this approach when teaching pragmatic aspect of Korean expressions with similar semantic functions. The learning achievement of learners in the experimental group was found higher than the learners’ in a control group. A survey was distributed to the learners, questioning them regarding the efficacy of clickers, and how it contributed to their learning in areas such as motivation, self-assessment, increasing participation, as well as giving feedback to teachers. Analyzing the data collected from the questionnaire given to the learners, the study presented data suggesting that this approach increased the scope of interactivity in the classroom, thus not only increasing participation but enhancing the type of classroom participation among learners. This participation in turn led to a marked improvement in their communicative abilities.Keywords: second language acquisition, interaction, clickers, learner response system, output from learners, learner’s cognitive process
Procedia PDF Downloads 52113324 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 6713323 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 13613322 Let’s Work It Out: Effects of a Cooperative Learning Approach on EFL Students’ Motivation and Reading Comprehension
Authors: Shiao-Wei Chu
Abstract:
In order to enhance the ability of their graduates to compete in an increasingly globalized economy, the majority of universities in Taiwan require students to pass Freshman English in order to earn a bachelor's degree. However, many college students show low motivation in English class for several important reasons, including exam-oriented lessons, unengaging classroom activities, a lack of opportunities to use English in authentic contexts, and low levels of confidence in using English. Students’ lack of motivation in English classes is evidenced when students doze off, work on assignments from other classes, or use their phones to chat with others, play video games or watch online shows. Cooperative learning aims to address these problems by encouraging language learners to use the target language to share individual experiences, cooperatively complete tasks, and to build a supportive classroom learning community whereby students take responsibility for one another’s learning. This study includes approximately 50 student participants in a low-proficiency Freshman English class. Each week, participants will work together in groups of between 3 and 4 students to complete various in-class interactive tasks. The instructor will employ a reward system that incentivizes students to be responsible for their own as well as their group mates’ learning. The rewards will be based on points that team members earn through formal assessment scores as well as assessment of their participation in weekly in-class discussions. The instructor will record each team’s week-by-week improvement. Once a team meets or exceeds its own earlier performance, the team’s members will each receive a reward from the instructor. This cooperative learning approach aims to stimulate EFL freshmen’s learning motivation by creating a supportive, low-pressure learning environment that is meant to build learners’ self-confidence. Students will practice all four language skills; however, the present study focuses primarily on the learners’ reading comprehension. Data sources include in-class discussion notes, instructor field notes, one-on-one interviews, students’ midterm and final written reflections, and reading scores. Triangulation is used to determine themes and concerns, and an instructor-colleague analyzes the qualitative data to build interrater reliability. Findings are presented through the researcher’s detailed description. The instructor-researcher has developed this approach in the classroom over several terms, and its apparent success at motivating students inspires this research. The aims of this study are twofold: first, to examine the possible benefits of this cooperative approach in terms of students’ learning outcomes; and second, to help other educators to adapt a more cooperative approach to their classrooms.Keywords: freshman English, cooperative language learning, EFL learners, learning motivation, zone of proximal development
Procedia PDF Downloads 14513321 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database
Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang
Abstract:
For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree
Procedia PDF Downloads 22413320 Children Overcome Learning Disadvantages through Mother-Tongue Based Multi-Lingual Education Programme
Authors: Binay Pattanayak
Abstract:
More than 9 out of every 10 children in Jharkhand struggle to understand the texts and teachers in public schools. The medium of learning in the schools is Hindi, which is very different in structure and vocabulary than those in children’s home languages. Hence around 3 out of 10 children enrolled in early grades drop out in these schools. The state realized the cause of children’s high dropout in 2013-14 when the M-TALL, the language research shared the findings of a state-wide socio-linguistic study. The study findings suggested that there was a great need for initiating a mother-tongue based multilingual education (MTB-MLE) programme for the state in early grades starting from pre-school level. Accordingly, M-TALL in partnership with department of education designed two learning packages: Bhasha Puliya pre-school education programme for 3-6-year-old children for their school readiness with bilingual picture dictionaries in 9 tribal and regional languages. This was followed by a plan for MTB-MLE programme for early primary grades. For this textbooks in five tribal and two regional languages were developed under the guidance of the author. These books were printed and circulated in the 1000 schools of the state for each child. Teachers and community members were trained for facilitating culturally sensitive mother-tongue based learning activities in and around the schools. The mother-tongue based approach of learning has worked very effectively in enabling them to acquire the basic literacy and numeracy skills in own mother-tongues. Using this basic early grade reading skills, these children are able to learn Hindi and English systematically. Community resource groups were constituted in each school for promoting storytelling, singing, painting, dancing, acting, riddles, humor, sanitation, health, nutrition, protection, etc. and were trained. School academic calendar was designed in each school to enable the community resource persons to visit the school as per the learning plan to assist children and teacher in facilitating rich cultural activities in mother-tongue. This enables children to take part in plethora of learning activities and acquire desired knowledge, skills and interest in mother-tongues. Also in this process, it is attempted to promote 21st Century learning skills by enabling children to apply their new knowledge and skills to look at their local issues and address those in a collective manner through team work, innovations and leadership.Keywords: community resource groups, learning, MTB-MLE, multilingual, socio-linguistic survey
Procedia PDF Downloads 23613319 The Use of Bleomycin and Analogues to Probe the Chromatin Structure of Human Genes
Authors: Vincent Murray
Abstract:
The chromatin structure at the transcription start sites (TSSs) of genes is very important in the control of gene expression. In order for gene expression to occur, the chromatin structure at the TSS has to be altered so that the transcriptional machinery can be assembled and RNA transcripts can be produced. In particular, the nucleosome structure and positioning around the TSS has to be changed. Bleomycin is utilized as an anti-tumor agent to treat Hodgkin's lymphoma, squamous cell carcinoma, and testicular cancer. Bleomycin produces DNA damage in human cells and DNA strand breaks, especially double-strand breaks, are thought to be responsible for the cancer chemotherapeutic activity of bleomycin. Bleomycin is a large glycopeptide with molecular weight of approximately 1500 Daltons and hence its DNA strand cleavage activity can be utilized as a probe of chromatin structure. In this project, Illumina next-generation DNA sequencing technology was used to determine the position of DNA double-strand breaks at the TSSs of genes in intact cells. In this genome-wide study, it was found that bleomycin cleavage preferentially occurred at the TSSs of actively transcribed human genes in comparison with non-transcribed genes. There was a correlation between the level of enhanced bleomycin cleavage at TSSs and the degree of transcriptional activity. In addition, bleomycin was able to determine the position of nucleosomes at the TSSs of human genes. Bleomycin analogues were also utilized as probes of chromatin structure at the TSSs of human genes. In a similar manner to bleomycin, the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin preferentially cleaved at the TSSs of human genes. Interestingly this degree of enhanced TSS cleavage inversely correlated with the cytotoxicity (IC50 values) of BLM analogues. This indicated that the degree of cleavage by bleomycin analogues at the TSSs of human genes was very important in the cytotoxicity of bleomycin and analogues. It also provided a deeper insight into the mechanism of action of this cancer chemotherapeutic agent since actively transcribed genes were preferentially targeted.Keywords: anti-cancer activity, chromatin structure, cytotoxicity, gene expression, next-generation DNA sequencing
Procedia PDF Downloads 11613318 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 13413317 Human Trafficking and Terrorism: A Study on the Security Challenges Imposed upon Countries in Conflict
Authors: Christopher Holroyd
Abstract:
With the various terrorist organizations and drug cartels that are currently active, there is a myriad of security concerns facing countries around the world. Organizations that focus their attacks on others through terror, such as what is seen with the Islamic State of Iraq and the Levant (ISIS), have no boundaries when it comes to doing what is needed to fulfill their desired intent. For countries such as Iraq, who have been trying to rebuild their country since the fall of the Saddam Hussein Regime, organizations such as Al-Qaeda and ISIS have been impeding the country’s efforts toward peace and stability. One method utilized by terrorist organizations around the world is human trafficking. This method is one that is seen around the world; modern slavery is still exploited by those who have no concern for human decency and morality, their only concern is to achieve their goals by any means. It is understandable that some people may not have even heard of 'modern slavery', or they just might not believe that it is even an issue in today’s world. Organizations such as ISIS are not the only ones in the world that seek to benefit from the immoral trading of humans. Various drug cartels in the world, such as those seen in Mexico and Central America, have recently begun to take part in the trade – moving humans from state to state, or country to country, to better fuel their overall operations. This now makes the possibility of human trafficking more real for those in the United States because of the proximity of the cartels to the southern border of the country. An issue that, at one time, might have only seen as a distant threat, is now close to home for those in the United States. Looking at these two examples is how we begin to understand why human trafficking is utilized by various organizations around the world. This trade of human beings and the violation of basic human rights is a plague that effects the entire world and not just those that are in a country other than your own. One of the security issues that stem from the trade includes the movement and recruitment of members of the organizations. With individuals being smuggled from one location to another in secrecy, this only puts those trying to combat this trade at a disadvantage. This creates concern over the accurate number of potential recruits, combatants, and other individuals who are working against the host nation, and for the mission of the cartel or terrorist organization they are a part of. An uphill battle is created, and the goals of peace and stability are now harder to reach. Aside from security aspects, it cannot be forgotten that those being traded and forced into slavery, are being done so against their will. Families are separated, children trained to be fighters or worse. This makes the goal of eradicating human trafficking even more dire and important.Keywords: human trafficking, reconstruction, security, terrorism
Procedia PDF Downloads 13213316 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 5313315 Hear Me: The Learning Experience on “Zoom” of Students With Deafness or Hard of Hearing Impairments
Authors: H. Weigelt-Marom
Abstract:
Over the years and up to the arousal of the COVID-19 pandemic, deaf or hard of hearing students studying in higher education institutions, participated lectures on campus using hearing aids and strategies adapted for frontal learning in a classroom. Usually, these aids were well known to them from their earlier study experience in school. However, the transition to online lessons, due to the latest pandemic, led deaf or hard of hearing students to study outside of their physical, well known learning environment. The change of learning environment and structure rose new challenges for these students. The present study examined the learning experience, limitations, challenges and benefits regarding learning online with lecture and classmates via the “Zoom” video conference program, among deaf or hard of hearing students in academia setting. In addition, emotional and social aspects related to learning in general versus the “Zoom” were examined. The study included 18 students diagnosed as deaf or hard of hearing, studying in various higher education institutions in Israel. All students had experienced lessons on the “Zoom”. Following allocation of the group study by the deaf and hard of hearing non-profit organization “Ma’agalei Shema”, and receiving the participants inform of consent, students were requested to answer a google form questioner and participate in an interview. The questioner included background information (e.g., age, year of studying, faculty etc.), level of computer literacy, and level of hearing and forms of communication (e.g., lip reading, sign language etc.). The interviews included a one on one, semi-structured, in-depth interview, conducted by the main researcher of the study (interview duration: up to 60 minutes). The interviews were held on “ZOOM” using specific adaptations for each interviewee: clear face screen of the interviewer for lip and face reading, and/ or professional sign language or live text transcript of the conversation. Additionally, interviewees used their audio devices if needed. Questions regarded: learning experience, difficulties and advantages studying using “Zoom”, learning in a classroom versus on “Zoom”, and questions concerning emotional and social aspects related to learning. Thematic analysis of the interviews revealed severe difficulties regarding the ability of deaf or hard of hearing students to comprehend during ”Zoom“ lessons without adoptive aids. For example, interviewees indicated difficulties understanding “Zoom” lessons due to their inability to use hearing devices commonly used by them in the classroom (e.g., FM systems). 80% indicated that they could not comprehend “Zoom” lessons since they could not see the lectures face, either because lectures did not agree to open their cameras or, either because they did not keep a straight forward clear face appearance while teaching. However, not all descriptions regarded learning via the “zoom” were negative. For example, 20% reported the recording of “Zoom” lessons as a main advantage. Enabling then to repeatedly watch the lessons at their own pace, mostly assisted by friends and family to translate the audio output into an accessible input. These finding and others regarding the learning experience of the group study on the “Zoom”, as well as their recommendation to enable deaf or hard of hearing students to study inclusively online, will be presented at the conference.Keywords: deaf or hard of hearing, learning experience, Zoom, qualitative research
Procedia PDF Downloads 11613314 Online vs. in vivo Workshops in a Masters’ Degree Course in Mental Health Nursing: Students’ Views and Opinions
Authors: Evmorfia Koukia, Polyxeni Mangoulia
Abstract:
Workshops tend to be a vivid and productive way as an in vivo teaching method. Due to the pandemic, COVID-19 university courses were conducted through the internet. Method It was tried for the first time to integrate online art therapy workshops in a core course named “Special Themes of Mental Health Nursing” in a MSc Program in Mental Health. The duration of the course is 3-hours per week for 11 weeks in a single semester. The course has a main instructor, a professor of psychiatric nursing experienced in arts therapies workshops and visiting art therapists. All art therapists were given a certain topic to cover. Students were encouraged to keep a logbook that was evaluated at the end of the semester and was submitted as a part of the examination process of the course. An interview of 10 minutes was conducted with each student at the end of the course from an independent investigator (an assistant professor) Participants The students (sample) of the program were: nurses, psychologists, and social workers Results: All students who participated in the courses found that the learning process was vivid, encouraging participation and self-motivation, and there were no main differences from in vivo learning. The students identified their personal needs, and they felt a personal connection with the learning experience. The result of the personalized learning was that students discovered their strengths and weaknesses and developed skills like critical thinking. All students admitted that the workshops were the optimal way for them to comprehend the courses’ content, their capability to become therapists, as well as their obstacles and weaknesses while working with patients in mental health. Conclusion: There were no important differences between the views of students in online and in vivo teaching method of the workshops. The result has shown that workshops in mental health can contribute equally in the learning experience.Keywords: mental health, workshops, students, nursing
Procedia PDF Downloads 209