Search results for: constant heat flux
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5233

Search results for: constant heat flux

1933 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 144
1932 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 398
1931 Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis

Authors: Kyeong Hoon Park, Taiji Mazuda

Abstract:

High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined.

Keywords: base-isolation, bilinear model, high damping rubber, loading test

Procedia PDF Downloads 123
1930 Effect of Nutrient Limitations in Phycocyanin Formation by Spirulina platensis

Authors: Hugo F. Lobaton

Abstract:

The cyanobacterium Spirulina platensis is a prokaryotic photoautotrophic microorganism that is successfully cultivated for the commercialization as whole biomass due to its high protein content and promising valuable substance. For instance, phycocyanin has recently drawn the interest of the food and cosmetic industries due to its bright blue colour and its strong antioxidant capacities. The phycocyanin (PC) is the main protein-pigment in S. platensis (4% to 20%). In batches, the rate of overproduction of metabolites by cyanobacteria is limited or activated by the depletion of required substrates. The aim of this study was to develop a kinetic law that describes phycocyanin formation during batch cultivation. S. platensis was cultivated in 1 L bubble column photobioreactor with 30°C and 700 µmol m⁻² s⁻¹. Culture samples were daily collected from the bubble columns in sterile conditions. The biomass (g l⁻¹) was measured directly after a biomass lyophilisation process, and phycocyanin extractions and measurements were done according to a well-established protocol. A kinetic law for phycocyanin formation that includes nitrate and bicarbonate limitations was proposed and linked to the biomass core model. The set of differential equations were solved in MATLAB. Concerning to product formation, the experimental results show that phycocyanin mass fraction is degraded as results of the complete nitrate depletion and nitrate additions during the cultivation help to keep constant this molecule until new macro-element limitation appear. According to the model, bicarbonate is this limitation.

Keywords: phycocyanin, nitrate, bicarbonate, spirulina

Procedia PDF Downloads 146
1929 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 172
1928 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater

Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan

Abstract:

The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.

Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida

Procedia PDF Downloads 316
1927 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites

Authors: K. N. Umesh

Abstract:

Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.

Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites

Procedia PDF Downloads 249
1926 Experimental Verification of Different Types of Shear Connectors on Composite Slab

Authors: A. Siva, R. Senthil, R. Banupriya, R. Saravanakumar

Abstract:

Cold-formed steel sheets are widely used as primary tension reinforcement in composite slabs. It also performs as formwork for concreting and better ceiling surface. The major type of failure occurring in composite slab is shear failure. When the composite slab is flexurally loaded, the longitudinal shear is generated and transferred to the steel sheet concrete interface. When the load increases, the interface slip occurs. The slip failure can be resisted by mechanical interface interlock by shear studs. In this paper, the slip failure has been resisted by shear connectors and geometry of the steel sheet alone. The geometry of the sheet is kept constant for all the specimens and the type of shear connectors has been varied. Totally, three types of shear connectors (viz., straight headed, U and J) are bolted to the trapezoidal profile sheet and the concrete is casted over it. After curing, the composite slab is subjected to flexure load and the test results are compared with the numerical results analysed by ABAQUS software. The test result shows that the U-shaped bolted stud has higher flexure strength than the other two types of shear connectors.

Keywords: cold formed steel sheet, headed studs, mechanical interlock, shear connectors, shear failure, slip failure

Procedia PDF Downloads 555
1925 Application of Hyperbinomial Distribution in Developing a Modified p-Chart

Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman

Abstract:

Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.

Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution

Procedia PDF Downloads 279
1924 The Role of Autophagy Modulation in Angiotensin-II Induced Hypertrophy

Authors: Kitti Szoke, Laszlo Szoke, Attila Czompa, Arpad Tosaki, Istvan Lekli

Abstract:

Autophagy plays an important role in cardiac hypertrophy, which is one of the most common causes of heart failure in the world. This self-degradative catabolic process, responsible for protein quality control, balancing sources of energy at critical times, and elimination of damaged organelles. The autophagic activity can be triggered by starvation, oxidative stress, or pharmacological agents, like rapamycin. This induced autophagy can promote cell survival during starvation or pathological stress. In this study, it is investigated the effect of the induced autophagic process on angiotensin induced hypertrophic H9c2 cells. In our study, it is used H9c2 cells as an in vitro model. To induce hypertrophy, cells were treated with 10000 nM angiotensin-II, and to activate autophagy, 100 nM rapamycin treatment was used. The following groups were formed: 1: control, 2: 10000 nM AT-II, 3: 100 nM rapamycin, 4: 100 nM rapamycin pretreatment then 10000 nM AT-II. The cell viability was examined via MTT (cell proliferation assay) assay. The cells were stained with rhodamine-conjugated phalloidin and DAPI to visualize F-actin filaments and cell nuclei then the cell size alteration was examined in a fluorescence microscope. Furthermore, the expression levels of autophagic and apoptotic proteins such as Beclin-1, p62, LC3B-II, Cleaved Caspase-3 were evaluated by Western blot. MTT assay result suggests that the used pharmaceutical agents in the tested concentrations did not have a toxic effect; however, at group 3, a slight decrement was detected in cell viability. In response to AT-II treatment, a significant increase was detected in the cell size; cells became hypertrophic. However, rapamycin pretreatment slightly reduced the cell size compared to group 2. Western blot results showed that AT-II treatment-induced autophagy, because the increased expression of Beclin-1, p62, LC3B-II were observed. However, due to the incomplete autophagy, the apoptotic Cleaved Caspase-3 expression also increased. Rapamycin pretreatment up-regulated Beclin-1 and LC3B-II, down-regulated p62 and Cleaved Caspase-3, indicating that rapamycin-induced autophagy can restore the normal autophagic flux. Taken together, our results suggest that rapamycin activated autophagy reduces angiotensin-II induced hypertrophy.

Keywords: angiotensin-II, autophagy, H9c2 cell line, hypertrophy, rapamycin

Procedia PDF Downloads 147
1923 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle

Procedia PDF Downloads 294
1922 Examining Coping Resources and Ways of Strategic Coping for Individuals with Spinal Cord Injury During the COVID-19 Crisis

Authors: Se-Hyuk Park, Hee-Jung Seo

Abstract:

Previous studies have investigated effective coping strategies for excessive stress, positive adaptation, resilience, mental health, and personal growth. However, to the best of the authors' knowledge, little research has been conducted to investigate how Koreans with physical disabilities deal with the COVID-19 pandemic. The purpose of this study was to identify coping strategies and coping resources that Koreans with physical disabilities utilized during the COVID-19 crisis. This study used semi-structured, in-depth interviews with 15 participants. Data were qualitatively analyzed using the constant comparative method with content mapping and content mining questions. We identified three salient themes that were used by participants as coping strategies to deal with various COVID-related challenges: (a) engagement in meaningful activities, (b) improvement of social and emotional support, and (c) experience of resilience. The findings of the present study highlighted that Korean adults with SCI actively engaged in various leisure activities, maintained and developed closer social relationships, and experienced resilience to face COVID-19-related stressors. These coping strategies were noted as a catalyst for physical health as well as psychological well-being of individuals with SCI.

Keywords: spinal cord injury, covid-19 pandemic, coping strategies, coping resources, leisure

Procedia PDF Downloads 43
1921 Thermomechanical Processing of a CuZnAl Shape-Memory Alloy

Authors: Pedro Henrique Alves Martins, Paulo Guilherme Ferreira De Siqueira, Franco De Castro Bubani, Maria Teresa Paulino Aguilar, Paulo Roberto Cetlin

Abstract:

Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment.

Keywords: hot extrusion, pseudoelastic, shape-memory alloy, thermomechanical processing

Procedia PDF Downloads 374
1920 Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis

Authors: Sarah Iaquinta, Christophe Blanquart, Elena Ishow, Sylvain Freour, Frederic Jacquemin, Shahram Khazaie

Abstract:

Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%.

Keywords: adhesion, cellular adaptation, cellular uptake, mechanical properties, tension

Procedia PDF Downloads 212
1919 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 398
1918 GPRS Based Automatic Metering System

Authors: Constant Akama, Frank Kulor, Frederick Agyemang

Abstract:

All over the world, due to increasing population, electric power distribution companies are looking for more efficient ways of reading electricity meters. In Ghana, the prepaid metering system was introduced in 2007 to replace the manual system of reading which was fraught with inefficiencies. However, the prepaid system in Ghana is not capable of integration with online systems such as e-commerce platforms and remote monitoring systems. In this paper, we present a design framework for an automatic metering system that can be integrated with e-commerce platforms and remote monitoring systems. The meter was designed using ADE 7755 which reads the energy consumption and the reading is processed by a microcontroller connected to Sim900 General Packet Radio Service module containing a GSM chip provisioned with an Access Point Name. The system also has a billing server and a management server located at the premises of the utility company which communicate with the meter over a Virtual Private Network and GPRS. With this system, customers can buy credit online and the credit will be transferred securely to the meter. Also, when a fault is reported, the utility company can log into the meter remotely through the management server to troubleshoot the problem.

Keywords: access point name, general packet radio service, GSM, virtual private network

Procedia PDF Downloads 299
1917 Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology

Authors: Lara F. Horani, Shurong Tong

Abstract:

Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.

Keywords: analytic hierarchy process (AHP), green product, customer requirements for green design, importance weights for the customer requirements

Procedia PDF Downloads 243
1916 Development of a Novel Score for Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Hatem A. El-Mezayen, Hossam Darwesh

Abstract:

Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between vascular endothelial growth factor (VEGF) and HCC progression, we aimed to develop a novel score based on combination of VEGF and routine laboratory tests for early prediction of HCC. Methods: VEGF was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-VEGF score)=1.26 (numerical constant) + 0.05 ×AFP (U L-1)+0.038 × VEGF(ng ml-1)+0.004× INR –1.02 × Albumin (g l-1)–0.002 × Platelet count × 109 l-1 was developed. HCC-VEGF score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 4.4 (ie less than 4.4 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-VEGF score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, tumor markers

Procedia PDF Downloads 321
1915 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 398
1914 Double-Diffusive Natural Convection with Various Partially Heated and Salted Sources Arrangements in an Open Cavity

Authors: Norazam Arbin, Habibis Saleh, Ammar Alsabery, Ishak Hashim

Abstract:

Double-diffusive natural convection in an open top cavity with partial vertical heating and salting sources is investigated numerically. Different temperatures and concentrations are applied at the source location on the right and left walls while the other remains adiabatic except at the open top surface. Various combinations of sources arrangements are imposed at the vertical walls in order to observe the significant impact to the convection. An iterative finite different method is used to solve the dimensionless governing equations. The effects of Marangoni number and sources arrangements on the contours of streamlines, isotherms, and concentrations are visualized as the outcome of the numerical solutions. The average Nusselt and Sherwood number are presented for various sources arrangements. It is clearly observed that the sources arrangements gave major impact on the heat and mass transfer rates. A horizontal-like pattern is found for sources arrangements that near the top-free surface.

Keywords: double-diffusive, Marangoni effect, partial heating, salting

Procedia PDF Downloads 404
1913 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 89
1912 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 374
1911 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 146
1910 Diagnostic Performance of Tumor Associated Trypsin Inhibitor in Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Aml M. El-Sharkawy, Hossam M. Darwesh

Abstract:

Abstract— Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between tumor associated trypsin inhibitor (TATI) and HCC progression, we aimed to develop a novel score based on combination of TATI and routine laboratory tests for early prediction of HCC. Methods: TATI was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-TATI score) = 3.1 (numerical constant) + 0.09 ×AFP (U L-1) + 0.067 × TATI (ng ml-1) + 0.16 × INR – 1.17 × Albumin (g l-1) – 0.032 × Platelet count × 109 l-1 was developed. HCC-TATI score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 6.5 (ie less than 6.5 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-TATI score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, TATI

Procedia PDF Downloads 337
1909 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.

Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine

Procedia PDF Downloads 256
1908 An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy

Authors: Rajveer, Abhinav Saxena, Sanjeev Das

Abstract:

The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy.

Keywords: aluminum alloy 6082, strength, forging, age hardening

Procedia PDF Downloads 433
1907 A Thermal Analysis Based Approach to Obtain High Carbonaceous Fibers from Chicken Feathers

Authors: Y. Okumuş, A. Tuna, A. T. Seyhan, H. Çelebi

Abstract:

Useful carbon fibers were derived from chicken feathers (PCFs) based on a two-step pyrolysis method. The collected PCFs were cleaned and categorized as black, white and brown. Differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA) were systemically used to design the pyrolysis steps. Depending on colors, feathers exhibit different glass transition (Tg) temperatures. Long-time heat treatment applied to the feathers emerged influential on the surface quality of the resulting carbon fibers. Fourier Transformation Infrared (FTIR) examination revealed that the extent of disulfide bond cleavage is highly associated with the feather melting stability. Scanning electron microscopy (SEM) examinations were employed to evaluate the morphological changes of feathers after pyrolysis. Of all, brown feathers were found to be the most promising to turn into useful carbon fibers without any trace of melting and shape distortion when pyrolysis was carried out at 230°C for 24 hours and at 450°C for 1 hour.

Keywords: poultry chicken feather, keratin protein fiber, pyrolysis, high carbonaceous fibers

Procedia PDF Downloads 329
1906 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.

Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution

Procedia PDF Downloads 288
1905 Population Dynamics in Aquatic Environments: Spatial Heterogeneity and Optimal Harvesting

Authors: Sarita Kumari, Ranjit Kumar Upadhyay

Abstract:

This paper deals with plankton-fish dynamics where the fish population is growing logistically and nonlinearly harvested. The interaction between phytoplankton and zooplankton population is considered to be Crowley-Martin type functional response. It has been assumed that phytoplankton grows logistically and is affected by a space-dependent growth rate. Conditions for the existence of a positive equilibrium point and their stability analysis (both local and global) have been discussed for the non-spatial system. We have discussed maximum sustainable yields as well as optimal harvesting policy for maximizing the economic gain. The stability and existence of Hopf –bifurcation analysis have been discussed for the spatial system. Different conditions for turning pattern formation have been established through diffusion-driven instability analysis. Numerical simulations have been carried out for both non-spatial and spatial models. Phase plane analysis, the largest Lyapunov exponent, and bifurcation theory are used to numerically analyzed the non-spatial system. Our study shows that spatial heterogeneity, the mortality rate of phytoplankton, and constant harvesting of the fish population each play an important role in the dynamical behavior of the marine system.

Keywords: optimal harvesting, pattern formation, spatial heterogeneity, Crowley-Martin functional response

Procedia PDF Downloads 173
1904 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System

Authors: Seung-Ho Yoo, Jong-Ryeul Sohn

Abstract:

An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.

Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote

Procedia PDF Downloads 516