Search results for: mortality prediction
244 Layouting Phase II of New Priok Using Adaptive Port Planning Frameworks
Authors: Mustarakh Gelfi, Tiedo Vellinga, Poonam Taneja, Delon Hamonangan
Abstract:
The development of New Priok/Kalibaru as an expansion terminal of the old port has been being done by IPC (Indonesia Port Cooperation) together with the subsidiary company, Port Developer (PT Pengembangan Pelabuhan Indonesia). As stated in the master plan, from 2 phases that had been proposed, phase I has shown its form and even Container Terminal I has been operated in 2016. It was planned principally, the development will be divided into Phase I (2013-2018) consist of 3 container terminals and 2 product terminals and Phase II (2018-2023) consist of 4 container terminals. In fact, the master plan has to be changed due to some major uncertainties which were escaped in prediction. This study is focused on the design scenario of phase II (2035- onwards) to deal with future uncertainty. The outcome is the robust design of phase II of the Kalibaru Terminal taking into account the future changes. Flexibility has to be a major goal in such a large infrastructure project like New Priok in order to deal and manage future uncertainty. The phasing of project needs to be adapted and re-look frequently before being irrelevant to future challenges. One of the frameworks that have been developed by an expert in port planning is Adaptive Port Planning (APP) with scenario-based planning. The idea behind APP framework is the adaptation that might be needed at any moment as an answer to a challenge. It is a continuous procedure that basically aims to increase the lifespan of waterborne transport infrastructure by increasing flexibility in the planning, contracting and design phases. Other methods used in this study are brainstorming with the port authority, desk study, interview and site visit to the real project. The result of the study is expected to be the insight for the port authority of Tanjung Priok over the future look and how it will impact the design of the port. There will be guidelines to do the design in an uncertain environment as well. Solutions of flexibility can be divided into: 1 - Physical solutions, all the items related hard infrastructure in the projects. The common things in this type of solution are using modularity, standardization, multi-functional, shorter and longer design lifetime, reusability, etc. 2 - Non-physical solutions, usually related to the planning processes, decision making and management of the projects. To conclude, APP framework seems quite robust to deal with the problem of designing phase II of New Priok Project for such a long period.Keywords: Indonesia port, port's design, port planning, scenario-based planning
Procedia PDF Downloads 247243 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques
Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar
Abstract:
The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion
Procedia PDF Downloads 83242 Effects of Nutrients Supply on Milk Yield, Composition and Enteric Methane Gas Emissions from Smallholder Dairy Farms in Rwanda
Authors: Jean De Dieu Ayabagabo, Paul A.Onjoro, Karubiu P. Migwi, Marie C. Dusingize
Abstract:
This study investigated the effects of feed on milk yield and quality through feed monitoring and quality assessment, and the consequent enteric methane gas emissions from smallholder dairy farms in drier areas of Rwanda, using the Tier II approach for four seasons in three zones, namely; Mayaga and peripheral Bugesera (MPB), Eastern Savanna and Central Bugesera (ESCB), and Eastern plateau (EP). The study was carried out using 186 dairy cows with a mean live weight of 292 Kg in three communal cowsheds. The milk quality analysis was carried out on 418 samples. Methane emission was estimated using prediction equations. Data collected were subjected to ANOVA. The dry matter intake was lower (p<0.05) in the long dry season (7.24 Kg), with the ESCB zone having the highest value of 9.10 Kg, explained by the practice of crop-livestock integration agriculture in that zone. The Dry matter digestibility varied between seasons and zones, ranging from 52.5 to 56.4% for seasons and from 51.9 to 57.5% for zones. The daily protein supply was higher (p<0.05) in the long rain season with 969 g. The mean daily milk production of lactating cows was 5.6 L with a lower value (p<0.05) during the long dry season (4.76 L), and the MPB zone having the lowest value of 4.65 L. The yearly milk production per cow was 1179 L. The milk fat varied from 3.79 to 5.49% with a seasonal and zone variation. No variation was observed with milk protein. The seasonal daily methane emission varied from 150 g for the long dry season to 174 g for the long rain season (p<0.05). The rain season had the highest methane emission as it is associated with high forage intake. The mean emission factor was 59.4 Kg of methane/year. The present EFs were higher than the default IPPC value of 41 Kg from developing countries in African, the Middle East, and other tropical regions livestock EFs using Tier I approach due to the higher live weight in the current study. The methane emission per unit of milk production was lower in the EP zone (46.8 g/L) due to the feed efficiency observed in that zone. Farmers should use high-quality feeds to increase the milk yield and reduce the methane gas produced per unit of milk. For an accurate assessment of the methane produced from dairy farms, there is a need for the use of the Life Cycle Assessment approach that considers all the sources of emissions.Keywords: footprint, forage, girinka, tier
Procedia PDF Downloads 207241 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study
Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy
Abstract:
Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.Keywords: physical activity, sedentary behaviors, hypertension, workplace
Procedia PDF Downloads 180240 Psychosocial Challenges of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients at St. Peter TB Specialized Hospital in Addis Ababa
Authors: Tamrat Girma Biru
Abstract:
Multidrug-resistant tuberculosis (MDR-TB) is defined as resistant to at least Refampicin and Isoniazed: the most two power full TB drugs. It is a leading cause of high rates of morbidity and mortality, and increasing psychosocial challenges to patients, especially when co-infected with Human Immunodeficiency Virus (HIV). Ethiopia faces the highest rates of MDR-TB infection in the world. Objectives: The main objective of this study was to identify the psychosocial challenges of MDR-TB patients, to investigate the extent of the psychosocial challenges on (self-esteem, depression, and stigma) that MDR-TB patients encounter, to examine whether there is a sex difference in experiencing psychosocial challenges and assess the counseling needs of MDR-TB patients. Methodology: A cross-sectional study was conducted at St. Peter TB Specialized Hospital, Addis Ababa on 40 patients (25 males and 15 females) who are hospitalized for treatment. The patients were identified by using purposive sampling and made fill a questionnaire measuring their level of self-esteem, depression and stigma. Besides, data were collected from 16 participants, 28 care providers and 8 guardians, using semi-structured interview. The obtained data were analyzed using SPSS statistical program, descriptive statistics, independent t-test, and qualitative description. Results and Discussion: The results of the study showed that the majority (80%) of the respondents had suffered psychological challenges and social discriminations. Thus, the significance of MDR-TB and its association with HIV/AIDS problems is considered. Besides the psychosocial challenges, various aggravating factors such as length of treatment, drug burden and insecurity in economy together highly challenges the life of patients. In addition, 60% of participants showed low level of self-esteem. The patients also reported that they experienced high self-stigma and stigma by other members of the society. The majority of the participants (75%) showed moderate and severe level of depression. In terms of sex there is no difference between the mean scores of males and females in the level of depression and stigmatization by others and by themselves. But females showed lower level of self-esteem than males. The analysis of the t-test also shows that there were no statistically significant sex difference on the level of depression and stigma. Based on the qualitative data MDR-TB patients face various challenges in their life sphere such as: Psychological (depression, low self value, lowliness, anxiety), social (stigma, isolation from social relations, self-stigmatization,) and medical (drug side effect, drug toxicity, drug burden, treatment length, hospital stays). Recommendations: Based on the findings of this study possible recommendations were forwarded: develop and extend MDR-TB disease awareness creation through by media (printing and electronic), school net TB clubs, and door to door community education. Strengthen psychological wellbeing and social relationship of MDR-TB patients using proper and consistent psychosocial support and counseling. Responsible bodies like Ministry of Health (MOH) and its stakeholders and Non Governmental Organizations (NGOs) need to assess the challenges of patients and take measures on this pressing issue.Keywords: psychosocial challenges, counseling, multi-drug resistant tuberculosis (MDR-TB), tuberculosis therapy
Procedia PDF Downloads 397239 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 127238 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish
Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi
Abstract:
Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution
Procedia PDF Downloads 258237 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose
Authors: Mariamawit T. Belete
Abstract:
Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.Keywords: sorghum anthracnose, data mining, case based reasoning, integration
Procedia PDF Downloads 85236 Effects of Foreign-language Learning on Bilinguals' Production in Both Their Languages
Authors: Natalia Kartushina
Abstract:
Foreign (second) language (L2) learning is highly promoted in modern society. Students are encouraged to study abroad (SA) to achieve the most effective learning outcomes. However, L2 learning has side effects for native language (L1) production, as L1 sounds might show a drift from the L1 norms towards those of the L2, and this, even after a short period of L2 learning. L1 assimilatory drift has been attributed to a strong perceptual association between similar L1 and L2 sounds in the mind of L2 leaners; thus, a change in the production of an L2 target leads to the change in the production of the related L1 sound. However, nowadays, it is quite common that speakers acquire two languages from birth, as, for example, it is the case for many bilingual communities (e.g., Basque and Spanish in the Basque Country). Yet, it remains to be established how FL learning affects native production in individuals who have two native languages, i.e., in simultaneous or very early bilinguals. Does FL learning (here a third language, L3) affect bilinguals’ both languages or only one? What factors determine which of the bilinguals’ languages is more susceptible to change? The current study examines the effects of L3 (English) learning on the production of vowels in the two native languages of simultaneous Spanish-Basque bilingual adolescents enrolled into the Erasmus SA English program. Ten bilingual speakers read five Spanish and Basque consonant-vowel-consonant-vowel words two months before their SA and the next day after their arrival back to Spain. Each word contained the target vowel in the stressed syllable and was repeated five times. Acoustic analyses measuring vowel openness (F1) and backness (F2) were performed. Two possible outcomes were considered. First, we predicted that L3 learning would affect the production of only one language and this would be the language that would be used the most in contact with English during the SA period. This prediction stems from the results of recent studies showing that early bilinguals have separate phonological systems for each of their languages; and that late FL learner (as it is the case of our participants), who tend to use their L1 in language-mixing contexts, have more L2-accented L1 speech. The second possibility stated that L3 learning would affect both of the bilinguals’ languages in line with the studies showing that bilinguals’ L1 and L2 phonologies interact and constantly co-influence each other. The results revealed that speakers who used both languages equally often (balanced users) showed an F1 drift in both languages toward the F1 of the English vowel space. Unbalanced speakers, however, showed a drift only in the less used language. The results are discussed in light of recent studies suggesting that the amount of language use is a strong predictor of the authenticity in speech production with less language use leading to more foreign-accented speech and, eventually, to language attrition.Keywords: language-contact, multilingualism, phonetic drift, bilinguals' production
Procedia PDF Downloads 113235 Supply Chain Improvement of the Halal Goat Industry in the Autonomous Region in Muslim Mindanao
Authors: Josephine R. Migalbin
Abstract:
Halal is an Arabic word meaning "lawful" or "permitted". When it comes to food and consumables, Halal is the dietary standard of Muslims. The Autonomous Region in Muslim Mindanao (ARMM) has a comparative advantage when it comes to Halal Industry because it is the only Muslim region in the Philippines and the natural starting point for the establishment of a halal industry in the country. The region has identified goat production not only for domestic consumption but for export market. Goat production is one of its strengths due to cultural compatibility. There is a high demand for goats during Ramadhan and Eid ul-Adha. The study aimed to provide an overview of the ARMM Halal Goat Industry; to map out the specific supply chain of halal goat, and to analyze the performance of the halal goat supply chain in terms of efficiency, flexibility, and overall responsiveness. It also aimed to identify areas for improvement in the supply chain such as behavioural, institutional, and process to provide recommendations for improvement in the supply chain towards efficient and effective production and marketing of halal goats, subsequently improving the plight of the actors in the supply chain. Generally, the raising of goats is characterized by backyard production (92.02%). There are four interrelated factors affecting significantly the production of goats which are breeding prolificacy, prevalence of diseases, feed abundance and pre-weaning mortality rate. The institutional buyers are mostly traders, restaurants/eateries, supermarkets, and meat shops, among others. The municipalities of Midsayap and Pikit in another region and Parang are the major goat sources and the municipalities in ARMM among others. In addition to the major supply centers, Siquijor, an island province in the Visayas is becoming a key source of goats. Goats are usually gathered by traders/middlemen and brought to the public markets. Meat vendors purchase them directly from raisers, slaughtered and sold fresh in wet markets. It was observed that there is increased demand at 2%/year and that supply is not enough to meet the demand. Farm gate price is 2.04 USD to 2.11 USD/kg liveweight. Industry information is shared by three key participants - raisers, traders and buyers. All respondents reported that information is through personal built-upon past experiences and that there is no full disclosure of information among the key participants in the chain. The information flow in the industry is fragmented in nature such that no total industry picture exists. In the last five years, numerous local and foreign agencies had undertaken several initiatives for the development of the halal goat industry in ARMM. The major issues include productivity which is the greatest challenge, difficulties in accessing technical support channels and lack of market linkage and consolidation. To address the various issues and concerns of the various industry players, there is a need to intensify appropriate technology transfer through extension activities, improve marketing channels by grouping producers, strengthen veterinary services and provide capital windows to improve facilities and reduce logistics and transaction costs in the entire supply chain.Keywords: autonomous region in Muslim Mindanao, halal, halal goat industry, supply chain improvement
Procedia PDF Downloads 340234 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast
Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef
Abstract:
This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast
Procedia PDF Downloads 137233 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 305232 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers
Authors: Oluwatosin M. A. Jesuyon
Abstract:
In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight
Procedia PDF Downloads 204231 Performance of a Lytic Bacteriophage Cocktail against Pseudomonas aeruginosa in Conditions That Simulate the Cystic Fibrosis Lung Environment
Authors: Isaac Martin, Abigail Lark, Sandra Morales, Eric W. Alton, Jane C. Davies
Abstract:
Objectives: The cystic fibrosis (CF) lung is a unique microbiological niche, wherein harmful bacteria persist for many years despite antibiotic therapy. Pseudomonas aeruginosa (Pa), the major culprit leading to lung decline and increased mortality, thrives in the lungs of patients with CF due to several factors that have been linked with poor antibiotic performance. Our group is investigating alternative therapies including bacteriophage cocktails with which we have previously demonstrated efficacy against planktonic organisms. In this study, we explored the effects of a 4-phage cocktail on Pa grown in two different conditions, intended to mirror the CF lung: a) alongside standard antibiotic treatment in pre-formed biofilms (structures formed by Pa-secreted exopolysaccharides which provide both physical and cell division barriers to antimicrobials and host defenses and b) in an acidic environment postulated to be present in the CF airway due both to the primary defect in bicarbonate secretion and secondary effects of inflammation. Methods: 16 Pa strains from CF patients at the Royal Brompton Hospital were selected based on sensitivity to a) ceftazidime/ tobramycin and b) the phage cocktail in a conventional plaque assay. To assess efficacy of phage in biofilms, 96 well plates with Pa (5x10⁷ CFU/ ml) were incubated in static conditions, allowing adherent bacterial colonies to form for 24 hr. Ceftazidime and tobramycin (both at 2 × MIC) were added, +/- bacteriophage (4x10⁸ PFU/mL) for a further 24 hr. Cell viability and biomass were estimated using fluorescent resazurin and crystal violet assays, respectively. To evaluate the effect of pH, strains were grown planktonically in shaking 96 well plates at pH 6.0, 6.6, 7.0 and 7.5 with tobramycin or phage, at varying concentrations. Cell viability was quantified by fluorescent resazurin assay. Results: For the biofilm assay, treatment groups were compared with untreated controls and expressed as percent reduction in cell viability and biomass. Addition of the 4-phage cocktail resulted in a 1.3-fold reduction in cell viability and 1.7-fold reduction in biomass (p < 0.001) when compared to standard antibiotic treatment alone. Notably, there was a 50 ± 15% reduction in cell viability and 60 ± 12% reduction in biomass (95% CI) for the 4 biofilms demonstrating the most resistance to antibiotic treatment. 83% of strains tested (n=6) showed decreased bacterial killing by tobramycin at acidic pHs (p < 0.01). However, 25% of strains (n=12) showed improved phage killing at acidic pHs (p < 0.05), with none showing the pattern of reduced efficacy at acidic pH demonstrated by tobramycin. Conclusion: The 4-phage anti-Pa cocktail tested against Pa performs well in pre-formed biofilms and in acidic environments; two conditions intended to mimic the CF lung. To our knowledge, these are the first data looking at the effects of subtle pH changes on phage-mediated bacterial killing in the context of Pa infection. These findings contribute to a growing body of evidence supporting the use of nebulised lytic bacteriophage as a treatment in the context of lung infection.Keywords: biofilm, cystic fibrosis, pH, Pseudomonas aeruginosa, lytic bacteriophage
Procedia PDF Downloads 181230 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 67229 In vitro and in vivo Effects of 'Sonneratia alba' Extract against the Fish Pathogen 'Aphanomyces invadans'
Authors: S. F. Afzali, W. L. Wong
Abstract:
The epizootic ulcerative syndrome (EUS) causes by the oomycete fungus, Aphanomyces invadans; known to be one of the infectious fish diseases for farmed and wild fishes in fresh and brackish-water from the Asia-pacific region, America and Africa. Although, EUS had been documented by the Office International des Epizooties (OIE) since 1995, hitherto, there is neither standard chemical agents that can be used for successful treatment of this destructive infection in the time of outbreak; nor available vaccine for prevention. Plant-based remedies in controlling fish diseases are gaining much attention recently as an alternative to chemical treatments, which possess negative effects to the environment and human. In present study, Sonneratia alba, a mangrove plant belongs to the Sonneratiaceae family, was screened in vitro and in vivo for its antifungal activity against A. invadans mycelium growth and its effects on fish innate immune system and disease resistant. The in vitro tests was performed using the disc diffusion methods with measurements of minimum inhibitory concentration (MIC) and inhibition zone. For in vivo study, the S. alba extract supplemented diets were administrated at 0.0, 1.0%, 3.0%, and 5.0% on healthy goldfish, Carassius auratus, which challenged with A. invadans zoospores (100 spores/ml). To compare the significant differences in the hematological and immunological parameters obtained from the experiments, the data were analysed using the SPSS. The methanol extract of S. alba effectively inhibited the mycelial growth of A. invadans at a minimum concentration of 1000 ppm for agar and filter paper diffusion experiments. In the agar diffusion test, 500 ppm of the extract inhibited the fungus mycelial growth up to 96 hours after exposure. The mycelial growth from the edge of the pre-inoculated A. invadans agar discs treated with S. alba extracts at concentrations of 100, 500 and 1000 ppm were 15, 8 and 0 mm respectively. The results of the filter paper disc test showed that the S. alba extract at its minimal inhibitory concentration (1000 ppm) has similar qualitative inhibitory effect as malachite green at 1 ppm and formalin at 250 ppm. According to the in vivo tests findings, in the infected fish fed with 3.0% and 5.0% supplementation diet, the numbers of white blood cell and myeloperoxidase activity significantly increased after the second week of treatment. Whilst the numbers of red blood cell significantly decreased in the infected fish fed with 0.0 and 1.0% supplementation diet. After the third week of feeding, significant increases in the total protein, albumin level, lysozyme activity were recorded in the infected fish fed with 3.0% and 5.0% supplementation diet. Also, the enriched diets increased the survival rate as compared to the untreated group that suffered from 90% mortality. The present study indicated that S. alba extract may inhibit the mycelial growth of A. invadans effectively, suggesting an alternative to other chemotherapeutic agents, which brought much environmental and health concerns to the public, for EUS treatment.Keywords: fungal pathogen, goldfish, organic extract, treatment
Procedia PDF Downloads 291228 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 497227 Contribution of PALB2 and BLM Mutations to Familial Breast Cancer Risk in BRCA1/2 Negative South African Breast Cancer Patients Detected Using High-Resolution Melting Analysis
Authors: N. C. van der Merwe, J. Oosthuizen, M. F. Makhetha, J. Adams, B. K. Dajee, S-R. Schneider
Abstract:
Women representing high-risk breast cancer families, who tested negative for pathogenic mutations in BRCA1 and BRCA2, are four times more likely to develop breast cancer compared to women in the general population. Sequencing of genes involved in genomic stability and DNA repair led to the identification of novel contributors to familial breast cancer risk. These include BLM and PALB2. Bloom's syndrome is a rare homozygous autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia and is associated with breast cancer when in a heterozygous state. PALB2, on the other hand, binds to BRCA2 and together, they partake actively in DNA damage repair. Archived DNA samples of 66 BRCA1/2 negative high-risk breast cancer patients were retrospectively selected based on the presence of an extensive family history of the disease ( > 3 affecteds per family). All coding regions and splice-site boundaries of both genes were screened using High-Resolution Melting Analysis. Samples exhibiting variation were bi-directionally automated Sanger sequenced. The clinical significance of each variant was assessed using various in silico and splice site prediction algorithms. Comprehensive screening identified a total of 11 BLM and 26 PALB2 variants. The variants detected ranged from global to rare and included three novel mutations. Three BLM and two PALB2 likely pathogenic mutations were identified that could account for the disease in these extensive breast cancer families in the absence of BRCA mutations (BLM c.11T > A, p.V4D; BLM c.2603C > T, p.P868L; BLM c.3961G > A, p.V1321I; PALB2 c.421C > T, p.Gln141Ter; PALB2 c.508A > T, p.Arg170Ter). Conclusion: The study confirmed the contribution of pathogenic mutations in BLM and PALB2 to the familial breast cancer burden in South Africa. It explained the presence of the disease in 7.5% of the BRCA1/2 negative families with an extensive family history of breast cancer. Segregation analysis will be performed to confirm the clinical impact of these mutations for each of these families. These results justify the inclusion of both these genes in a comprehensive breast and ovarian next generation sequencing cancer panel and should be screened simultaneously with BRCA1 and BRCA2 as it might explain a significant percentage of familial breast and ovarian cancer in South Africa.Keywords: Bloom Syndrome, familial breast cancer, PALB2, South Africa
Procedia PDF Downloads 238226 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 171225 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method
Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry
Abstract:
The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design
Procedia PDF Downloads 157224 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 154223 Increasing Adherence to Preventative Care Bundles for Healthcare-Associated Infections: The Impact of Nurse Education
Authors: Lauren G. Coggins
Abstract:
Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) are among the most common healthcare-associated infections (HAI), contributing to prolonged lengths of stay, greater costs of patient care, and increased patient mortality. Evidence-based preventative care bundles exist to establish consistent, safe patient-care practices throughout an entire organization, helping to ensure the collective application of care strategies that aim to improve patient outcomes and minimize complications. The cardiac intensive care unit at a nationally ranked teaching and research hospital in the United States exceeded its annual CAUTI and CLABSI targets in the fiscal year 2019, prompting examination into the unit’s infection prevention efforts that included preventative care bundles for both HAIs. Adherence to the CAUTI and CLABSI preventative care bundles was evaluated through frequent audits conducted over three months, using standards and resources from The Joint Commission, a globally recognized leader in quality improvement in healthcare and patient care safety. The bundle elements with the lowest scores were identified as the most commonly missed elements. Three elements from both bundles, six elements in total, served as key content areas for the educational interventions targeted to bedside nurses. The CAUTI elements included appropriate urinary catheter order, appropriate continuation criteria, and urinary catheter care. The CLABSI elements included primary tubing compliance, needleless connector compliance, and dressing change compliance. An integrated, multi-platform education campaign featured content on each CAUTI and CLABSI preventative care bundle in its entirety, with additional reinforcement focused on the lowest scoring elements. One-on-one educational materials included an informational pamphlet, badge buddy, a presentation to reinforce nursing care standards, and real-time application through case studies and electronic health record demonstrations. A digital hub was developed on the hospital’s Intranet for quick access to unit resources, and a bulletin board helped track the number of days since the last CAUTI and CLABSI incident. Audits continued to be conducted throughout the education campaign, and staff were given real-time feedback to address any gaps in adherence. Nearly every nurse in the cardiac intensive care unit received all educational materials, and adherence to all six key bundle elements increased after the implementation of educational interventions. Recommendations from this implementation include providing consistent, comprehensive education across multiple teaching tools and regular audits to track adherence. The multi-platform education campaign brought focus to the evidence-based CAUTI and CLABSI bundles, which in turn will help to reduce CAUTI and CLABSI rates in clinical practice.Keywords: education, healthcare-associated infections, infection, nursing, prevention
Procedia PDF Downloads 120222 Sustainable Design Criteria for Beach Resorts to Enhance Physical Activity That Helps Improve Health and Well-being for Adults in Saudi Arabia
Authors: Noorh Albadi, Salha Khayyat
Abstract:
People's moods and well-being are affected by their environment. The built environment impacts one's level of activity and health. In order to enhance users' physical health, sustainable design strategies have been developed for the physical environment to improve users' health. This study aimed to determine whether adult resorts in Saudi Arabia meet standards that ensure physical wellness to identify the needed requirements. It will be significant to the Ministry of Tourism, Sports, developers, and designers. Physical activity affects human health physically and mentally. In Saudi Arabia, the percentage of people who practiced sports in the Kingdom in 2019 was 20.04% - males and females older than 15. On the other hand, there is a lack of physical activity in Saudi Arabia; 90% of the Kingdom's population spends more than two hours sitting down without moving, which puts them at risk of contracting a non-communicable disease. The lack of physical activity and movement led to an increase in the rate of obesity among Saudis by 59% in 2020 and consequently could cause chronic diseases or death. The literature generally endorses that leading an active lifestyle improves physical health and affects mental health. Therefore, the United Nations has set 17 sustainable development goals (SDGs) to ensure healthy lives and promote well-being for all ages. One of SDG3's targets is reducing mortality, which can be achieved by raising physical activity. In order to support sustainable design, many rating systems and strategies have been developed, such as WELL building, Leadership in Energy and Environmental Design, (LEED), Active design strategies, and RIPA plan of work. The survey was used to gather qualitative and quantitative information. It was designed based on the Active Design and WELL building theories targeting beach resorts visitors, professional and beginner athletes, and non-athletics to ask them about the beach resorts they visited in the Kingdom and whether they met the criteria of sports resorts and healthy and active design theories, in addition to gathering information about the preferences of physical activities in the Saudi society in terms of the type of activities that young people prefer, where they prefer to engage in and under any thermal and light conditions. The final section asks about the design of residential units in beach sports resorts, the data collected from 127 participants. Findings revealed that participants prefer outdoor activities in moderate weather and sunlight or the evening with moderate and sufficient lighting and that no beach sports resorts in the country are constructed to support sustainable design criteria for physical activity. Participants agreed that several measures that lessen tension at beach resorts and enhance movement and activity are needed by Saudi society. The study recommends designing resorts that meet the sustainable design criteria regarding physical activity in Saudi Arabia to increase physical activity to achieve psychological and physical benefits and avoid psychological and physical diseases related to physical inactivity.Keywords: sustainable design, SDGs, active design strategies, well building, beach resort design
Procedia PDF Downloads 126221 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses
Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux
Abstract:
Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide
Procedia PDF Downloads 149220 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber
Procedia PDF Downloads 270219 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding
Procedia PDF Downloads 303218 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 182217 Data Mining in Healthcare for Predictive Analytics
Authors: Ruzanna Muradyan
Abstract:
Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health
Procedia PDF Downloads 66216 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth
Authors: Ella Tyuryumina, Alexey Neznanov
Abstract:
This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival
Procedia PDF Downloads 344215 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation
Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi
Abstract:
Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 86