Search results for: timber shear modulus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1998

Search results for: timber shear modulus

1698 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 76
1697 Theoretical Method for Full Ab-Initio Calculation of Rhenium Carbide Compound

Authors: D.Rached, M.Rabah

Abstract:

First principles calculations are carried out to investigate the structural, electronic, and elastic properties of the utraincompressible materials, namely, noble metal carbide of Rhenium carbide (ReC) in four phases, the rocksalt (NaCl-B1), zinc blende (ZB-B2), the tungsten carbide(Bh) (WC), and the nickel arsenide (NiAs-B8).The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus its pressure derivate, and the hardness of ReC in these phases are systematically predicted by calculations from first–principles. The corresponding calculated bulk modulus is comparable with that of diamond, especially for the B8 –type rhenium carbide (ReC), the incompressibility along the c axis is demonstrated to exceed the linear incompressibility of diamond. Our calculations confirm in the nickel arsenide (B8) structure the ReC is found to be stable with a large bulk modulus B=440 GPa and the tungsten carbide (WC) structure becomes the most more favourable with to respect B3 and B1 structures, which ReC- WC is meta-stable. Furthermore, the highest bulk modulus values in the zinc blende (B3), rock salt (B1), tungsten carbide (WC), and the nickel arsenide (B8) structures (294GPa, 401GPa, 415GPa and 447 GPa, respectively) indicates that ReC is a hard material, and is superhard compound H(B8)= 36 GPa compared with the H(diamond)=96 GPa and H(c BN)=63.10 GPa.

Keywords: DFT, FP-LMTO, mechanical properties, elasticity, high pressure, thermodynamic properties, hard material

Procedia PDF Downloads 434
1696 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi

Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu

Abstract:

Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.

Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect

Procedia PDF Downloads 174
1695 Finite Element Modelling of Log Wall Corner Joints

Authors: Reza Kalantari, Ghazanfarah Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. 8% variability is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia PDF Downloads 208
1694 Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms

Authors: Khalil Khanafer

Abstract:

The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1.

Keywords: elastic modulus, MMPs/TIMPs levels, Ascending Thoracic Aortic Aneurysm

Procedia PDF Downloads 152
1693 Stiffness and Modulus of Subgrade Reaction of the Soft Soil Improved by Stone Columns

Authors: Sudheer Kumar J., Sudhanshu Sharma

Abstract:

Stone columns are extensively used as constructive and environmentally sustainable improvement methods for improving stiffness, modulus of subgrade reaction, and maximum lateral displacement in the multilayer soil system. The advantage of using stone columns in improving the single-layer soft soil as a ground reinforcement element for supporting various structures up to shallow depth is well researched, but the understanding of strengthening the multiplayer soil system for a deeper level requires further studies. In this paper, a series of cases have been conducted to study the behaviour of ordinary stone columns (OSC), geosynthetic encased stone columns (GESC) over various objectives for strengthening multilayer soil system up to deep level. A finite element analyses were carried out using the software package PLAXIS to study further correlate the results. The study aims to find the stiffness of composite soil, modulus of subgrade reaction, which is generally required for designing of various foundations, and also discusses the maximum horizontal displacement location, which is the major failure criteria seen after the installation of stone columns.

Keywords: stone columns, geotextile, finite element method, stiffness, modulus of subgrade reaction, maximum lateral displacement point

Procedia PDF Downloads 129
1692 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion

Authors: L. Mouzai, M. Bouhadef

Abstract:

Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.

Keywords: flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion

Procedia PDF Downloads 192
1691 Forest Harvesting Policies and Practices in Tropical Forest of Terengganu, Malaysia: Industry Experiences

Authors: Mohd Zaki Hamzah, Roslan Rani, Ahmad Bazli Razali, Satiful Bahri Mamat, Abdul Hadi Ripin, Mohd Harun Esa

Abstract:

Ever since 1901, forest management and silviculture practices in Malaysia have been frequently reviewed and updated to take into account changes in forest conditions, markets, timber demand/supply and technical advances that can be achieved in industrial processes, logging and forest harvesting, and currently, the forest management system practiced in Peninsular Malaysia is the Selective Management System (SMS) which was introduced in 1978. This system requires the selection of management regime (felling) based on Pre-Felling Forest Inventory (Pre-F) data to ensure economical harvesting and also ensuring adequate standing stands for subsequent rounds of felling, while maintaining ecological balance and environmental quality. SMS regulates forest harvesting through area and volume controls, with the cutting cycle 30 years. Most of the forest management units (FMU) (in Peninsular Malaysia) implementing SMS have been certified by Forest Stewardship Council (FSC) and/or Program for Endorsement of Forest Certification (PEFC), and one such FMU belongs to Kumpulan Pengurusan Kayu Kayan Terengganu (KPKKT). KPKKT, a timber management subsidiary of Golden Pharos Berhad (GPB), adopts the SMS to manage its 108,900 ha of timber concessionary areas in its role as logs’ supplier for the consumption of three subsidiaries of GPB. KPKKT is also responsible for the sustainable development and management of its concession in accordance with the Sustainable Forest Management (SFM) standards to ensure that it addresses the loss of forest cover and forest degradation, forest-based economic, social and environmental benefits, and ecologically protecting forests while mobilising financial resources for the implementation of sustainable forest management planning, harvesting, monitoring and the marketing of products. This paper will detail out the management and harvesting guidelines imposed by the controlling government agency, and harvesting processes taken by KPKKT to comply with guidelines and eventually supplying timber to the relevant subsidiaries (downstream mills under GPB).

Keywords: sustainable forest management, silviculture, reduce impact logging, forest certification

Procedia PDF Downloads 91
1690 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 399
1689 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall

Authors: Hamid Nikzad, Shinta Yoshitomi

Abstract:

In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteria

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 153
1688 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software

Procedia PDF Downloads 120
1687 Soil Reinforcement by Fibers Using Triaxial Compression Test

Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima

Abstract:

In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.

Keywords: soil, monotonic, triaxial test, root fiber, undrained

Procedia PDF Downloads 409
1686 Influence of Shear Parameter on Liquefaction Susceptibility of Ramsar Sand

Authors: Siavash Salamatpoor, Hossein Motaghedi, Jr., Mehrdad Nategh

Abstract:

In this study, undrained triaxial tests under anisotropic consolidation were conducted on the reconstituted samples of Ramsar sand, which underlies a densely populated, seismic region of the southern coast of Caspian Sea in Mazandaran province, Iran. Ramsar costal city is regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. The specimens were consolidated anisotropically to simulate initial shear stress which is mobilized due to surface constructions. Different states of soil behavior were obtained by applying different levels of initial relative density, shear stress, and effective stress. It is shown that Ramsar clean sand can experience the whole possible states of liquefiable soils i.e. fully liquefaction, limited liquefaction, and dilation behaviors. It would be shown that by increasing the shear parameter in high confine pressure, the liquefaction susceptibility has increased while for low confine pressure it would be vice versa.

Keywords: anisotropic, triaxial test, shear parameter, static liquefaction

Procedia PDF Downloads 406
1685 Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation

Authors: K. Kong, E. Ferrier, L. Michel

Abstract:

The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRC-CFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams.

Keywords: carbon fibre-reinforced polymer (CFRP) bars, creep behaviour, glulam, ultra-high performance fibre reinforced concrete (UHPFRC)

Procedia PDF Downloads 401
1684 Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels

Authors: Velázquez Alejandro, Pradhan Sujan, Yoon Rokhyun, Sanada Yasushi

Abstract:

The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill.

Keywords: analytical model, multi spring, performance evaluation, reinforced concrete, rocking mechanism, wooden wall

Procedia PDF Downloads 101
1683 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells

Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin

Abstract:

Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.

Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology

Procedia PDF Downloads 374
1682 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity

Procedia PDF Downloads 437
1681 Comparative Performance Study of Steel Plate Shear Wall with Reinforced Concrete Shear Wall

Authors: Amit S. Chauhan, S. Mandal

Abstract:

The structural response of shear walls subjected to various types of loads is difficult to predict precisely. They are incorporated in buildings to resist lateral forces and support the gravity loads. The steel plate shear walls (SPSWs) are used as lateral load resisting systems for buildings and acts as an alternative to reinforced concrete shear walls (RCSWs). This paper compares the behavior of SPSW with the RCSW incorporated in a building frame having G+6 storey, located in Zone III, using the technique of Equivalent Static Method (ESM) as per Indian Standard Criteria For Earthquake Resistant Design of Structures IS 1893:2002. This paper intends to evaluate several parameters such as lateral displacement at tip, inter-storey drift, weight of steel and volume of concrete with the alteration of the shear wall with respect to different types viz., SPSW and RCSW. The strip model employed in this study is a widely accepted analytical tool for SPSW analysis. SPSW can be modelled as truss members by using a series of diagonal tension strips positioned at 45-degree angles. In this paper, by replacing the SPSWs with the tension strips, the G+6 building has been analyzed using STAAD.Pro V8i. Based on the present study, it can be concluded that structure with SPSWs is much better then structure with RCSWs.

Keywords: equivalent static method, inter-storey drift, lateral displacement, Steel plate shear wall, strip model

Procedia PDF Downloads 240
1680 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 226
1679 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.

Keywords: deflection curves, foamed concrete (FC), load-strain relationships, precast foamed concrete sandwich panel (PFCSP), slenderness ratio, vertical in-plane shear strength capacity

Procedia PDF Downloads 212
1678 Application of Shape Memory Alloy as Shear Connector in Composite Bridges: Overview of State-of-the-Art

Authors: Apurwa Rastogi, Anant Parghi

Abstract:

Shape memory alloys (SMAs) are memory metals with a high calibre to outperform as a civil construction material. They showcase novel functionality of undergoing large deformations and self-healing capability (pseudoelasticity) that leads to its emerging applications in a variety of areas. In the existing literature, most of the studies focused on the behaviour of SMA when used in critical regions of the smart buildings/bridges designed to withstand severe earthquakes without collapse and also its various applications in retrofitting works. However, despite having high ductility, their uses as construction joints and shear connectors in composite bridges are still unexplored in the research domain. This article presents to gain a broad outlook on whether SMAs can be partially used as shear connectors in composite bridges. In this regard, existing papers on the characteristics of shear connectors in the composite bridges will be discussed thoroughly and matched with the fundamental characteristics and properties of SMA. Since due to the high strength, stiffness, and ductility phenomena of SMAs, it is expected to be a good material for the shear connectors in composite bridges, and the collected evidence encourages the prior scrutiny of its partial use in the composite constructions. Based on the comprehensive review, important and necessary conclusions will be affirmed, and further emergence of research direction on the use of SMA will be discussed. This opens the window of new possibilities of using smart materials to enhance the performance of bridges even more in the near future.

Keywords: composite bridges, ductility, pseudoelasticity, shape memory alloy, shear connectors

Procedia PDF Downloads 185
1677 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections

Authors: Musa H. Arslan

Abstract:

Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.

Keywords: anchor dowel, concrete, damage, reinforced concrete, shear wall, frame

Procedia PDF Downloads 362
1676 An Experimental Study of the Influence of Particle Breakage on the Interface Friction Angle and Shear Strength of Carbonate Sands

Authors: Ruben Dario Tovar-Valencia, Eshan Ganju, Fei Han, Monica Prezzi, Rodrigo Salgado

Abstract:

Particle breakage occurs even in strong silica sand particles. There is compelling evidence that suggests that particle breakage causes changes in several properties such as permeability, peak strength, dilatancy and critical state friction angle. Current pile design methods that are based on soil properties do not account for particle breakage that occurs during driving or jacking of displacement piles. This may lead to significant overestimation of pile capacity in sands dominated by particles susceptible to breakage, such as carbonate sands. The objective of this paper is to study the influence of shear displacement on particle breakage and friction angle of carbonate sands, and to furthermore quantify the change in friction angle observed with different levels of particle breakage. To study the phenomenon of particle breakage, multiple ring shear tests have been performed at different levels of vertical confinement on a thoroughly characterized carbonate sand to find i) the shear displacement necessary to reach stable friction angles and ii) the effect of particle breakage on the mobilized friction angle of the tested sand. The findings of this study can potentially be used to update the current pile design methods by developing a friction angle which is a function of shear displacement and breakage characteristics of the sand instead of being a constant value.

Keywords: breakage, carbonate sand, friction angle, pile design, ring shear test

Procedia PDF Downloads 299
1675 Nonlinear Analysis of Steel Fiber Reinforced Concrete Frames Considering Shear Behaviour of Members under Varying Axial Load

Authors: Habib Akbarzadeh Bengar, Mohammad Asadi Kiadehi, Ali Rameeh

Abstract:

The result of the past earthquakes has shown that insufficient amount of stirrups and brittle behavior of concrete lead to the shear and flexural failure in reinforced concrete (RC) members. In this paper, an analytical model proposed to predict the nonlinear behavior of RC and SFRC elements and frames. In this model, some important parameter such as shear effect, varying axial load, and longitudinal bar buckling are considered. The results of analytical model were verified with experimental tests. The results of verification have shown that the proposed analytical model can predict the nonlinear behavior of RC and SFRC members and also frames accurately. In addition, the results have shown that use of steel fibers increased bearing capacity and ductility of RC frame. Due to this enhancement in shear strength and ductility, insufficient amount of stirrups, which resulted in shear failure, can be offset with usage of the steel fibers. In addition to the steps taken, to analyze the effects of fibers percentages on the bearing capacity and ductility of frames parametric studies have been performed to investigate of these effects.

Keywords: nonlinear analysis, SFRC frame, shear failure, varying an axial load

Procedia PDF Downloads 212
1674 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results.

Keywords: cold-formed steel, finite element analysis, opening, reinforcement, shear resistance

Procedia PDF Downloads 280
1673 Computational Modeling of Perpendicular to Grain Stress in a Non-Standard Glulam Beam

Authors: Wojciech Gilewski, Anna Al Sabouni-Zawadzka, Jan Pelczynski

Abstract:

This paper focuses on the analysis of tensile stresses perpendicular to the grain in simply supported beams with different geometry made of glued laminated timber. Two types of beams are considered: standard double-tapered beams described in Eurocode 5 and non-standard glulam beams with a flattened apex. The beams are analyzed using two methodology approaches: a code design verification method and a finite element method (FEM) in terms of the linear theory of elasticity with plane stress assumption. The performed analyses proved that both methodologies lead to consistent results in case of standard glulam beams and therefore, the FEM can be used in case of non-standard structures, which are not included in Eurocode 5. Moreover, the FE analysis of the glulam beam with a flattened apex showed that it can be treated as a structure with two apex zones.

Keywords: double-tapered beams, finite element analysis, glued laminated timber, perpendicular to grain stress

Procedia PDF Downloads 229
1672 Comparative Study of the Distribution of Seismic Loads of Buildings with Asymmetries Plan

Authors: Ahmed Hamza Yache

Abstract:

The main purpose of this study is to estimate the distribution of shear forces in building structures with asymmetries in the plan submitted to seismic forces can cause, in this case, simultaneous deformations of translation and torsion. To this end, the distribution of shear forces is obtained by seismic forces calculated from the equivalent static method of the Algerian earthquake code RPA 99 (2003 version) and spectral modal analysis for an irregular building plan without kinks. Comparison of the results obtained by these two methods used to highlight the difference in terms of distributions of shear forces in such structures.

Keywords: structure, irregular, code, seismic, method, force, period

Procedia PDF Downloads 574
1671 Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads

Authors: R. Ziaie Moayed, M. Hossein Zade

Abstract:

Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength.

Keywords: encased stone column, laterally load, ordinary stone column, validation

Procedia PDF Downloads 359
1670 Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind

Authors: Giorgi Dalakishvili, Goderdzi G. Didebulidze, Maya Todua

Abstract:

The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357.

Keywords: in-homogeneous, sporadic E, thermosphere, wind

Procedia PDF Downloads 148
1669 Depth-Averaged Velocity Distribution in Braided Channel Using Calibrating Coefficients

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

Rivers are the backbone of human civilization as well as one of the most important components of nature. In this paper, a method for predicting lateral depth-averaged velocity distribution in a two-flow braided compound channel is proposed. Experiments were conducted to study the boundary shear stress in the tip of the two flow path. The cross-section of the channel is divided into several panels to study the flow phenomenon on both the main channel and the flood plain. It can be inferred from the study that the flow coefficients get affected by boundary shear stress. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress has been taken into account. The SKM is based on hydraulic parameters, which signify the bed friction factor (f), lateral eddy viscosity, and depth-averaged flow. While applying the SKM to different panels, the equations are solved considering the boundary conditions between panels. The boundary shear stress data, which are obtained from experimentation, are compared with CES software, which is based on quasi-one-dimensional Reynold's Averaged Navier-Stokes (RANS) approach.

Keywords: boundary shear stress, lateral depth-averaged velocity, two-flow braided compound channel, velocity distribution

Procedia PDF Downloads 121