Search results for: microbial volatiles
711 Assessment of Microbiological Status of Branded and Street Vended Ice-Cream Offered for Public Consumption: A Comparative Study in Tangail Municipality, Bangladesh
Authors: Afroza Khatun, Masuma, Md. Younus Mia, Kamal Kanta Das
Abstract:
Analysis of the microbial status and physicochemical parameters of some branded and street vended ice cream showed that total viable bacteria in branded ice cream ranged from 4.8×10³ to 1.10×10⁵ cfu/ml, and in street vended ice-cream ranged from 7.5×10⁴ to 1.6×10⁸ cfu/ml. Total coliform bacteria present up to 9.20×10³ cfu/ml in branded ice cream and 5.3×10³ to 9.6×10⁶ cfu/ml observed in street vended ice cream. Total E. coli were found to be present within a range from 0 to 4.5×10³ cfu/ml in branded and 4.1×10² to 7.5×10⁴ cfu/ml in street ice cream. The ranges of Staphylococcus aureus count were 1.8×10² to 2.9×10⁴ cfu/ml (branded) and 3.9×10⁴ to 7.9×10⁶ cfu/ml (street). The pH of both types of ice cream showed acidic to neutral conditions where the concentration of pH for branded ice cream was 5.5 to 6.9, as well as the value of pH in street ice cream, was 6.2 to 7.0. The range of Total soluble solids in several branded ice creams was 26 to 29%, and the value of TSS obtained in street-vended ice-creams ranged from 5 to 10%. The overall results of this research demonstrated that the microbial quality in all street ice creams exceeded the BSTI standard and exhibited lower quality than the industrially produced branded ice creams due to comparatively faulty manufacturing processes and poor hygiene practices. The presence of pathogenic microbes was also observed in branded ice creams which was quite alarming for public health. So it is suggested that the government authorized organization should conduct the proper monitoring system to ensure that both branded and street vended ice-creams are microbiologically safe to prevent public health hazards.Keywords: food safety, microbiological analysis, physicochemical, ice-cream, E. coli, Staphylococcus aureus
Procedia PDF Downloads 82710 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment
Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed
Abstract:
In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water
Procedia PDF Downloads 402709 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar
Authors: Bengi Hakguder Taze, Sevcan Unluturk
Abstract:
Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot
Procedia PDF Downloads 137708 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials
Authors: M. Zafar, S. Rasheed, Imran Hashmi
Abstract:
Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.Keywords: biofilm, DWDs, pipe material, bacterial population
Procedia PDF Downloads 347707 Exploration of Probiotics and Anti-Microbial Agents in Fermented Milk from Pakistani Camel spp. Breeds
Authors: Deeba N. Baig, Ateeqa Ijaz, Saloome Rafiq
Abstract:
Camel is a religious and culturally significant animal in Asian and African regions. In Pakistan Dromedary and Bactrian are common camel breeds. Other than the transportation use, it is a pivotal source of milk and meat. The quality of its milk and meat is predominantly dependent on the geographical location and variety of vegetation available for the diet. Camel milk (CM) is highly nutritious because of its reduced cholesterol and sugar contents along with enhanced minerals and vitamins level. The absence of beta-lactoglobulin (like human milk), makes CM a safer alternative for infants and children having Cow Milk Allergy (CMA). In addition to this, it has a unique probiotic profile both in raw and fermented form. Number of Lactic acid bacteria (LAB) including lactococcus, lactobacillus, enterococcus, streptococcus, weissella, pediococcus and many other bacteria have been detected. From these LAB Lactobacilli, Bifidobacterium and Enterococcus are widely used commercially for fermentation purpose. CM has high therapeutic value as its effectiveness is known against various ailments like fever, arthritis, asthma, gastritis, hepatitis, Jaundice, constipation, postpartum care of women, anti-venom, dropsy etc. It also has anti-diabetic, anti-microbial, antitumor potential along with its robust efficacy in the treatment of auto-immune disorders. Recently, the role of CM has been explored in brain-gut axis for the therapeutics of neurodevelopmental disorders. In this connection, a lot of grey area was available to explore the probiotics and therapeutics latent in the CM available in Pakistan. Thus, current study was designed to explore the predominant probiotic flora and antimicrobial potential of CM from different local breeds of Pakistan. The probiotics have been identified through biochemical, physiological and ribo-typing methods. In addition to this, bacteriocins (antimicrobial-agents) were screened through PCR-based approach. Results of this study revealed that CM from different breeds of camel depicted a number of similar probiotic candidates along with the range of limited variability. However, the nucleotide sequence analysis of selected anti-listerial bacteriocins exposed least variability. As a conclusion, the CM has sufficient probiotic availability and significant anti-microbial potential.Keywords: bacteriocins, camel milk, probiotics potential, therapeutics
Procedia PDF Downloads 133706 Influence of Maturation Degree of Arbutus (Arbutus unedo L.) Fruits in Spirit Composition and Quality
Authors: Goreti Botelho, Filomena Gomes, Fernanda M. Ferreira, Ilda Caldeira
Abstract:
The strawberry tree (Arbutus unedo L.) is a small tree or shrub from botanical Ericaceae family that grows spontaneously nearby the Mediterranean basin and produce edible red fruits. A traditional processed fruit application, in Mediterranean countries, is the production of a spirit (known as aguardente de medronho, in Portugal) obtained from the fermented fruit. The main objective of our study was to contribute to the knowledge about the influence of the degree of maturation of fruits in the volatile composition and quality of arbutus spirit. The major volatiles in the three distillates fractions (head, heart and tail) obtained from fermentation of two different fruit maturation levels were quantified by GC-FID analysis and ANOVA one-way was performed. Additionally, the total antioxidant capacity and total phenolic compounds of both arbutus fruit spirits were determined, by ABTS and Folin-Ciocalteau method, respectively. The methanol concentration is superior (1022.39 g/hL a.a.) in the spirit made from fruits with highest total soluble solids, which is a value above the legal limit (1000 g/hL a.a.). Overall, our study emphasizes, for the first time, the influence of maturation degree of arbutus fruits in the spirit volatile composition and quality.Keywords: arbutus fruit, maturation, quality, spirit
Procedia PDF Downloads 381705 Smelling Our Way through Names: Understanding the Potential of Floral Volatiles as Taxonomic Traits in the Fragrant Ginger Genus Hedychium
Authors: Anupama Sekhar, Preeti Saryan, Vinita Gowda
Abstract:
Plants, due to their sedentary lifestyle, have evolved mechanisms to synthesize a huge diversity of complex, specialized chemical metabolites, a majority of them being volatile organic compounds (VOCs). These VOCs are heavily involved in their biotic and abiotic interactions. Since chemical composition could be under the same selection processes as other morphological characters, we test if VOCs can be used to taxonomically distinguish species in the well-studied, fragrant ginger genus -Hedychium (Zingiberaceae). We propose that variations in the volatile profiles are suggestive of adaptation to divergent environments, and their presence could be explained by either phylogenetic conservatism or ecological factors. In this study, we investigate the volatile chemistry within Hedychium, which is endemic to Asian palaeotropics. We used an unsupervised clustering approach which clearly distinguished most taxa, and we used ancestral state reconstruction to estimate phylogenetic signals and chemical trait evolution in the genus. We propose that taxonomically, the chemical composition could aid in species identification, especially in species complexes where taxa are not morphologically distinguishable, and extensive, targeted chemical libraries will help in this effort.Keywords: chemotaxonomy, dynamic headspace sampling, floral fragrance, floral volatile evolution, gingers, Hedychium
Procedia PDF Downloads 95704 From Edible Products to Disinfecting Currency Notes
Authors: Aniruddha Hore, Saptarshi Mitra, Sandip Ghosh, Sujoy Bose, Avijit Ghosh
Abstract:
The Indian rupee is the official currency of India. With time, science and technology got advanced, and our society is slowly making its way to a cashless mode of transaction. But as India is still a developing country, a large part of our society still depends on transaction through cash. During times of pandemics, we came to understand that everything that we touch is not safe from microbial contamination. The Indian currency is also not an exception. The Indian currency is the modern-day medium of harmful bacterial as well as other microbial contaminations resulting in diseases in human bodies. Therefore, the need came to make the currency disinfectant to give our people a healthier lifestyle. The main focus of the study is to develop a solution that, when applied to the currency notes, will kill the persisting bacteria or microbes present in the notes. So various natural edible products were used in order to prepare the solution, which is highly effective against the presence of harmful bacteria such as E. coli and S. aureus. The antibacterial activity of these natural ingredients is not unknown to us, so extracts from those products were mixed together to form a solution which was made the Indian currency notes antibacterial for 20min approx. The solution was creating a layer on the surface of currency notes, therefore, making it antibacterial for a given duration of time, i.e., no bacterial growth was seen during the time period of 20 minutes, therefore, making it safe for the usage of human hands.Keywords: Indian currency, antibacterial property of Indian currency, surface coating, currency disinfectant
Procedia PDF Downloads 127703 Functional Poly(Hedral Oligomeric Silsesquioxane) Nano-Spacer to Boost Quantum Resistive Vapour Sensors’ Sensitivity and Selectivity
Authors: Jean-Francois Feller
Abstract:
The analysis of the volatolome emitted by the human body with a sensor array (e-nose) is a method for clinical applications full of promises to make an olfactive fingerprint characteristic of people's health state. But the amount of volatile organic compounds (VOC) to detect, being in the range of parts per billion (ppb), and their diversity (several hundred) justifies developing ever more sensitive and selective vapor sensors to improve the discrimination ability of the e-nose, is still of interest. Quantum resistive vapour sensors (vQRS) made with nanostructured conductive polymer nanocomposite transducers have shown a great versatility in both their fabrication and operation to detect volatiles of interest such as cancer biomarkers. However, it has been shown that their chemo-resistive response was highly dependent on the quality of the inter-particular junctions in the percolated architecture. The present work investigates the effectiveness of poly(hedral oligomeric silsesquioxane) acting as a nanospacer to amplify the disconnectability of the conducting network and thus maximize the vQRS's sensitivity to VOC.Keywords: volatolome, quantum resistive vapour sensor, nanostructured conductive polymer nanocomposites, olfactive diagnosis
Procedia PDF Downloads 20702 Bioremediation of Disposed X-Ray Film for Nanoparticles Production
Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen
Abstract:
The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD
Procedia PDF Downloads 483701 Determinants of House Dust, Endotoxin, and β- (1→ 3)-D-Glucan in Homes of Turkish Children
Authors: Afsoun Nikravan, Parisa Babaei, Gulen Gullu
Abstract:
We aimed to study the association between house dust endotoxin, β-(1→3)-D-glucan, and asthma in a sample representative of the Turkish population. We analyzed data from 240 participants. The house dust was collected from the homes of 110 asthmatics and 130 control (without asthma) school-aged children (6-11 years old). House dust from the living room and from bedroom floors were analyzed for endotoxin and beta-glucan contents. House dust was analyzed for endotoxin content by the kinetic limulus amoebocyte lysate assay and for β-(1→3)-D-glucan by the inhibition enzyme immunoassay. The parents answered questions regarding potential determinants. We found geometric means 187.5 mg/m² for dust. According to statistical values, the endotoxin geometric mean was 13.86×103 EU/g for the control group and 6.16×103 EU/g for the asthma group. As a result, the amount of bacterial endotoxin was measured at a higher level in the homes of children without asthma. The geometric mean for beta-glucan was 46.52 µg/g and 44.39 µg/g for asthma and control groups, respectively. No associations between asthma and microbial agents were observed in Turkish children. High correlations (r > 0.75) were found between floor dust and endotoxin loads, while endotoxin and β-(1→3)-D-glucan concentrations were not correlated. The type of flooring (hard-surface or textile) was the strongest determinant for loads of floor dust and concentrations of endotoxin. Water damage and dampness at home were determinants of β-(1→3)-D-glucan concentrations. Endotoxin and β-(1→3)-D-glucan concentrations in Turkish house dust might lower than concentrations seen in other European countries.Keywords: indoor air quality, asthma, microbial pollutants, case-control
Procedia PDF Downloads 124700 Distribution of Current Emerging Contaminants in South Africa Surface and Groundwater
Authors: Jou-An Chen, Julio Castillo, Errol Duncan Cason, Gabre Kemp, Leana Esterhuizen, Angel Valverde Portal, Esta Van Heerden
Abstract:
Emerging contaminants (EC) such as pharmaceutical and personal care products have been accumulating for years in water bodies all over the world. However, very little is known about the occurrences, levels, and effects of ECs in South African water resources. This study provides an initial assessment of the distribution of eight ECs (Acetaminophen, Atrazine, Terbuthlyazine, Carbamazepine, Phenyton, Sulfmethoxazole, Nevirapine and Fluconozole) in fifteen water sources from the Free State and Easter Cape provinces of South Africa. Overall, the physiochemical conditions were different in surface and groundwater samples, with concentrations of several elements such as B, Ca, Mg, Na, NO3, and TDS been statistically higher in groundwater. In contrast, ECs levels, quantified at ng/mL using the LC/MS/ESI, were much lower in groundwater samples. The ECs with higher contamination levels were Carbamazepine, Sulfmethoxazole, Nevirapine, and Terbuthlyazine, while the most widespread were Sulfmethoxazole and Fluconozole, detected in all surface and groundwater samples. Fecal and E. coli tests indicated that surface water was more contaminated than groundwater. Microbial communities, assessed using NGS, were dominated by the phyla Proteobacteria and Bacteroidetes, in both surface and groundwater. Actinobacteria, Planctomycetes, and Cyanobacteria, were more dominant in surface water, while Verrucomicrobia were overrepresented in groundwater. In conclusion, ECs contamination is closely associated with human activities (human wastes). The microbial diversity identified can suggest possible biodegradation processes.Keywords: emerging contaminants, EC, personal care products, pharmaceuticals, natural attenuation process
Procedia PDF Downloads 218699 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery
Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi
Abstract:
Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell
Procedia PDF Downloads 116698 Comparative Effects of Convective Drying on the Qualities of Some Leafy Vegetables
Authors: Iyiola Olusola Oluwaleye, Samson A. Adeleye, Omojola Awogbemi
Abstract:
This paper reports an investigation of the comparative effects of drying on the quality of some leafy vegetables at three different temperatures namely: 50ᵒC, 60ᵒC and 70ᵒC. The vegetables investigated are spinach (Amaranthus cruentus); water leaf (Talinum triangulare); lettuce (Lactuca satuva); and fluted pumpkin (Telfaria occidentalis). These vegetables are available in abundance during raining season and are commonly consumed by average Nigerians. A convective dryer was used for the drying process at the stipulated temperatures which were maintained with the aid of a thermostat. The vegetable samples after washing was cut into smaller sizes of 0.4 cm-0.5 cm and loaded into the drying cage of the convective dryer. The daily duration of the drying is six hours from 9:00 am to 3:00 pm. The dried samples were thereafter subjected to microbial and proximate analyses. The result of the tests shows that the microbial load decreases as the drying temperature increases. As temperature increases, the moisture content and carbohydrate of all the samples decreases while the crude fiber, ash and protein increases. Percentage fat content decreases as drying temperature increases with the exception of fluted pumpkin. The shelf life of the vegetable samples increase with drying temperature, Spinach has the lowest shelf life followed by Fluted Pumpkin, followed by lettuce while Water Leaf has the highest shelf life at the three drying temperatures of 50ᵒC, 60ᵒC and 70ᵒC respectively.Keywords: convective drying, leafy vegetables, quality, shelf life
Procedia PDF Downloads 264697 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis
Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic
Abstract:
3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering
Procedia PDF Downloads 247696 Comparative Effect of Microbial Phytase Supplementation on Layer Chickens Fed Diets with Required or Low Phosphorous Level
Authors: Hamada Ahmed, Mervat A. Abdel-Latif, Alaa. A. Ghoraba, Samah A. Ganna
Abstract:
An experiment was conducted to determine the effect of microbial phytase (Quantum Blue®) supplementation on layer chickens fed diets with required or low phosphorous level in corn-soybean based diets. One hundred and sixteen 23-week-old Lohman brown laying hens were used in 8-week feeding trial. Hens were randomly allotted into four treatments where the group (1) (control group) was fed basal diet without phytase, group (2) fed basal diet supplemented with phytase, group (3) fed diet supplemented with phytase as a replacement of 25% of monocalcium phosphate and group (4) fed diet supplemented with phytase as a replacement of 50% of monocalcium phosphate. Records on daily egg production, egg mass, egg weight and body weight of hens at the end of experimental period were recorded. Results revealed no significant (p ≥ 0.05) differences were observed among the other dietary treatments in BW, egg production, egg mass, feed intake or feed conversion when these parameters were evaluated over the duration of the experiment while egg weight showed significant (p < 0.05) increase in all phytase supplemented groups. There was no significant (p ≥ 0.05) differences in egg quality including egg length, egg width, egg shape index, yolk height, yolk width, yolk index, yolk weight and yolk albumin ratio while egg albumin was significantly increased (p < 0.05) in group (2) and group (3). Egg shell weight increased significantly (p < 0.05) in all phytase supplemented groups when compared with the control group also shell thickness increased significantly (p < 0.05) in both group (2 &3). No significant (P ≥ 0.05) difference was observed in serum Ca, P level while alkaline phosphatase was significantly (P ˂ 0.05) increased in group (3). Egg shell analysis showed increase in egg shell ash% in all phytase supplemented groups when compared with the control group, egg shell calcium % was higher in group (3) and group (4) than the control group while group (2) showed lower egg shell calcium% than the other experimental groups, egg shell phosphorous% was higher in all phytase supplemented groups than the control group. Phosphorous digestability was significantly (P ˂ 0.05) increased in all phytase supplemented groups than the control group and the highest p digestability was in group (4). Calcium digestability showed significant (P ˂ 0.05) increase in all phytase supplemented groups when compared with the control group and the highest digetability was in group (4).Keywords: layers, microbial phytase, Ca and P availability, egg production, egg characteristics
Procedia PDF Downloads 187695 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage
Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem
Abstract:
Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.Keywords: natural antioxidants, lipid oxidation, quality, camel meat
Procedia PDF Downloads 433694 Dehalogenation of Aromatic Compounds in Wastewater by Bacterial Cultures
Authors: Anne Elain, Magali Le Fellic
Abstract:
Halogenated Aromatic Compounds (HAC) are major organic pollutants that are detected in several environmental compartments as a result of their widespread use as solvents, pesticides and other industrial chemicals. The degradation of HAC simultaneously at low temperature and under saline conditions would be useful for remediation of polluted sites. Hence, microbial processes based on the metabolic activities of anaerobic bacteria are especially attractive from an economic and environmental point of view. Metabolites are generally less toxic, less likely to bioaccumulate and more susceptible for further degradation. Studies on biological reductive dehalogenation have largely been restricted to chlorinated compounds while relatively few have focussed on other HAC i.e., fluorinated, brominated or iodinated compounds. The objectives of the present work were to investigate the biodegradation of a mixture of triiodoaromatic molecules in industrial wastewater by an enriched bacterial consortium. Biodegradation of the mixture was studied during batch experiments in an anaerobic reactor. The degree of mineralization and recovery of halogen were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron donor was found to stimulate anaerobic reductive dehalogenation of HAC with a deiodination rate up to 12.4 mg.L-1 per day. Sodium chloride even at high concentration (10 mM) was found to have no influence on the degradation rates nor on the microbial viability. An analysis of the 16S rDNA (MicroSeq®) revealed that at least 6 bacteria were predominant in the enrichment, including Pseudomonas aeruginosa, Pseudomonas monteilii, Kocuria rhizophila, Ochrobacterium anthropi, Ralstonia pickettii and Rhizobium rhizogenes.Keywords: halogenated aromatics, anaerobic biodegradation, deiodination, bacterial consortium
Procedia PDF Downloads 177693 A Study of Anoxic - Oxic Microbiological Technology for Treatment of Heavy Oily Refinery Wastewater
Authors: Di Wang, Li Fang, Shengyu Fang, Jianhua Li, Honghong Dong, Zhongzhi Zhang
Abstract:
Heavy oily refinery wastewater with the characteristics of high concentration of toxic organic pollutant, poor biodegradability and complicated dissolved recalcitrant compounds is intractable to be degraded. In order to reduce the concentrations of COD and total nitrogen pollutants which are the major pollutants in heavy oily refinery wastewater, the Anoxic - Oxic microbiological technology relies mainly on anaerobic microbial reactor which works with methanogenic archaea mainly that can convert organic pollutants to methane gas, and supplemented by aerobic treatment. The results of continuous operation for 2 months with a hydraulic retention time (HRT) of 60h showed that, the COD concentration from influent water of anaerobic reactor and effluent water from aerobic reactor were 547.8mg/L and 93.85mg/L, respectively. The total removal rate of COD was up to 84.9%. Compared with the 46.71mg/L of total nitrogen pollutants in influent water of anaerobic reactor, the concentration of effluent water of aerobic reactor decreased to 14.11mg/L. In addition, the average removal rate of total nitrogen pollutants reached as high as 69.8%. Based on the data displayed, Anoxic - Oxic microbial technology shows a great potential to dispose heavy oil sewage in energy saving and high-efficiency of biodegradation.Keywords: anoxic - oxic microbiological technology, COD, heavy oily refinery wastewater, total nitrogen pollutant
Procedia PDF Downloads 493692 Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait
Authors: Abu Salim Mustafa
Abstract:
Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.Keywords: drinking water, microbial contaminant, 16S rDNA, Kuwait
Procedia PDF Downloads 155691 Intestine Characteristics and Blood Profile of Broiler Chickens Treated with Garlic
Authors: Mary Anthony Oguike, Ilouno, Amaduruonye
Abstract:
A completely randomized design experiment with 3 treatments was conducted to study the effects of garlic on intestine characteristics, haematology and serum biochemistry of Marshal broilers. Thirty three (33) broiler chicks were randomly allotted to each treatment designated T1, T2 and T3. The birds in each treatment were replicated 3 times with 11 broilers per replicate. They were fed diets supplemented with garlic at 0, 1.5 and 2.5 % /kg feed for t1, T2 and T3, respectively with T1 as control. Data were collected on intestine parameters, serum biochemical parameters and haematological indices. The results showed significant (P>0.05) dose-dependent decrease in intestine weight and caeca microbial load of the broilers. The intestine of broilers in the treatments showed normal histological architecture in all the treatments. The red blood cell (RBC), white blood cell (WBC), haemoglobin (Hb) and other haematological indices showed no significant differences (P<0.05) among the treatments. Cholesterol, globulin, glucose and alanin aminotransferase (ALT) were significantly different (P<0.05) among the treatment groups. Serum biochemical parameters such as, total protein albumin, bilirubin and others were not significant among the treatments. All the blood parameters studied fall within the normal range for broilers. Garlic supplementation in the diets of broilers did not have any detrimental effects on the treated birds since their serum biochemistry and haematology fall within the normal range for broilers birds. The microbial examination of intestine and caeca, as well as the histopathological studies of the intestine confirmed antimicrobial properties of garlic.Keywords: broiler, biochemistry and haematology, garlic, intestine
Procedia PDF Downloads 96690 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts
Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.
Abstract:
The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation
Procedia PDF Downloads 149689 Characterization of the Intestinal Microbiota: A Signature in Fecal Samples from Patients with Irritable Bowel Syndrome
Authors: Mina Hojat Ansari, Kamran Bagheri Lankarani, Mohammad Reza Fattahi, Ali Reza Safarpour
Abstract:
Irritable bowel syndrome (IBS) is a common bowel disorder which is usually diagnosed through the abdominal pain, fecal irregularities and bloating. Alteration in the intestinal microbial composition is implicating to inflammatory and functional bowel disorders which is recently also noted as an IBS feature. Owing to the potential importance of microbiota implication in both efficiencies of the treatment and prevention of the diseases, we examined the association between the intestinal microbiota and different bowel patterns in a cohort of subjects with IBS and healthy controls. Fresh fecal samples were collected from a total of 50 subjects, 30 of whom met the Rome IV criteria for IBS and 20 Healthy control. Total DNA was extracted and library preparation was conducted following the standard protocol for small whole genome sequencing. The pooled libraries sequenced on an Illumina Nextseq platform with a 2 × 150 paired-end read length and obtained sequences were analyzed using several bioinformatics programs. The majority of sequences obtained in the current study assigned to bacteria. However, our finding highlighted the significant microbial taxa variation among the studied groups. The result, therefore, suggests a significant association of the microbiota with symptoms and bowel characteristics in patients with IBS. These alterations in fecal microbiota could be exploited as a biomarker for IBS or its subtypes and suggest the modification of the microbiota might be integrated into prevention and treatment strategies for IBS.Keywords: irritable bowel syndrome, intestinal microbiota, small whole genome sequencing, fecal samples, Illumina
Procedia PDF Downloads 166688 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.Keywords: biodegradation, γ-irradiation, polyolefins, stabilization
Procedia PDF Downloads 388687 Molecular Profiles of Microbial Etiologic Agents Forming Biofilm in Urinary Tract Infections of Pregnant Women by RTPCR Assay
Authors: B. Nageshwar Rao
Abstract:
Urinary tract infection (UTI) represents the most commonly acquired bacterial infection worldwide, with substantial morbidity, mortality, and economic burden. The objective of the study is to characterize the microbial profiles of uropathogenic in the obstetric population by RTPCR. Study design: An observational cross-sectional study was performed at a single tertiary health care hospital among 50 pregnant women with UTIs, including asymptomatic and symptomatic patients attending the outpatient department and inpatient department of Obstetrics and Gynaecology.Methods: Serotyping and genes detection of various uropathogens were studied using RTPCR. Pulse filed gel electrophoresis methods were used to determine the various genetic profiles. Results: The present study shows that CsgD protein, involved in biofilm formation in Escherichia coli, VIM1, IMP1 genes for Klebsiella were identified by using the RTPCR method. Our results showed that the prevalence of VIM1 and IMP1 genes and CsgD protein in E.coli showed a significant relationship between strong biofilm formation, and this may be due to the prevalence of specific genes. Finally, the genetic identification of RTPCR results for both bacteria was correlated with each other and concluded that the above uropathogens were common isolates in producing Biofilm in the pregnant woman suffering from urinary tract infection in our hospital observational study.Keywords: biofilms, Klebsiella, E.coli, urinary tract infection
Procedia PDF Downloads 126686 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics
Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh
Abstract:
Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity
Procedia PDF Downloads 144685 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste
Authors: Nivedita Sharma
Abstract:
The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes
Procedia PDF Downloads 98684 Soil and the Gut Microbiome: Supporting the 'Hygiene Hypothesis'
Authors: Chris George, Adam Hamlin, Lily Pereg, Richard Charlesworth, Gal Winter
Abstract:
Background: According to the ‘hygiene hypothesis’ the current rise in allergies and autoimmune diseases stems mainly from reduced microbial exposure due, amongst other factors, to urbanisation and distance from soil. However, this hypothesis is based on epidemiological and not biological data. Useful insights into the underlying mechanisms of this hypothesis can be gained by studying our interaction with soil. Soil microbiota may be directly ingested or inhaled by humans, enter the body through skin-soil contact or using plants as vectors. This study aims to examine the ability of soil microbiota to colonise the gut, study the interaction of soil microbes with the immune system and their potential protective activity. Method: The nutrition of the rats was supplemented daily with fresh or autoclaved soil for 21 days followed by 14 days of no supplementations. Faecal samples were collected throughout and analysed using 16S sequencing. At the end of the experiment rats were sacrificed and tissues and digesta were collected. Results/Conclusion: Results showed significantly higher richness and diversity following soil supplementation even after recovery. Specific soil microbial groups identified as able to colonise the gut. Of particular interest was the mucosal layer which emerged as a receptive host for soil microorganisms. Histological examination revealed innate and adaptive immune activation. Findings of this study reinforce the ‘hygiene hypothesis’ by demonstrating the ability of soil microbes to colonise the gut and activate the immune system. This paves the way for further studies aimed to examine the interaction of soil microorganisms with the immune system.Keywords: gut microbiota, hygiene hypothesis, microbiome, soil
Procedia PDF Downloads 256683 Vermicomposting Amended With Microorganisms and Biochar: Phytopathogen Resistant Seedbeds for Vegetables and Heavy Metal Polluted Waste Treatment
Authors: Fuad Ameen, Ali A. Al-Homaidan
Abstract:
Biochar can be used in numerous biotechnological applications due to its properties to adsorb beneficial nutrients and harmful pollutants. Objectives: We aimed to treat heavy metal polluted organic wastes using vermicomposting process and produce a fertilizer that can be used in agriculture. We improved the process by adding biochar as well as microbial inoculum and biomass into household waste or sewage sludge before vermicomposting. The earthworm Eisenia fetida used in vermicomposting was included to accumulate heavy metals, biochar to adsorb heavy metals, and the microalga Navicula sp. or the mangrove fungus Acrophialophora sp. to promote plant growth in the final product used as a seedbed for Solanaceae vegetables. We carried out vermicomposting treatments to see the effect of different amendments. Final compost quality was analyzed for maturity. The earthworms were studied for their vitality, heavy metal accumulation, and metallothionein protein content to verify their role in the process. The compost was used as a seedbed for vegetables that were inoculated with a phytopathogen Pythium sp. known to cause root rot and destroy seeds. Compost as seedbed promoted plant growth and reduced disease symptoms in leaves. In the treatment where E. fetida, 6% biochar, and Navicula sp. had been added, 90% of the seeds germinated, while less than 20% germinated in the control treatment. The experimental plants had acquired resistance against Pythium sp. The metagenomic profile of microbial communities will be reported.Keywords: organic wastes, vermicomposting process, biochar, mangrove fungus
Procedia PDF Downloads 88682 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer
Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri
Abstract:
A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet
Procedia PDF Downloads 217