Search results for: knowledge discovery database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9358

Search results for: knowledge discovery database

9058 Role of Strategic Human Resource Practices and Knowledge Management Capacity

Authors: Ploychompoo Kittikunchotiwut

Abstract:

This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed.

Keywords: human resource practices, knowledge management capacity, innovation performance

Procedia PDF Downloads 304
9057 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization

Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic

Abstract:

One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.

Keywords: anti-patterns, decision making, education, knowledge management

Procedia PDF Downloads 632
9056 Sustainability and Energy-Efficiency in Buildings: A review

Authors: Medya Fathi

Abstract:

Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.

Keywords: sustainability, energy performance, energy efficiency, buildings, review

Procedia PDF Downloads 71
9055 An Exploration of Organisational Elements on Social Media Platforms Based Knowledge Sharing: The Case of Higher Education Institutions in Malaysia

Authors: Nor Erlissa Abd Aziz, R. M. U. S. Udagedara, S. Sharifi

Abstract:

Managing and sharing knowledge has been a broadly satisfactory strategy to most of the organisations. Harnessing the power of knowledge supported the organisations to gain a competitive advantage over their competitors. Along with the invention of social media, knowledge sharing process has been more efficient and comfortable. Numerous researches have been conducted to investigate the effect of social media platforms for public and academic use. Furthermore, knowledge sharing, in general, have been subject to considerable n research, but research on sharing knowledge in Higher Education Institutions (HEIs) is rare. Also, it is noted that still there is a gap related to the organisational elements that contribute to the successful knowledge sharing through social media platforms. Thus, this research aims to investigate organisational elements that influence the social media platform based knowledge sharing within the context of Malaysian Higher Education Institutions (HEIs). The research used qualitative research methods to get an in-depth understanding of the subject matter. The conclusions of this study are based on interpreting the results of semi-structured interviews with academic staff from various Malaysian HEIs from the public and private sectors. Documents review will supplement the data from the interviews, and this ensures triangulation of the responses and thus increase the validity of the research. This research contributes to the literature by investigating an in-depth understanding the role of organisational elements about the social media platform based knowledge sharing in nourishing knowledge and spreading it to become better HEIs in utilising their knowledge. The proposed framework which identifies the organisational elements influences of social media platform based knowledge sharing will present as the main contribution of this research.

Keywords: knowledge sharing, social media, knowledge and knowledge management

Procedia PDF Downloads 205
9054 The Impact of Innovation Efficiency on the Production of New Knowledge: A Manufacturing Firm Level Perspective

Authors: Vasilios Kanellopoulos

Abstract:

The present paper examines the effect of innovation efficiency on the production of new knowledge from a firm level perspective. It resorts to the Greek version of community innovation survey (CIS 2012-2014 microdata) and employs 1274 firms of the manufacturing, which constitutes the main sector of examination. It assumes a knowledge production function (KPF) and finds that R&D spillovers related to the expenditures on innovation activities, internal R&D, external R&D, skilled labor, and the expenditures in the acquisition of machinery have a positive and significant effect on the production of new knowledge when OLS techniques are applied. However, innovation efficiency comes from a Banker and Morey (1986) data envelopment analysis (DEA) with categorical variables has a statistically insignificant impact on the production of new knowledge measured by firm’s turnover.

Keywords: firms, innovation efficiency, production of new knowledge, R&D spillovers

Procedia PDF Downloads 137
9053 The Role of Knowledge Sharing in Market Response: The Case of Saman Bank of Iran

Authors: Fatemeh Torabi, Jamal El-Den, Narumon Sriratanviriyakul

Abstract:

Perpetual changes in the workplace and daily business activities bring a need for imbedding organizational knowledge sharing within the organizations’ culture, routines and processes. Organizations should adapt to the changing in the environment in order to survive. Accordingly, the management should promote a knowledge sharing culture which might result in knowledge accumulation, hence better response to these changing environmental conditions. Researchers in the field of strategy and marketing stressed that employees’, as well as the overall performance of the organization, would improve as a result of implementing a knowledge-oriented culture. The research investigated the significant impact of knowledge sharing on market response and the competitiveness of organizations. A knowledge sharing framework was developed based on current literary frameworks with additional constructs such as employees’ learning commitments, experiences and prior knowledge. Linear regression was used to analyze the relationships among dependent and independent variables. The research’s results indicated strong positive correlation between the dependent and independent variables, especially in organizational market sharing. We anticipate that this correlation would improve organizational knowledge sharing related practices and the associated knowledge entities. The research posits the introduced framework could be a solid ground for further investigations on how some organizational factors would influence the organization’s response to the market as well as on competitiveness. Final results support all hypotheses. Finding of this research show that knowledge sharing intention had the significant and positive effect on market response and competitiveness of organizations.

Keywords: knowledge management, knowledge sharing, market response, organizational competitiveness

Procedia PDF Downloads 206
9052 Gender Perspective in Peace Operations: An Analysis of 14 UN Peace Operations

Authors: Maressa Aires de Proenca

Abstract:

The inclusion of a gender perspective in peace operations is based on a series of conventions, treaties, and resolutions designed to protect and include women addressing gender mainstreaming. The UN Security Council recognizes that women's participation and gender equality within peace operations are indispensable for achieving sustainable development and peace. However, the participation of women in the field of peace and security is still embryonic. There are gaps when we think about female participation in conflict resolution and peace promotion spaces, and it does not seem clear how women are present in these spaces. This absence may correspond to silence about representation and the guarantee of the female perspective within the context of peace promotion. Thus, the present research aimed to describe the panorama of the participation of women who are currently active in the 14 active UN peace operations, which are: 1) MINUJUSTH, Haiti, 2) MINURSO, Western Sahara, 3) MINUSCA, Central African Republic, 4) MINUSMA, Mali, 5) MONUSCO, the Democratic Republic of the Congo, 6) UNAMID, Darfur, 7) UNDOF, Golan, 8) UNFICYP, Cyprus, 9) UNIFIL, Lebanon, 10) UNISFA, Abyei, 11) UNMIK, Kosovo, 12) UNMISS, South Sudan, 13) UNMOGIP, India, and Pakistan, and 14) UNTSO, Middle East. A database was constructed that reported: (1) position held by the woman in the peace operation, (2) her profession, (3) educational level, (4) marital status, (5) religion, (6) nationality, (8) number of years working with peace operations, (9) whether the operation in which it operates has provided training on gender issues. For the construction of this database, official reports and statistics accessed through the UN Peacekeeping Resource Hub were used; The United Nations Statistical Commission, Peacekeeping Master Open Datasets, The Armed Conflict Database (ACD), The International Institute for Strategic Studies (IISS) database; Armed Conflict Location & Event Data Project (ACLED) database; from the Evidence and Data for Gender Equality (EDGE) database. In addition to access to databases, peacekeeping operations will be contacted directly, and data requested individually. The database showed that the presence of women in these peace operations is still incipient, but growing. There are few women in command positions, and most of them occupy administrative or human-care positions.

Keywords: women, peace and security, peacekeeping operations, peace studies

Procedia PDF Downloads 136
9051 Patent Protection for AI Innovations in Pharmaceutical Products

Authors: Nerella Srinivas

Abstract:

This study explores the significance of patent protection for artificial intelligence (AI) innovations in the pharmaceutical sector, emphasizing applications in drug discovery, personalized medicine, and clinical trial optimization. The challenges of patenting AI-driven inventions are outlined, focusing on the classification of algorithms as abstract ideas, meeting the non-obviousness standard, and issues around defining inventorship. The methodology includes examining case studies and existing patents, with an emphasis on how companies like Benevolent AI and Insilico Medicine have successfully secured patent rights. Findings demonstrate that a strategic approach to patent protection is essential, with particular attention to showcasing AI’s technical contributions to pharmaceutical advancements. Conclusively, the study underscores the critical role of understanding patent law and innovation strategies in leveraging intellectual property rights in the rapidly advancing field of AI-driven pharmaceuticals.

Keywords: artificial intelligence, pharmaceutical industry, patent protection, drug discovery, personalized medicine, clinical trials, intellectual property, non-obviousness

Procedia PDF Downloads 12
9050 The Use of Alternative Material to Fabric in Stage Costume

Authors: Melahat Çevik

Abstract:

The discovery of fabric has a quite old historical perspective because of veiling, heating and shelter needs of human. Since the days which fashion has a say, this situation has pasted beyond needs and has become status symbols. For the theater art drama which tell people by people, in the concern of reflecting daily life there will be such regards also we may see alternative products to artistically reshaped fabric. The stage is determined in the consensus of costume designer and director. Costume Designer does the research, taking into account the alternative products. Approaching nature as inventor, discovering products, shapes the work because in this work, cost is considerable. All types of fabric will be used but also new materials which are not presented to clothing industry yet are of great importance. In the discovery of new materials there priorities of the costume designer. In the scene everything should be determined in the axis of actor. The material discussed should have positive qualities which allow the performer to move and invigorate him or her in terms of physical and also should be positive in terms of health. This point must be approached in a more precise in high action plays and the obtained material should be tested before the presentation process.

Keywords: fabric, stage design, alternative materials, clothing industry

Procedia PDF Downloads 576
9049 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt

Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim

Abstract:

A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.

Keywords: expert system, knowledge management, pipeline projects, risk mismanagement

Procedia PDF Downloads 311
9048 Revealing the Genome Based Biosynthetic Potential of a Streptomyces sp. Isolate BR123 Presenting Broad Spectrum Antimicrobial Activities

Authors: Neelma Ashraf

Abstract:

Actinomycetes, particularly genus Streptomyces is of great importance due to their role in the discovery of new natural products, particularly antimicrobial secondary metabolites in the medicinal science and biotechnology industry. Different Streptomyces strains were isolated from Helianthus annuus plants and tested for antibacterial and antifungal activities. The most promising five strains were chosen for further investigation, and growth conditions for antibiotic synthesis were optimised. The supernatants were extracted in different solvents, and the extracted products were analyzed using liquid chromatography-mass spectrometry (LC-MS) and biological testing. From one of the potent strains Streptomyces globusus sp. BR123, a compound lavendamycin was identified using these analytical techniques. In addition, this potent strain also produces a strong antifungal polyene compound with a quasimolecular ion of 2072. Streptomyces sp. BR123 was genome sequenced because of its promising antimicrobial potential in order to identify the gene cluster responsible for analyzed compound “lavendamycin”. The genome analysis yielded candidate genes responsible for the production of this potent compound. The genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 with a GC content of 72.63% and 8103 protein coding genes was attained. Many antimicrobial, antiparasitic, and anticancerous compounds were detected through multiple biosynthetic gene clusters predicted by in-Silico analysis. Though, the novelty of metabolites was determined through the insignificant resemblance with known biosynthetic gene clusters. The current study gives insight into the bioactive potential of Streptomyces sp. isolate BR123 with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study revealed the connection of isolate BR123 with other Streptomyces strains, which could expand the knowledge of this genus and the mechanism involved in the discovery of new antimicrobial metabolites.

Keywords: streptomyces, secondary metabolites, genome, biosynthetic gene clusters, high performance liquid chromatography, mass spectrometry

Procedia PDF Downloads 70
9047 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
9046 Positioning Organisational Culture in Knowledge Management Research

Authors: Said Al Saifi

Abstract:

This paper proposes a conceptual model for understanding the impact of organisational culture on knowledge management processes and their link with organisational performance. It is suggested that organisational culture should be assessed as a multi-level construct comprising artifacts, espoused beliefs and values, and underlying assumptions. A holistic view of organisational culture and knowledge management processes, and their link with organisational performance, is presented. A comprehensive review of previous literature was undertaken in the development of the conceptual model. Taken together, the literature and the proposed model reveal possible relationships between organisational culture, knowledge management processes, and organisational performance. Potential implications of organisational culture levels for the creation, sharing, and application of knowledge are elaborated. In addition, the paper offers possible new insight into the impact of organisational culture on various knowledge management processes and their link with organisational performance. A number of possible relationships between organisational culture factors, knowledge management processes, and their link with organisational performance were employed to examine such relationships. The research model highlights the multi-level components of organisational culture. These are: the artifacts, the espoused beliefs and values, and the underlying assumptions. Through a conceptualisation of the relationships between organisational culture, knowledge management processes, and organisational performance, the study provides practical guidance for practitioners during the implementation of knowledge management processes. The focus of previous research on knowledge management has been on understanding organisational culture from the limited perspective of promoting knowledge creation and sharing. This paper proposes a more comprehensive approach to understanding organisational culture in that it draws on artifacts, espoused beliefs and values, and underlying assumptions, and reveals their impact on the creation, sharing, and application of knowledge which can affect overall organisational performance.

Keywords: knowledge application, knowledge creation, knowledge management, knowledge sharing, organisational culture, organisational performance

Procedia PDF Downloads 576
9045 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 69
9044 Climate Change and Health in Policies

Authors: Corinne Kowalski, Lea de Jong, Rainer Sauerborn, Niamh Herlihy, Anneliese Depoux, Jale Tosun

Abstract:

Climate change is considered one of the biggest threats to human health of the 21st century. The link between climate change and health has received relatively little attention in the media, in research and in policy-making. A long term and broad overview of how health is represented in the legislation on climate change is missing in the legislative literature. It is unknown if or how the argument for health is referred in legal clauses addressing climate change, in national and European legislation. Integrating scientific based evidence into policies regarding the impacts of climate change on health could be a key step to inciting the political and societal changes necessary to decelerate global warming. This may also drive the implementation of new strategies to mitigate the consequences on health systems. To provide an overview of this issue, we are analyzing the Global Climate Legislation Database provided by the Grantham Research Institute on Climate Change and the Environment. This institution was established in 2008 at the London School of Economics and Political Science. The database consists of (updated as of 1st January 2015) legislations on climate change in 99 countries around the world. This tool offers relevant information about the state of climate related policies. We will use the database to systematically analyze the 829 identified legislations to identify how health is represented as a relevant aspect of climate change legislation. We are conducting explorative research of national and supranational legislations and anticipate health to be addressed in various forms. The goal is to highlight how often, in what specific terms, which aspects of health or health risks of climate change are mentioned in various legislations. The position and recurrence of the mention of health is also of importance. Data will be extracted with complete quotation of the sentence which mentions health, which will allow for second qualitative stage to analyze which aspects of health are represented and in what context. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, explorative research, health, policies

Procedia PDF Downloads 365
9043 Fluid Prescribing Post Laparotomies

Authors: Gusa Hall, Barrie Keeler, Achal Khanna

Abstract:

Introduction: NICE guidelines have highlighted the consequences of IV fluid mismanagement. The main aim of this study was to audit fluid prescribing post laparotomies to identify if fluids were prescribed in accordance to NICE guidelines. Methodology: Retrospective database search of eight specific laparotomy procedures (colectomy right and left, Hartmann’s procedure, small bowel resection, perforated ulcer, abdominal perineal resection, anterior resection, pan proctocolectomy, subtotal colectomy) highlighted 29 laparotomies between April 2019 and May 2019. Two of 29 patients had secondary procedures during the same admission, n=27 (patients). Database case notes were reviewed for date of procedure, length of admission, fluid prescribed and amount, nasal gastric tube output, daily bloods results for electrolytes sodium and potassium and operational losses. Results: n=27 based on 27 identified patients between April 2019 – May 2019, 93% (25/27) received IV fluids, only 19% (5/27) received the correct IV fluids in accordance to NICE guidelines, 93% (25/27) who received IV fluids had the correct electrolytes levels (sodium & potassium), 100% (27/27) patients received blood tests (U&E’s) for correct electrolytes levels. 0% (0/27) no documentation on operational losses. IV fluids matched nasogastric tube output in 100% (3/3) of the number of patients that had a nasogastric tube in situ. Conclusion: A PubMed database literature review on barriers to safer IV prescribing highlighted educational interventions focused on prescriber knowledge rather than how to execute the prescribing task. This audit suggests IV fluids post laparotomies are not being prescribed consistently in accordance to NICE guidelines. Surgical management plans should be clearer on IV fluids and electrolytes requirements for the following 24 hours after the plan has been initiated. In addition, further teaching and training around IV prescribing is needed together with frequent surgical audits on IV fluid prescribing post-surgery to evaluate improvements.

Keywords: audit, IV Fluid prescribing, laparotomy, NICE guidelines

Procedia PDF Downloads 120
9042 Knowledge of Strategies to Teach Reading Components Among Teachers of Hard of Hearing Students

Authors: Khalid Alasim

Abstract:

This study investigated Saudi Arabian elementary school teachers’ knowledge of strategies to teach reading components to hard-of-hearing students. The study focused on four of the five reading components the National Reading Panel (NPR, 2000) identified: phonemic awareness; phonics; vocabulary, and reading comprehension, and explored the relationship between teachers’ demographic characteristics and their knowledge of the strategies as well. An explanatory sequential mixed methods design was used that included two phases. The quantitative phase examined the knowledge of these Arabic reading components among 89 elementary school teachers of hard-of-hearing students, and the qualitative phase consisted of interviews with 10 teachers. The results indicated that the teachers have a great deal of knowledge (above the mean score) of strategies to teach reading components. Specifically, teachers’ knowledge of strategies to teach the vocabulary component was the highest. The results also showed no significant association between teachers’ demographic characteristics and their knowledge of strategies to teach reading components. The qualitative analysis revealed two themes: 1) teachers’ lack of basic knowledge of strategies to teach reading components, and 2) the absence of in-service courses and training programs in reading for teachers.

Keywords: knowledge, reading, components, hard-of-hearing, phonology, vocabulary

Procedia PDF Downloads 80
9041 Effective Leadership Styles Influence on Knowledge Sharing Behaviour among Employees of SME's in Nigeria

Authors: Christianah Oyelekan Oyewole, Adeniyi Temitope Adetunji

Abstract:

Earlier researchers acknowledge the significance of knowledge sharing among employees in improving their responsiveness when dealing with unpredicted situations. Effective leadership styles have been known to impact employee knowledge-sharing behavior within an organisation positively. The role of influential leaders in knowledge sharing is accomplished through enhanced social networks and technology. However, preliminary research pointed to a lack of clear conclusions from recently published studies on the impact of effective leadership styles on knowledge-sharing behaviour among employees. The present study addressed this problem through a structured literature review. The review demonstrated that knowledge managers incorporate incentives and reward systems with their leadership styles to influence knowledge-sharing behaviour among employees positively. There was ample evidence that rational, innovative, stable and participatory organisational cultures combined with supportive and command leadership enhance employee intention for knowledge sharing in the organisation. The analysis revealed that transformational, transactional, and mentor leadership styles enhance employees’ knowledge-sharing behavior. Overall, it was resolved that the relationship between knowledge-sharing behavior among employees and leadership styles is mediated by the ability of the organisation to prioritize employee development.

Keywords: leadership styles, knowledge sharing, transactional leadership, transformational leadership, mentor leadership, team performance, team productivity, motivation, and creativity

Procedia PDF Downloads 81
9040 Gis Database Creation for Impacts of Domestic Wastewater Disposal on BIDA Town, Niger State Nigeria

Authors: Ejiobih Hyginus Chidozie

Abstract:

Geographic Information System (GIS) is a configuration of computer hardware and software specifically designed to effectively capture, store, update, manipulate, analyse and display and display all forms of spatially referenced information. GIS database is referred to as the heart of GIS. It has location data, attribute data and spatial relationship between the objects and their attributes. Sewage and wastewater management have assumed increased importance lately as a result of general concern expressed worldwide about the problems of pollution of the environment contamination of the atmosphere, rivers, lakes, oceans and ground water. In this research GIS database was created to study the impacts of domestic wastewater disposal methods on Bida town, Niger State as a model for investigating similar impacts on other cities in Nigeria. Results from GIS database are very useful to decision makers and researchers. Bida Town was subdivided into four regions, eight zones, and 24 sectors based on the prevailing natural morphology of the town. GIS receiver and structured questionnaire were used to collect information and attribute data from 240 households of the study area. Domestic wastewater samples were collected from twenty four sectors of the study area for laboratory analysis. ArcView 3.2a GIS software, was used to create the GIS databases for ecological, health and socioeconomic impacts of domestic wastewater disposal methods in Bida town.

Keywords: environment, GIS, pollution, software, wastewater

Procedia PDF Downloads 421
9039 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
9038 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises

Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto

Abstract:

The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.

Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel

Procedia PDF Downloads 356
9037 Knowledge Diffusion via Automated Organizational Cartography: Autocart

Authors: Mounir Kehal, Adel Al Araifi

Abstract:

The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.

Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography

Procedia PDF Downloads 417
9036 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships

Authors: Jake Gonzalez, Tommy Dang

Abstract:

This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.

Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights

Procedia PDF Downloads 61
9035 Moderating Role of Positive External Factors in Relationship of Abusive Supervision and Knowledge Sharing

Authors: I.Hussain, A. Gulzar

Abstract:

Knowledge sharing is very important in organizations for their future progress and survival. This study investigates the impact of destructive leadership (abusive supervision) on knowledge sharing in employees. Further, the authors want to investigate a context variable (group cohesion) and explore its cross level influence on the relationship of abusive supervision and knowledge sharing. Conservation of resource theory (COR) claims loss of psychological capital (an internal positive resource) in employees due to abusive supervision and hence decrease occurs in knowledge sharing. This study tests psychological capital as mediator and group cohesion as moderator in relationship of abusive supervision and knowledge sharing. Data was collected from 239 respondents from more than 40 different organizations and 50 different groups from all over Pakistan. Results show that abusive supervision has negative effect on knowledge sharing through reduction in psychological capital of employees, and increased group cohesion in employees reduces this negative effect improving psychological capital in employees.

Keywords: abusive supervision, knowledge sharing, psychological capital, group cohesion, conservation of resources

Procedia PDF Downloads 216
9034 Knowledge regarding Sexual and Reproductive Health among Adolescents in Higher Secondary School

Authors: Kopila Shrestha

Abstract:

Adolescent sexual reproductive health is one of the most important issues in the world. Reproductive ability is taking place at an earlier age and adolescents are indulging in risk taking behaviors day by day. A descriptive cross-sectional study was conducted in Kathmandu valley to assess the knowledge regarding sexual and reproductive health among adolescent. Total of 200 respondents were selected through non-probability convenient sampling technique. Self-administered written questionnaires using semi-structured questions were used. The collected data were analyzed by using descriptive statistics such as frequency, percentage, mean, standard deviation and inferential statistics such as Chi-square test. The findings revealed that most of the respondents had adequate knowledge regarding transmission and protection of HIV/AIDs and STIs but still some respondents had a misconception regarding it. Few respondents had knowledge regarding legal age for marriage and the minimum age for first child bearing. The statistical analysis revealed that the total mean knowledge score with standard deviation was 45.02±8.674. Nearly half of the respondents (49.5%) had a moderate level of knowledge, followed by an inadequate level of knowledge 29.5% and adequate level of knowledge 21.0% regarding sexual and reproductive health. There was significant association of level of knowledge with area of residence (p-value .002) but no association with age (p-value .067), sex (p-value .999), religion (p-value .082) and ethnicity (p-value .114). Nearly half of the participants possess some knowledge about sexual and reproductive health but still effective educational intervention is required in higher secondary school to encourage more sensible and healthy behaviour.

Keywords: adolescents, higher secondary school, knowledge, sexual and reproductive health

Procedia PDF Downloads 283
9033 Assessment of Academic Knowledge Transfer Channels in Field of Environment

Authors: Jagul Huma Lashari, Arabella Bhutto

Abstract:

Last few years have shown increased an interest of researchers in knowledge and technology transfer. However, facts show fewer types of knowledge transfer practices in the developing countries. This article focuses on assessment transfer channels of academic research produced by highly qualified academicians working in universities in Sindh offering degrees in field of an Environment in Sindh Pakistan. The academic field has been chosen because in field of the environment there is alarming need of research into practice for sustainable development. Using case study approach; in this research qualitative interviews have been conducted from PhD faculty members working in the universities offering degrees in field of environment. Obtained data is analyzed using descriptive statistics and chi-square test with the help of statistical packages for social sciences (SPSS). Research explored 31 channels of academic knowledge transfer from detailed review of literature and exploratory interviews with participants. Identified knowledge transfer channels have been grouped together in 6 groups of knowledge transfer channels; As knowledge transfer through publications, networking, mobility of researchers, joint research, intellectual property and co-operations. Results revealed that academic knowledge have been transferred through publications, networking, and co-operation. However, less number of academic knowledge has been transferred through groups of knowledge transfer channels such as Intellectual Property and joint research.

Keywords: environment, research knowledge, transfer channels, universities

Procedia PDF Downloads 336
9032 The Impact of Motivation, Trust, and National Cultural Differences on Knowledge Sharing within the Context of Electronic Mail

Authors: Said Abdullah Al Saifi

Abstract:

The goal of this research is to examine the impact of trust, motivation, and national culture on knowledge sharing within the context of electronic mail. This study is quantitative and survey based. In order to conduct the research, 200 students from a leading university in New Zealand were chosen randomly to participate in a questionnaire survey. Motivation and trust were found to be significantly and positively related to knowledge sharing. The research findings illustrated that face saving, face gaining, and individualism positively moderates the relationship between motivation and knowledge sharing. In addition, collectivism culture negatively moderates the relationship between motivation and knowledge sharing. Moreover, the research findings reveal that face saving, individualism, and collectivism culture positively moderate the relationship between trust and knowledge sharing. In addition, face gaining culture negatively moderates the relationship between trust and knowledge sharing. This study sets out several implications for researchers and practitioners. The study produces an integrative model that shows how attributes of national culture impact knowledge sharing through the use of emails. A better understanding of the relationship between knowledge sharing and trust, motivation, and national culture differences will increase individuals’ ability to make wise choices when sharing knowledge with those from different cultures.

Keywords: knowledge sharing, motivation, national culture, trust

Procedia PDF Downloads 348
9031 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 366
9030 Building a Lean Construction Body of Knowledge

Authors: Jyoti Singh, Ahmed Stifi, Sascha Gentes

Abstract:

The process of construction significantly contributes to high level of risks, complexity and uncertainties leading to cost and time overrun, customer dissatisfaction etc. lean construction is important as it is a comprehensive system of tools and concepts focusing on moving closer to customer satisfaction by understanding the process, identifying the waste and eliminating it. The proposed work includes identification of knowledge areas from lean perspective, lean tools/concepts used in lean construction and establishing a relationship matrix between knowledge areas and lean tools/concepts, thus developing and building up a lean construction body of knowledge (LCBOK), i.e. a guide to lean construction, aiming to provide guidelines to manage individual projects and also helping construction industry to minimise waste and maximize value to the customer. In this study, we identified 8 knowledge areas and 62 lean tools/concepts from lean perspective and also one tool can help to manage two or more knowledge areas.

Keywords: knowledge areas, lean body matrix, lean construction, lean tools

Procedia PDF Downloads 436
9029 Database Playlists: Croatia's Popular Music in the Mirror of Collective Memory

Authors: Diana Grguric, Robert Svetlacic, Vladimir Simovic

Abstract:

Scientific research analytically explores database playlists by studying the memory culture through Croatian popular radio music. The research is based on the scientific analysis of databases developed on the basis of the playlist of ten Croatian radio stations. The most recent Croatian song on Statehood Day 2008-2013 is analyzed in order to gain insight into their (memory) potential in terms of storing, interpreting and presenting a national identity. The research starts with the general assumption that popular music is an efficient identifier, transmitter, and promoter of national identity. The aim of the scientific research of the database was to analytically reveal specific titles of Croatian popular songs that participate in marking memories and analyzing their symbolic capital to gain insight into the popular music experience of the past and to develop a new method of scientifically based analysis of specific databases.

Keywords: specific databases, popular radio music, collective memory, national identity

Procedia PDF Downloads 356