Search results for: ionic polymer actuators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1998

Search results for: ionic polymer actuators

1698 Electrochemical Study of Prepared Cubic Fluorite Structured Titanium Doped Lanthanum Gallium Cerate Electrolyte for Low Temperature Solid Oxide Fuel Cell

Authors: Rida Batool, Faizah Altaf, Saba Nadeem, Afifa Aslam, Faisal Alamgir, Ghazanfar Abbas

Abstract:

Today, the need of the hour is to find out alternative renewable energy resources in order to reduce the burden on fossil fuels and prevent alarming environmental degradation. Solid oxide fuel cell (SOFC) is considered a good alternative energy conversion device because it is environmentally benign and supplies energy on demand. The only drawback associated with SOFC is its high operating temperature. In order to reduce operating temperature, different types of composite material are prepared. In this work, titanium doped lanthanum gallium cerate (LGCT) composite is prepared through the co-precipitation method as electrolyte and examined for low temperature SOFCs (LTSOFCs). The structural properties are analyzed by X-Ray Diffractometry (XRD) and Fourier Transform Infrared (FTIR) Spectrometry. The surface properties are investigated by Scanning Electron Microscopy (SEM). The electrolyte LGCT has the formula LGCTO₃ because it showed two phases La.GaO and Ti.CeO₂. The average particle size is found to be (32 ± 0.9311) nm. The ionic conductivity is achieved to be 0.073S/cm at 650°C. Arrhenius plots are drawn to calculate activation energy and found 2.96 eV. The maximum power density and current density are achieved at 68.25mW/cm² and 357mA/cm², respectively, at 650°C with hydrogen. The prepared material shows excellent ionic conductivity at comparatively low temperature, that makes it a potentially good candidate for LTSOFCs.

Keywords: solid oxide fuel cell, LGCTO₃, cerium composite oxide, ionic conductivity, low temperature electrolyte

Procedia PDF Downloads 108
1697 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization

Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.

Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties

Procedia PDF Downloads 128
1696 A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams

Authors: P. Pramod Kumar, Madhu Salumari, V. V. Subba Rao

Abstract:

Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement.

Keywords: CNT, buckling, micromechanics, FSDT

Procedia PDF Downloads 279
1695 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis

Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman

Abstract:

Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.

Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation

Procedia PDF Downloads 389
1694 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties

Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula

Abstract:

The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.

Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings

Procedia PDF Downloads 110
1693 Indium Oxide/Scandium Doping Yttria-Stabilized Zirconia Composite Films as Electrolytes for Solid Oxide Fuel Cells

Authors: Yong-Jie Lin, Yi-Feng Lin

Abstract:

In this study, scandium-doped yttria-stabilized zirconia (ScYSZ) and In2O3 nanoparticles (NPs) with cubic crystalline structures were successfully prepared using a facile hydrothermal process. ScYSZ films were prepared by the pressing of ScYSZ NPs and were further used for the electrolyte of solid oxide fuel cells (SOFCs). To increase the ionic conductivity of the ScYSZ electrolyte, different amounts of In2O3 NPs [0 wt% (X(In2O3)=0), 0.21 wt% (X(In2O3)=0.001) and 1.13 wt% (X(In2O3)=0.005)] were doped in the ScYSZ films to increase their oxygen vacancy. The result shows In2O3 NP/ScYSZ films with 1.13 wt% (X(In2O3 )=0.005) In2O3 NPs doping are with largest ionic conductivity of 0.057Ω-1 cm-1 at 900oC, which is 1.6 and 1.8 times higher than YSZ and In2O3 NP/ScYSZ films with 0.21 wt% (X(In2O3)=0.001) In2O3 NPs doping, respectively.

Keywords: indium oxide/scandium doping Yttria-stabilized zirconia, solid oxide fuel cells, scandium-doped yttria-stabilized zirconia, indium oxide

Procedia PDF Downloads 465
1692 Development of Oral Biphasic Drug Delivery System Using a Natural Resourced Polymer, Terminalia catappa

Authors: Venkata Srikanth Meka, Nur Arthirah Binti Ahmad Tarmizi Tan, Muhammad Syahmi Bin Md Nazir, Adinarayana Gorajana, Senthil Rajan Dharmalingam

Abstract:

Biphasic drug delivery systems are designed to release drug at two different rates, either fast/prolonged or prolonged/fast. A fast/prolonged release system provides a burst drug release at initial stage followed by a slow release over a prolonged period of time and in case of prolonged/fast release system, the release pattern is vice versa. Terminalia catappa gum (TCG) is a natural polymer and was successfully proven as a novel pharmaceutical excipient. The main objective of the present research is to investigate the applicability of natural polymer, Terminalia catappa gum in the design of oral biphasic drug delivery system in the form of mini tablets by using a model drug, buspirone HCl. This investigation aims to produce a biphasic release drug delivery system of buspirone by combining immediate release and prolonged release mini tablets into a capsule. For immediate release mini tablets, a dose of 4.5 mg buspirone was prepared by varying the concentration of superdisintegrant; crospovidone. On the other hand, prolonged release mini tablets were produced by using different concentrations of the natural polymer; TCG with a buspirone dose of 3mg. All mini tablets were characterized for weight variation, hardness, friability, disintegration, content uniformity and dissolution studies. The optimized formulations of immediate and prolonged release mini tablets were finally combined in a capsule and was evaluated for release studies. FTIR and DSC studies were conducted to study the drug-polymer interaction. All formulations of immediate release and prolonged release mini tablets were passed all the in-process quality control tests according to US Pharmacopoeia. The disintegration time of immediate release mini tablets of different formulations was varied from 2-6 min, and maximum drug release was achieved in lesser than 60 min. Whereas prolonged release mini tablets made with TCG have shown good drug retarding properties. Formulations were controlled for about 4-10 hrs with varying concentration of TCG. As the concentration of TCG increased, the drug release retarding property also increased. The optimised mini tablets were packed in capsules and were evaluated for the release mechanism. The capsule dosage form has clearly exhibited the biphasic release of buspirone, indicating that TCG is a suitable natural polymer for this study. FTIR and DSC studies proved that there was no interaction between the drug and polymer. Based on the above positive results, it can be concluded that TCG is a suitable polymer for the biphasic drug delivery systems.

Keywords: Terminalia catappa gum, biphasic release, mini tablets, tablet in capsule, natural polymers

Procedia PDF Downloads 394
1691 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate

Authors: Mai A. Aljaberi

Abstract:

The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.

Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor

Procedia PDF Downloads 85
1690 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen

Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar

Abstract:

Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.

Keywords: zaltoprofen, chitosan, formulation, drug delivery

Procedia PDF Downloads 454
1689 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 484
1688 Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application

Authors: Wided Zerguine, Farid Habelhames

Abstract:

The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite.

Keywords: photocurrent density, organic nanostructures, hybrid coating, conducting polymer, titanium dioxide

Procedia PDF Downloads 329
1687 Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System

Authors: Hamide Aydin, Banu Karaman, Ayhan Bozkurt, Umran Kurtan

Abstract:

Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability.

Keywords: electrical double layer capacitor, energy density, gel polymer electrolyte, ultracapacitor

Procedia PDF Downloads 227
1686 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 339
1685 Succinonitrile Modified Polyacrylamide as a Quasi-Solid Electrolyte for an Organic Based Electrochromic Device

Authors: Benjamin Orimolade, Emily Draper

Abstract:

The interest in all solid electrochromic devices (ECD) is ongoing. This is because these devices offer realistic applications of electrochromic materials in products such as sensors, windows and energy storage devices. The use of quasi-solid (gel) electrolytes for the construction of these ECDs is attractive because of their ease of preparation, availability, low cost, improved electrochromic performance, good ionic conductivity and prevention of leakages in ECDs. Herein, we developed a gel electrolyte consisting of polyacrylamide modified with succinonitrile for an ECD containing leucine-modified naphthalene diimide (NDI-L) as electrochromic material. The amount of succinonitrile in the gel was optimized, and the structure, surface morphology, and ionic conductivity of the electrolytes were assessed using microscopic techniques and electrochemical methods. The ECD fabricated with the gel electrolyte displayed good electrochromic performance with a fast switching response of up to 10 s and outstanding stability. These results add significant insight into understanding the inter- and intra-molecular interaction in succinonitrile gel electrolytes and provide a typical practicable high-performance gel electrolyte material for solid electrochromic devices.

Keywords: electrochromic device, gel electrolytes, naphthalene diimide, succinonitrile

Procedia PDF Downloads 61
1684 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product

Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth

Abstract:

Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.

Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations

Procedia PDF Downloads 87
1683 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 283
1682 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 145
1681 Polymer Application in Fashion and Textile Engineering

Authors: Fatemeh Karimi

Abstract:

The fashion and textile industry is undergoing a profound transformation, with polymers playing an increasingly pivotal role in driving innovation and sustainability. This paper explores the application of polymers in fashion and textile engineering, focusing on their impact on material properties, sustainability, and the future of garment production. Polymers, both synthetic and bio-based, offer unique opportunities to enhance the performance, durability, and environmental footprint of textiles. By examining recent advancements in polymer science and their integration into fashion design and production, we provide insights into how these materials are reshaping the industry. This paper also discusses the challenges and opportunities associated with the use of polymers, particularly in the context of sustainable fashion and circular economy practices. Through case studies and industry examples, we highlight the innovative ways in which polymers are being utilized to meet the evolving demands of consumers and the industry's sustainability goals.

Keywords: polymer textiles, sustainable fashion, bio-based polymers, smart textiles, fashion innovation, circular economy, textile engineering

Procedia PDF Downloads 23
1680 Investigation of Dispersion of Carbon Nanoparticles in Polymer Melt for the Fabrication of Functional Filaments

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Nanocomposites have become more and more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is important, as only very small fillers can be added to the very fine fibres (common diameter is 20 µm, fine filament are 1 µm). Discharging fibres, conductive fibres, and many other functional fibres raise in their importance nowadays. Especially the dispersion quality is essential for the final enhancement of the filament propertied. In this paper, the dispersion of carbon nanoparticles in polymer melt is enhanced by a newly developed sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the unit fabrication, as well as the first experimental results of the modification of the dispersion, are shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. Furthermore, the influence on the thereby manufactured nano-modified filaments will be shown.

Keywords: dispersion, sonication, carbon nanoparticles, filaments

Procedia PDF Downloads 301
1679 Electrospinning Parameters: Effect on the Morphology of Polylactic Acid/Polybutylene Succinate Fibers

Authors: Hamad Al-Turaif, Usman Saeed

Abstract:

The development of nanofibers with the help of electrospinning is being prioritized as a method of choice because of the simplicity and efficiency of the process. The parameters of the electrospinning process effectively convert the polymer solution into an electrospun final product made of the desired diameter of nanofiber. The aim of the study presented is to recognize and analyze the effect of proposed parameters on biodegradable and biocompatible polylactic acid (PLA)/polybutylene succinate (PBS) nanofiber developed by the electrospinning process. The morphology of the fiber is characterized by implementing Scanning Electron Microscope. Studies were conducted to characterize the result of using different electrospinning parameters on the final diameter and orientation of fiber. It was determined that varying polymer solution concentration, feed rate, and applied voltage show different outcomes. The best results were obtained at 6% polymer solution concentration, 20 kV, and 0.5 ml/h, which can be applicable for biomedical applications. Finally, protein adsorption and mechanical testing were conducted on the PLA/PBS fiber.

Keywords: electrospinning, polylactic acid, polybutylene succinate, morphology

Procedia PDF Downloads 133
1678 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection

Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar

Abstract:

In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.

Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM

Procedia PDF Downloads 159
1677 Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam

Authors: Lan Nguyen, Lam Cao Van

Abstract:

Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way.

Keywords: ATENA, bridge pier strengthening, carbon fiber reinforced polymer (CFRP), crack prediction analysis

Procedia PDF Downloads 242
1676 Symmetric Polymerization with Dynamical Resolution

Authors: Muddser Ghaffar

Abstract:

In material science, synthetic chiral polymers are becoming increasingly significant due to their distinct properties that distinguish them from other polymer materials. One special technique for producing well-defined chiral polymers is asymmetric kinetic resolution polymerization (AKRP), which adds stereo regularity to a polymer chain by the kinetic resolution of a race mate preferentially polymerizing one enantiomer. Apart from making it possible to characterize chiral polymers enantioselective, AKRP can synthesize chiral polymers with high stereo selectivity. This review includes the literature on the use of enzymes, chiral metal complexes, and organ catalysts as AKRP promoters. One enantiomer reacts more quickly than the other in this kind of polymerisation, quickly entering the expanding polymer chain, while the kinetically less reactive enantiomer stays unreactive and is readily separated using straightforward purification techniques. The degree of chiral induction and overall chirality of the chiral polymers that are generated may be assessed using the enantiomeric excess (ee) of the initial monomer, which is frequently determined by chiral HPLC analysis, throughout the polymerisation process.

Keywords: stereo regularity, polymers, dynamical, symmetric

Procedia PDF Downloads 17
1675 Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite

Authors: Tigist Girma Kedane

Abstract:

The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials.

Keywords: bampoo species, culm age, harvesting seasons, mechanical properties, polymer composite

Procedia PDF Downloads 62
1674 Intelligent Rainwater Reuse System for Irrigation

Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao

Abstract:

The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.

Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency

Procedia PDF Downloads 149
1673 Investigation of Mechanical and Rheological Properties of Poly (trimethylene terephthalate) (PTT)/Polyethylene Blend Using Carboxylate and Ionomer as Compatibilizers

Authors: Wuttikorn Chayapanja, Sutep Charoenpongpool, Manit Nithitanakul, Brian P. Grady

Abstract:

Poly (trimethylene terephthalate) (PTT) is a linear aromatic polyester with good strength and stiffness, good surface appearance, low shrinkage and war page, and good dimensional stability. However, it has low impact strength which is a problem in automotive application. Thus, modification of PTT with the other polymer or polymer blending is a one way to develop a new material with excellence properties. In this study, PTT/High Density Polyethylene (HDPE) blends and PTT/Linear Low Density Polyethylene (LLDPE) blends with and without compatibilizers base on maleic anhydride grafted HDPE (MAH-g-HDPE) and ethylene-methacrylic acid neutralized sodium metal (Na-EMAA) were prepared by a twin-screw extruder. The blended samples with different ratios of polymers and compatibilizers were characterized on mechanical and rheological properties. Moreover, the phase morphology and dispersion size were studied by using SEM to give better understanding of the compatibility of the blends.

Keywords: poly trimethylene terephthalate, polyethylene, compatibilizer, polymer blend

Procedia PDF Downloads 416
1672 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations

Authors: G. Vinitha, A. Ramalingam

Abstract:

In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Z-scan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20° and when the intensity ratio of the writing beams is unity.

Keywords: diffraction efficiency, nonlinear optical material, saturable absorption, surface-relief-gratings

Procedia PDF Downloads 300
1671 Comparative Analysis of in vitro Release profile for Escitalopram and Escitalopram Loaded Nanoparticles

Authors: Rashi Rajput, Manisha Singh

Abstract:

Escitalopram oxalate (ETP), an FDA approved antidepressant drug from the category of SSRI (selective serotonin reuptake inhibitor) and is used in treatment of general anxiety disorder (GAD), major depressive disorder (MDD).When taken orally, it is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT) in the liver with the help of enzymes CYP2C19, CYP3A4 and CYP2D6. Hence, causing side effects such as dizziness, fast or irregular heartbeat, headache, nausea etc. Therefore, targeted and sustained drug delivery will be a helpful tool for increasing its efficacy and reducing side effects. The present study is designed for formulating mucoadhesive nanoparticle formulation for the same Escitalopram loaded polymeric nanoparticles were prepared by ionic gelation method and characterization of the optimised formulation was done by zeta average particle size (93.63nm), zeta potential (-1.89mV), TEM (range of 60nm to 115nm) analysis also confirms nanometric size range of the drug loaded nanoparticles along with polydispersibility index of 0.117. In this research, we have studied the in vitro drug release profile for ETP nanoparticles, through a semi permeable dialysis membrane. The three important characteristics affecting the drug release behaviour were – particle size, ionic strength and morphology of the optimised nanoparticles. The data showed that on increasing the particle size of the drug loaded nanoparticles, the initial burst was reduced which was comparatively higher in drug. Whereas, the formulation with 1mg/ml chitosan in 1.5mg/ml tripolyphosphate solution showed steady release over the entire period of drug release. Then this data was further validated through mathematical modelling to establish the mechanism of drug release kinetics, which showed a typical linear diffusion profile in optimised ETP loaded nanoparticles.

Keywords: ionic gelation, mucoadhesive nanoparticle, semi-permeable dialysis membrane, zeta potential

Procedia PDF Downloads 295
1670 Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes

Authors: Mallikarjunachari Gangapuram

Abstract:

Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm.

Keywords: ball indentation, hydrogel membranes, nanocomposites, Young's modulus

Procedia PDF Downloads 128
1669 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 165