Search results for: polymer matrix composites
611 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks
Authors: Kai-Wei Ji, Dung-Ying Lin
Abstract:
This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.Keywords: demand estimation, genetic algorithm, housing price, transportation
Procedia PDF Downloads 20610 Adhesion of Biofilm to Surfaces Employed in Pipelines for Transporting Crude Oil
Authors: Hadjer Didouh, Izzaddine Sameut Bouhaik, Mohammed Hadj Meliani
Abstract:
This research delves into the intricate dynamics of biofilm adhesion on surfaces, particularly focusing on the widely employed X52 surface in oil and gas industry pipelines. Biofilms, characterized by microorganisms within a self-produced matrix, pose significant challenges due to their detrimental impact on surfaces. Our study integrates advanced molecular techniques and cutting-edge microscopy, such as scanning electron microscopy (SEM), to identify microbial communities and visually assess biofilm adhesion. Simultaneously, we concentrate on the X52 surface, utilizing impedance spectroscopy and potentiodynamic polarization to gather electrochemical responses under various conditions. In conjunction with the broader investigation, we propose a novel approach to mitigate biofilm-induced corrosion challenges. This involves environmentally friendly inhibitors derived from plants, offering a sustainable alternative to conventional chemical treatments. Our inquiry screens and selects inhibitors based on their efficacy in hindering biofilm formation and reducing corrosion rates on the X52 surface. This study contributes valuable insights into the interplay between electrochemical processes and biofilm attachment on the X52 surface. Furthermore, the outcomes of this research have broader implications for the oil and gas industry, where biofilm-related corrosion is a persistent concern. The exploration of eco-friendly inhibitors not only holds promise for corrosion control but also aligns with environmental considerations and sustainability goals. The comprehensive nature of this research aims to enhance our understanding of biofilm dynamics, provide effective strategies for corrosion mitigation, and contribute to sustainable practices in pipeline management within the oil and gas sector.Keywords: bio-corrosion, biofilm, attachment, X52, metal/bacteria interface
Procedia PDF Downloads 47609 Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer
Authors: Maria E. Fortună, Elena Ungureanu, Răzvan Rotaru, Valeria Harabagiu
Abstract:
Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state.Keywords: biodegradable, biological stability, copolymers, polydimethylsiloxane
Procedia PDF Downloads 22608 System for Mechanical Stimulation of the Mesenchymal Stem Cells Supporting Differentiation into Osteogenic Cells
Authors: Jana Stepanovska, Roman Matejka, Jozef Rosina, Marta Vandrovcova, Lucie Bacakova
Abstract:
The aim of this study was to develop a system for mechanical and also electrical stimulation controlling in vitro osteogenesis under conditions more similar to the in vivo bone microenvironment than traditional static cultivation, which would achieve good adhesion, growth and other specific behaviors of osteogenic cells in cultures. An engineered culture system for mechanical stimulation of the mesenchymal stem cells on the charged surface was designed. The bioreactor allows efficient mechanical loading inducing an electrical response and perfusion of the culture chamber with seeded cells. The mesenchymal stem cells were seeded to specific charged materials, like polarized hydroxyapatite (Hap) or other materials with piezoelectric and ferroelectric features, to create electrical potentials for stimulating of the cells. The material of the matrix was TiNb alloy designed for these purposes, and it was covered by BaTiO3 film, like a kind of piezoelectric material. The process of mechanical stimulation inducing electrical response is controlled by measuring electrical potential in the chamber. It was performed a series of experiments, where the cells were seeded, perfused and stimulated up to 48 hours under different conditions, especially pressure and perfusion. The analysis of the proteins expression was done, which demonstrated the effective mechanical and electrical stimulation. The experiments demonstrated effective stimulation of the cells in comparison with the static culture. This work was supported by the Ministry of Health, grant No. 15-29153A and the Grant Agency of the Czech Republic grant No. GA15-01558S.Keywords: charged surface, dynamic cultivation, electrical stimulation, ferroelectric layers, mechanical stimulation, piezoelectric layers
Procedia PDF Downloads 299607 Spray Drying: An Innovative and Sustainable Method of Preserving Fruits
Authors: Adepoju Abiola Lydia, Adeyanju James Abiodun, Abioye A. O.
Abstract:
Spray drying, an innovative and sustainable preservation method, is increasingly gaining recognition for its potential to enhance food security by extending the shelf life of fruits. This technique involves the atomization of fruit pulp into fine droplets, followed by rapid drying with hot air, resulting in a powdered product that retains much of the original fruit's nutritional value, flavor, and color. By encapsulating sensitive bioactive compounds within a dry matrix, spray drying mitigates nutrient degradation and extends product usability. This technology aligns with sustainability goals by reducing post-harvest losses, minimizing the need for preservatives, and lowering energy consumption compared to conventional drying methods. Furthermore, spray drying enables the use of imperfect or surplus fruits, contributing to waste reduction and providing a continuous supply of nutritious fruit-based ingredients regardless of seasonal variations. The powdered form enhances versatility, allowing incorporation into various food products, thus broadening the scope of fruit utilization. Innovations in spray drying, such as the use of novel carrier agents and optimization of processing parameters, enhance the quality and functionality of the final product. Moreover, the scalability of spray drying makes it suitable for both industrial applications and smaller-scale operations, supporting local economies and food systems. In conclusion, spray drying stands out as a key technology in enhancing food security by ensuring a stable supply of high-quality, nutritious food ingredients while fostering sustainable agricultural practices.Keywords: spray drying, sustainable, process parameters, carrier agents, fruits
Procedia PDF Downloads 22606 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 54605 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel
Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro
Abstract:
The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas
Procedia PDF Downloads 312604 Proactive Competence Management for Employees: A Bottom-up Process Model for Developing Target Competence Profiles Based on the Employee's Tasks
Authors: Maximilian Cedzich, Ingo Dietz Von Bayer, Roland Jochem
Abstract:
In order for industrial companies to continue to succeed in dynamic, globalized markets, they must be able to train their employees in an agile manner and at short notice in line with the exogenous conditions that arise. For this purpose, it is indispensable to operate a proactive competence management system for employees that recognizes qualification needs timely in order to be able to address them promptly through qualification measures. However, there are hardly any approaches to be found in the literature that includes systematic, proactive competence management. In order to help close this gap, this publication presents a process model that systematically develops bottom-up, future-oriented target competence profiles based on the tasks of the employees. Concretely, in the first step, the tasks of the individual employees are examined for assumed future conditions. In other words, qualitative scenarios are considered for the individual tasks to determine how they are likely to change. In a second step, these scenario-based future tasks are translated into individual future-related target competencies of the employee using a matrix of generic task properties. The final step pursues the goal of validating the target competence profiles formed in this way within the framework of a management workshop. This process model provides industrial companies with a tool that they can use to determine the competencies required by their own employees in the future and compare them with the actual prevailing competencies. If gaps are identified between the target and the actual, these qualification requirements can be closed in the short term by means of qualification measures.Keywords: dynamic globalized markets, employee competence management, industrial companies, knowledge management
Procedia PDF Downloads 189603 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 405602 Production of Bio-Composites from Cocoa Pod Husk for Use in Packaging Materials
Authors: L. Kanoksak, N. Sukanya, L. Napatsorn, T. Siriporn
Abstract:
A growing population and demand for packaging are driving up the usage of natural resources as raw materials in the pulp and paper industry. Long-term effects of environmental is disrupting people's way of life all across the planet. Finding pulp sources to replace wood pulp is therefore necessary. To produce wood pulp, various other potential plants or plant parts can be employed as substitute raw materials. For example, pulp and paper were made from agricultural residue that mainly included pulp can be used in place of wood. In this study, cocoa pod husks were an agricultural residue of the cocoa and chocolate industries. To develop composite materials to replace wood pulp in packaging materials. The paper was coated with polybutylene adipate-co-terephthalate (PBAT). By selecting and cleaning fresh cocoa pod husks, the size was reduced. And the cocoa pod husks were dried. The morphology and elemental composition of cocoa pod husks were studied. To evaluate the mechanical and physical properties, dried cocoa husks were extracted using the soda-pulping process. After selecting the best formulations, paper with a PBAT bioplastic coating was produced on a paper-forming machine Physical and mechanical properties were studied. By using the Field Emission Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (FESEM/EDS) technique, the structure of dried cocoa pod husks showed the main components of cocoa pod husks. The appearance of porous has not been found. The fibers were firmly bound for use as a raw material for pulp manufacturing. Dry cocoa pod husks contain the major elements carbon (C) and oxygen (O). Magnesium (Mg), potassium (K), and calcium (Ca) were minor elements that were found in very small levels. After that cocoa pod husks were removed from the soda-pulping process. It found that the SAQ5 formula produced pulp yield, moisture content, and water drainage. To achieve the basis weight by TAPPI T205 sp-02 standard, cocoa pod husk pulp and modified starch were mixed. The paper was coated with bioplastic PBAT. It was produced using bioplastic resin from the blown film extrusion technique. It showed the contact angle, dispersion component and polar component. It is an effective hydrophobic material for rigid packaging applications.Keywords: cocoa pod husks, agricultural residue, composite material, rigid packaging
Procedia PDF Downloads 76601 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus
Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi
Abstract:
In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax
Procedia PDF Downloads 173600 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel
Authors: M. I. Equbal, R. K. Ohdar, B. Singh, P. Talukdar
Abstract:
Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Micro-alloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.Keywords: cooling rate, hot forging, micro-alloyed, ring compression
Procedia PDF Downloads 361599 Antifeedant Activity of Plant Extracts on the Spongy Moth (Lymantria dispar) Larvae
Authors: Jovana M. Ćirković, Aleksandar M. Radojković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković
Abstract:
The protection of forests is a national interest and of strategic importance in every country. The spongy moth (Lymantria dispar) is a damaging invasive pest that can weaken and destroy trees by defoliating them. Chemical pesticides commonly used to protect forests against spongy moths not only have a negative impact on terrestrial and aquatic organisms/ecosystems but also often fail to provide significant protection. Therefore, many eco-friendly alternatives have been considered. Within this research, a new biopesticide was developed based on the method of nanoencapsulation of plant extracts in a biopolymer matrix, which provides a slow release of the active components during a substantial time period. The antifeedant activity of plant extracts of common (Fraxinus excelsior L.), manna (F. ornus L.) ash tree, and the tree of heaven Ailanthus altissima (Mill.) was tested on the spongy moth (Lymantria dispar L, 1758) larvae. To test the antifeedant activity of these compounds, the choice and non-choice tests in laboratory conditions for different plant extract concentrations (0.01, 0.1, 0.5, and 1 % v/v) were carried out. In both cases, the best results showed formulations based on the tree of heaven and common ash for the concentration of 1%, with deterioration indices of 163 and 132, respectively. The main benefit of these formulations is their versatility, effectiveness, prolonged effect, and because they are completely environmentally acceptable. Therefore, they can be considered for suppression of the spongy moth in forest ecosystems.Keywords: Ailanthus altissima (Mill.), Fraxinus excelsior L., encapsulation, Lymantria dispar
Procedia PDF Downloads 77598 Method Development for the Determination of Gamma-Aminobutyric Acid in Rice Products by Lc-Ms-Ms
Authors: Cher Rong Matthew Kong, Edmund Tian, Seng Poon Ong, Chee Sian Gan
Abstract:
Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is a functional constituent of certain rice varieties. When consumed, it decreases blood pressure and reduces the risk of hypertension-related diseases. This has led to more research dedicated towards the development of functional food products (e.g. germinated brown rice) with enhanced GABA content, and the development of these functional food products has led to increased demand for instrument-based methods that can efficiently and effectively determine GABA content. Current analytical methods require analyte derivatisation, and have significant disadvantages such as being labour intensive and time-consuming, and being subject to analyte loss due to the increased complexity of the sample preparation process. To address this, an LC-MS-MS method for the determination of GABA in rice products has been developed and validated. This developed method involves a relatively simple sample preparation process before analysis using HILIC LC-MS-MS. This method eliminates the need for derivatisation, thereby significantly reducing the labour and time associated with such an analysis. Using LC-MS-MS also allows for better differentiation of GABA from any potential co-eluting compounds in the sample matrix. Results obtained from the developed method demonstrated high linearity, accuracy, and precision for the determination of GABA (1ng/L to 8ng/L) in a variety of brown rice products. The method can significantly simplify sample preparation steps, improve the accuracy of quantitation, and increase the throughput of analyses, thereby providing a quick but effective alternative to established instrumental analysis methods for GABA in rice.Keywords: functional food, gamma-aminobutyric acid, germinated brown rice, method development
Procedia PDF Downloads 268597 Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids
Authors: Parminder Kaur, Chandrajit B. Majumder
Abstract:
The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants.Keywords: bioremediation, fungi, pyrethroids, soil
Procedia PDF Downloads 147596 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles
Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma
Abstract:
Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity
Procedia PDF Downloads 122595 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 68594 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON
Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian
Abstract:
Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour
Procedia PDF Downloads 316593 Students Competencies in the Use of Computer Assistive Technology at Akropong School for the Blind in the Eastern of Ghana
Authors: Joseph Ampratwum, Yaw Nyadu Offei, Afua Ntoaduro, Frank Twum
Abstract:
The use of computer assistive technology has captured the attention of individuals with visual impairment. Children with visual impairments who are tactual learners have one unique need which is quite different from all other disability groups. They depend on the use of computer assistive technology for reading, writing, receiving information and sending information as well. The objective of the study was to assess students’ competencies in the use of computer assistive technology at Akropong School for the Blind in Ghana. This became necessary because little research has been conducted to document the competencies and challenges in the use of computer among students with visual impairments in Africa. A case study design with a mixed research strategy was adopted for the study. A purposive sampling technique was used to sample 35 students from Akropong School for the Blind in the eastern region of Ghana. The researcher gathered both quantitative and qualitative data to measure students’ competencies in keyboarding skills and Job Access with Speech (JAWS), as well as the other challenges. The findings indicated that comparatively students’ competency in keyboard skills was higher than JAWS application use. Thus students had reached higher stages in the conscious competencies matrix in the former than the latter. It was generally noted that challenges limiting effective use of students’ competencies in computer assistive technology in the School were more personal than external influences. This was because most of the challenges were due to the individual response to the training and familiarity in developing their competencies in using computer assistive technology. Base on this it was recommended that efforts should be made to stock up the laboratory with additional computers. Directly in line with the first recommendation, it was further suggested that more practice time should be created for the students to maximize computer use. Also Licensed JAWS must be acquired by the school to advance students’ competence in using computer assistive technology.Keywords: computer assistive technology, job access with speech, keyboard, visual impairment
Procedia PDF Downloads 341592 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences
Authors: Tamer ElSerafi
Abstract:
In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.Keywords: sustainable mobility, urban mobility, mobility management, historic districts
Procedia PDF Downloads 158591 Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System
Authors: Wiqar Hussain Shah
Abstract:
The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment.Keywords: Rare-earth maganites, nano-structural materials, doping effects on electrical, magnetic properties, competing interactions
Procedia PDF Downloads 125590 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates
Authors: Sisaynew Tesfaw Admassu
Abstract:
The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates
Procedia PDF Downloads 73589 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate
Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon
Abstract:
The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.Keywords: encapsulation, flexible, low melting point alloy, OLED
Procedia PDF Downloads 598588 Cerebrum Maturity Damage Induced by Fluoride in Suckling Mice
Authors: Hanen Bouaziz, Françoise Croute, Najiba Zeghal
Abstract:
In order to investigate the toxic effects of fluoride on cerebrum maturity of suckling mice, we treated adult female mice of Swiss Albinos strain by 500 ppm NaF in their drinking water from the 15th day of pregnancy until the day 14 after delivery. All mice were sacrificed on day 14 after parturition. During treatment, levels of thiobarbituric acid reactive substances, the marker of lipid peroxidation extend, increased, while the activities of the antioxidant enzymes such as glutathione peroxidase, superoxide dismutase and catalase and the level of glutathione decreased significantly in cerebellum compared with those of the control group. These results suggested that fluoride enhanced oxidative stress, thereby disturbing the antioxidant defense of nursing pups. In addition, acetylcholinesterase activity in cerebellum was inhibited after treatment with fluoride. In cerebellum of mice, migration of neurons from the external granular layer to the internal granular layer occurred postnatally. Key guidance signals to these migrating neurons were provided by laminin, an extracellular matrix protein fixed to the surface of astrocytes. In the present study, we examined the expression and distribution of laminin in cerebellum of 14-day-old mice. Immunoreactive laminin was disappeared by postnatal day 14 in cerebellum parenchyma of control pups and was restricted to vasculature despite the continued presence of granular cells in the external granular layer. In contrast, in cerebellum of NaF treated pups, laminin was deposited in organised punctuate clusters in the molecular layer. These data indicated that the disruption of laminin distribution might play a major role in the profound derangement of neuronal migration observed in cerebellum of NaF treated pups.Keywords: acetylcholinesterase activity, cerebellum, laminin, oxidative stress, suckling mice
Procedia PDF Downloads 396587 Development and Validation Method for Quantitative Determination of Rifampicin in Human Plasma and Its Application in Bioequivalence Test
Authors: Endang Lukitaningsih, Fathul Jannah, Arief R. Hakim, Ratna D. Puspita, Zullies Ikawati
Abstract:
Rifampicin is a semisynthetic antibiotic derivative of rifamycin B produced by Streptomyces mediterranei. RIF has been used worldwide as first line drug-prescribed throughout tuberculosis therapy. This study aims to develop and to validate an HPLC method couple with a UV detection for determination of rifampicin in spiked human plasma and its application for bioequivalence study. The chromatographic separation was achieved on an RP-C18 column (LachromHitachi, 250 x 4.6 mm., 5μm), utilizing a mobile phase of phosphate buffer/acetonitrile (55:45, v/v, pH 6.8 ± 0.1) at a flow of 1.5 mL/min. Detection was carried out at 337 nm by using spectrophotometer. The developed method was statistically validated for the linearity, accuracy, limit of detection, limit of quantitation, precise and specifity. The specifity of the method was ascertained by comparing chromatograms of blank plasma and plasma containing rifampicin; the matrix and rifampicin were well separated. The limit of detection and limit of quantification were 0.7 µg/mL and 2.3 µg/mL, respectively. The regression curve of standard was linear (r > 0.999) over a range concentration of 20.0 – 100.0 µg/mL. The mean recovery of the method was 96.68 ± 8.06 %. Both intraday and interday precision data showed reproducibility (R.S.D. 2.98% and 1.13 %, respectively). Therefore, the method can be used for routine analysis of rifampicin in human plasma and in bioequivalence study. The validated method was successfully applied in pharmacokinetic and bioequivalence study of rifampicin tablet in a limited number of subjects (under an Ethical Clearance No. KE/FK/6201/EC/2015). The mean values of Cmax, Tmax, AUC(0-24) and AUC(o-∞) for the test formulation of rifampicin were 5.81 ± 0.88 µg/mL, 1.25 hour, 29.16 ± 4.05 µg/mL. h. and 29.41 ± 4.07 µg/mL. h., respectively. Meanwhile for the reference formulation, the values were 5.04 ± 0.54 µg/mL, 1.31 hour, 27.20 ± 3.98 µg/mL.h. and 27.49 ± 4.01 µg/mL.h. From bioequivalence study, the 90% CIs for the test formulation/reference formulation ratio for the logarithmic transformations of Cmax and AUC(0-24) were 97.96-129.48% and 99.13-120.02%, respectively. According to the bioequivamence test guidelines of the European Commission-European Medicines Agency, it can be concluded that the test formulation of rifampicin is bioequivalence with the reference formulation.Keywords: validation, HPLC, plasma, bioequivalence
Procedia PDF Downloads 290586 Bi-Layer Electro-Conductive Nanofibrous Conduits for Peripheral Nerve Regeneration
Authors: Niloofar Nazeri, Mohammad Ali Derakhshan, Reza Faridi Majidi, Hossein Ghanbari
Abstract:
Injury of peripheral nervous system (PNS) can lead to loss of sensation or movement. To date, one of the challenges for surgeons is repairing large gaps in PNS. To solve this problem, nerve conduits have been developed. Conduits produced by means of electrospinning can mimic extracellular matrix and provide enough surface for further functionalization. In this research, a conductive bilayer nerve conduit with poly caprolactone (PCL), poly (lactic acid co glycolic acid) (PLGA) and MWCNT for promoting peripheral nerve regeneration was fabricated. The conduit was made of longitudinally aligned PLGA nanofibrous sheets in the lumen to promote nerve regeneration and randomly oriented PCL nanofibers on the outer surface for mechanical support. The intra-luminal guidance channel was made out of conductive aligned nanofibrous rolled sheets which are coated with laminin via dopamine. Different properties of electrospun scaffolds were investigated by using contact angle, mechanical strength, degradation time, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM analysis was shown that size range of nanofibrous mat were about 600-750 nm and MWCNTs deposited between nanofibers. The XPS result was shown that laminin attached to the nanofibers surface successfully. The contact-angle and tensile tests analysis revealed that scaffolds have good hydrophilicity and enough mechanical strength. In vitro studies demonstrated that this conductive surface was able to enhance the attachment and proliferation of PC12 and Schwann cells. We concluded that this bilayer composite conduit has good potential for nerve regeneration.Keywords: conductive, conduit, laminin, MWCNT
Procedia PDF Downloads 200585 A Mixed Methods Research Design for the Development of the Xenia Higher Education Institutions' Inclusiveness Index
Authors: Achilles Kameas, Eleni Georgakakou, Anna Lisa Amodeo, Aideen Quilty, Aisling Malone, Roberta Albertazzi, Moises Carmona, Concetta Esposito, Ruben David Fernandez Carrasco, Carmela Ferrara, Francesco Garzillo, Mojca Pusnik, Maria Cristina Scarano
Abstract:
While researchers, especially in academia, study and research the phenomena of inclusion of sexual minority and gender marginalized groups, seldom the European Higher Education Institutions (HEI) act on lowering the cultural and educational barriers to their proactive inclusion. The challenge in European HEIs is that gender, and sexual orientation discrimination remains an issue not adequately addressed. Following a mixed methods research design of quantitative and qualitative research techniques and tools, which is applied in five (5) European countries (Italy, Greece, Ireland, Slovenia, and Spain) and that combines desk research, evaluation, and weighting processes for a Matrix-based on Objective indicators and Survey for students and staff of the HEI to gauge the perception of inclusiveness in the HEI context, XENIA HEI Inclusiveness Index is an instrument that will allow universities to gauge and assess their inclusiveness in the domain of discrimination and exclusion based on gender identity and sexual orientation. The index will allow capturing the depth and reach of policies, programmes, and initiatives of HEIs in tackling the phenomena and dynamics of exclusion of LGBT+ (lesbian, gay, bisexual, trans, and other marginalized groups on the basis of gender and sexual identity) and cisgender women exposed to the risk of discrimination.Keywords: gender identity, higher education, LGBT+ rights, XENIA inclusiveness index
Procedia PDF Downloads 163584 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt
Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed
Abstract:
Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX
Procedia PDF Downloads 174583 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 170582 Implementing the Quality of Care Partnership to Reduce the Cost of Screenings for Sexually Transmitted Infections on a Southeastern College Campus
Authors: Amy Guidera, Steven Busby, Christian Williams, David Phillippi
Abstract:
College students are a priority preventative healthcare population that can engage in high-risk behaviors which may concurrently increase the potential for unsafe sexual practices, including contracting sexually transmitted infections (STIs). Early education, screening, treatment, and partner notification are important interventions for breaking the chain of transmission and recurrence in relation to preventing poor health outcomes and mitigating college dropout rates. The aim of this quality improvement project was to determine if the reduction in STI screening costs for college students (aged 18-30 years old) would increase the amount of STI screenings conducted at a university health center over the course of an academic semester while evaluating our ability to achieve an improved quality of care at a reduced cost, along with improved STI reporting and documentation. This study was conducted through retrospective chart reviews of STI-related visits and utilized the RADAR matrix to provide a guiding, iterative mechanism to continuously reassess goals and outcomes defined in a memorandum of agreement (MOA) between a university health center and the state department of health (DOH) laboratory. The project failed to increase the amount of STI screenings, most likely due to the emergence of COVID-19, but resulted in improved quality of care for students, improved STI-related visit documentation and reporting, and significantly reduced costs for STI screening for collegiate students at a southeastern private university campus.Keywords: college health, college students, preventive health, reproductive health, sexually transmitted infections, young adults
Procedia PDF Downloads 135