Search results for: cross-validation support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10019

Search results for: cross-validation support vector machine

6779 Analysis of Maintenance Operations in an Industrial Bakery Line

Authors: Mehmet Savsar

Abstract:

This paper presents a practical case application of simulation modeling and analysis in a specific industrial setting. Various maintenance related parameters of the equipment in the system under consideration are determined and a simulation model is developed to study system behavior. System performance is determined based on established parameters and operational policies, which included system operation with and without preventive maintenance implementation. The results show that preventive maintenance practice has significant effects on improving system productivity. The simulation procedures outlined in this paper can be used by operation managers to perform production line analysis under different maintenance policies in various industrial settings.

Keywords: simulation, production line, machine failures, maintenance, industrial bakery

Procedia PDF Downloads 482
6778 Application of Fuzzy Approach to the Vibration Fault Diagnosis

Authors: Jalel Khelil

Abstract:

In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification.

Keywords: fault diagnosis, fuzzy classification k-nearest neighbor, vibration

Procedia PDF Downloads 465
6777 Mapping a Data Governance Framework to the Continuum of Care in the Active Assisted Living Context

Authors: Gaya Bin Noon, Thoko Hanjahanja-Phiri, Laura Xavier Fadrique, Plinio Pelegrini Morita, Hélène Vaillancourt, Jennifer Teague, Tania Donovska

Abstract:

Active Assisted Living (AAL) refers to systems designed to improve the quality of life, aid in independence, and create healthier lifestyles for care recipients. As the population ages, there is a pressing need for non-intrusive, continuous, adaptable, and reliable health monitoring tools to support aging in place. AAL has great potential to support these efforts with the wide variety of solutions currently available, but insufficient efforts have been made to address concerns arising from the integration of AAL into care. The purpose of this research was to (1) explore the integration of AAL technologies and data into the clinical pathway, and (2) map data access and governance for AAL technology in order to develop standards for use by policy-makers, technology manufacturers, and developers of smart communities for seniors. This was done through four successive research phases: (1) literature search to explore existing work in this area and identify lessons learned; (2) modeling of the continuum of care; (3) adapting a framework for data governance into the AAL context; and (4) interviews with stakeholders to explore the applicability of previous work. Opportunities for standards found in these research phases included a need for greater consistency in language and technology requirements, better role definition regarding who can access and who is responsible for taking action based on the gathered data, and understanding of the privacy-utility tradeoff inherent in using AAL technologies in care settings.

Keywords: active assisted living, aging in place, internet of things, standards

Procedia PDF Downloads 130
6776 The Right to Data Portability and Its Influence on the Development of Digital Services

Authors: Roman Bieda

Abstract:

The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.

Keywords: data portability, digital market, GDPR, personal data

Procedia PDF Downloads 471
6775 Investigation on the Acoustical Transmission Path of Additive Printed Metals

Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing

Abstract:

In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.

Keywords: 3D-printed, acoustics, dynamics, impedance

Procedia PDF Downloads 205
6774 Enhancing Knowledge and Teaching Skills of Grade Two Teachers who Work with Children at Risk of Dyslexia

Authors: Rangika Perera, Shyamani Hettiarachchi, Fran Hagstrom

Abstract:

Dyslexia is the most common reading reading-related difficulty among the school school-aged population and currently, 5-10% are showing the features of dyslexia in Sri Lanka. As there is an insufficient number of speech and language pathologists in the country and few speech and language pathologists working in government mainstream school settings, these children who are at risk of dyslexia are not receiving enough quality early intervention services to develop their reading skills. As teachers are the key professionals who are directly working with these children, using them as the primary facilitators to improve their reading skills will be the most effective approach. This study aimed to identify the efficacy of a two and half a day of intensive training provided to fifteen mainstream government school teachers of grade two classes. The goal of the training was to enhance their knowledge of dyslexia and provide full classroom skills training that could be used to support the development of the students’ reading competencies. A closed closed-ended multiple choice questionnaire was given to these teachers pre and -post-training to measure teachers’ knowledge of dyslexia, the areas in which these children needed additional support, and the best strategies to facilitate reading competencies. The data revealed that the teachers’ knowledge in all areas was significantly poorer prior to the training and that there was a clear improvement in all areas after the training. The gain in target areas of teaching skills selected to improve the reading skills of children was evaluated through peer feedback. Teachers were assigned to three groups and expected to model how they were going to introduce the skills in recommended areas using researcher developed, validated and reliability reliability-tested materials and the strategies which were introduced during the training within the given tasks. Peers and the primary investigator rated teachers’ performances and gave feedback on organizational skills, presentation skills of materials, clarity of instruction, and appropriateness of vocabulary. After modifying their skills according to the feedback the teachers received, they were expected to modify and represent the same tasks to the group the following day. Their skills were re-evaluated by the peers and primary investigator using the same rubrics to measure the improvement. The findings revealed a significant improvement in their teaching skills development. The data analysis of both knowledge and skills gains of the teachers was carried out using quantitative descriptive data analysis. The overall findings of the study yielded promising results that support intensive training as a method for improving teachers’ knowledge and teaching skill development for use with children in a whole class intervention setting who are at risk of dyslexia.

Keywords: Dyslexia, knowledge, teaching skills, training program

Procedia PDF Downloads 72
6773 Recognising the Importance of Smoking Cessation Support in Substance Misuse Patients

Authors: Shaine Mehta, Neelam Parmar, Patrick White, Mark Ashworth

Abstract:

Patients with a history of substance have a high prevalence of comorbidities, including asthma and chronic obstructive pulmonary disease (COPD). Mortality rates are higher than that of the general population and the link to respiratory disease is reported. Randomised controlled trials (RCTs) support opioid substitution therapy as an effective means for harm reduction. However, whilst a high proportion of patients receiving opioid substitution therapy are smokers, to the author’s best knowledge there have been no studies of respiratory disease and smoking intensity in these patients. A cross sectional prevalence study was conducted using an anonymised patient-level database in primary care, Lambeth DataNet (LDN). We included patients aged 18 years and over who had records of ever having been prescribed methadone in primary care. Patients under 18 years old or prescribed buprenorphine (because of uncertainty about the prescribing indication) were excluded. Demographic, smoking, alcohol and asthma and COPD coding data were extracted. Differences between methadone and non-methadone users were explored with multivariable analysis. LDN contained data on 321, 395 patients ≥ 18 years; 676 (0.16%) had a record of methadone prescription. Patients prescribed methadone were more likely to be male (70.7% vs. 50.4%), older (48.9yrs vs. 41.5yrs) and less likely to be from an ethnic minority group (South Asian 2.1% vs. 7.8%; Black African 8.9% vs. 21.4%). Almost all those prescribed methadone were smokers or ex-smokers (97.3% vs. 40.9%); more were non-alcohol drinkers (41.3% vs. 24.3%). We found a high prevalence of COPD (12.4% vs 1.4%) and asthma (14.2% vs 4.4%). Smoking intensity data shows a high prevalence of ≥ 20 cigarettes per day (21.5% vs. 13.1%). Risk of COPD, adjusted for age, gender, ethnicity and deprivation, was raised in smokers: odds ratio 14.81 (95%CI 11.26, 19.47), and in the methadone group: OR 7.51 (95%CI: 5.78, 9.77). Furthermore, after adjustment for smoking intensity (number of cigarettes/day), the risk was raised in methadone group: OR 4.77 (95%CI: 3.13, 7.28). High burden of respiratory disease compounded by the high rates of smoking is a public health concern. This supports an integrated approach to health in patients treated for opiate dependence, with access to smoking cessation support. Further work may evaluate the current structure and commissioning of substance misuse services, including smoking cessation. Regression modelling highlights that methadone as a ‘risk factor’ was independently associated with COPD prevalence, even after adjustment for smoking intensity. This merits further exploration, as the association may be related to unexplored aspects of smoking (such as the number of years smoked) or may be related to other related exposures, such as smoking heroin or crack cocaine.

Keywords: methadone, respiratory disease, smoking cessation, substance misuse

Procedia PDF Downloads 143
6772 Designing a Waitlist Intervention for Adult Patients Awaiting Outpatient Treatment for Eating Disorders: Preliminary Findings from a Pilot Test

Authors: Deanne McArthur, Melinda Wall, Claire Hanlon, Dana Agnolin, Krista Davis, Melanie Dennis, Elizabeth Glidden, Anne Marie Smith, Claudette Thomson

Abstract:

In Canada, as prevalence rates and severity of illness have increased among patients suffering from eating disorders, wait times have grown substantially. Patients in Canada often face wait times in excess of 12 months. It is known that delaying treatment for eating disorders contributes to poor patient outcomes and higher rates of symptom relapse. Improving interim services for adult patients awaiting outpatient treatment is a priority for an outpatient eating disorders clinic in Ontario, Canada. The clinical setting currently provides care for adults diagnosed with anorexia nervosa, bulimia nervosa and binge eating disorder. At present, the only support provided while patients are on the waitlist consists of communication with primary care providers regarding parameters for medical monitoring. The significance of this study will be to test the feasibility, acceptability and efficacy of an intervention to support adult patients awaiting outpatient eating disorder treatment for anorexia nervosa, bulimia nervosa and binge eating disorder. Methods: An intervention including psychoeducation, supportive resources, self-monitoring, and auxiliary referral will be pilot-tested with a group of patients in the summer of 2022 and detailed using a prospective cohort case study research design. The team will host patient focus groups in May 2022 to gather input informing the content of the intervention. The intervention will be pilot tested with newly-referred patients in June and July 2022. Patients who participate in the intervention will be asked to complete a survey evaluating the utility of the intervention and for suggestions, they may have for improvement. Preliminary findings describing the existing literature pertaining to waitlist interventions for patients with eating disorders, data gathered from the focus groups and early pilot testing results will be presented. Data analysis will continue throughout 2022 and early 2023 for follow-up publication and presentation in the summer of 2023. The aim of this study is to contribute to the body of knowledge pertaining to providing interim support to those patients waiting for treatment for eating disorders and, by extension, to improve outcomes for this population.

Keywords: eating disorders, waitlist management, intervention study, pilot test

Procedia PDF Downloads 98
6771 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 135
6770 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.

Procedia PDF Downloads 296
6769 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 275
6768 The Importance of Value Added Services Provided by Science and Technology Parks to Boost Entrepreneurship Ecosystem in Turkey

Authors: Faruk Inaltekin, Imran Gurakan

Abstract:

This paper will aim to discuss the importance of value-added services provided by Science and Technology Parks for entrepreneurship development in Turkey. Entrepreneurship is vital subject for all countries. It has not only fostered economic development but also promoted innovation at local and international levels. To foster high tech entrepreneurship ecosystem, Technopark (Science and Technology Park/STP) concept was initiated with the establishment of Silicon Valley in the 1950s. The success and rise of Silicon Valley led to the spread of technopark activities. Developed economies have been setting up projects to plan and build STPs since the 1960s and 1970s. To promote the establishment of STPs, necessary legislations were made by Ministry of Science, Industry, and Technology in 2001, Technology Development Zones Law (No. 4691) and it has been revised in 2016 to provide more supports. STPs’ basic aim is to provide customers high-quality office spaces with various 'value added services' such as business development, network connections, cooperation programs, investor/customers meetings and internationalization services. For this aim, STPs should help startups deal with difficulties in the early stages and to support mature companies’ export activities in the foreign market. STPs should support the production, commercialization and more significantly internationalization of technology-intensive business and foster growth of companies. Nowadays within this value-added services, internationalization is very popular subject in the world. Most of STPs design clusters or accelerator programs in order to support their companies in the foreign market penetration. If startups are not ready for international competition, STPs should help them to get ready for foreign market with training and mentoring sessions. These training and mentoring sessions should take a goal based approach to working with companies. Each company has different needs and goals. Therefore the definition of ‘success' varies for each company. For this reason, it is very important to create customized value added services to meet the needs of startups. After local supports, STPs should also be able to support their startups in foreign market. Organizing well defined international accelerator program plays an important role in this mission. Turkey is strategically placed between key markets in Europe, Russia, Central Asia and the Middle East. Its population is young and well educated. So both government agencies and the private sectors endeavor to foster and encourage entrepreneurship ecosystem with many supports. In sum, the task of technoparks with these and similar value added services is very important for developing entrepreneurship ecosystem. The priorities of all value added services are to identify the commercialization and growth obstacles faced by entrepreneurs and get rid of them with the one-to-one customized services. Also, in order to have a healthy startup ecosystem and create sustainable entrepreneurship, stakeholders (technoparks, incubators, accelerators, investors, universities, governmental organizations etc.) should fulfill their roles and/or duties and collaborate with each other. STPs play an important role as bridge for these stakeholders & entrepreneurs. STPs always should benchmark and renew services offered to how to help the start-ups to survive, develop their business and benefit from these stakeholders.

Keywords: accelerator, cluster, entrepreneurship, startup, technopark, value added services

Procedia PDF Downloads 142
6767 Optimal Resource Configuration and Allocation Planning Problem for Bottleneck Machines and Auxiliary Tools

Authors: Yin-Yann Chen, Tzu-Ling Chen

Abstract:

This study presents the case of an actual Taiwanese semiconductor assembly and testing manufacturer. Three major bottleneck manufacturing processes, namely, die bond, wire bond, and molding, are analyzed to determine how to use finite resources to achieve the optimal capacity allocation. A medium-term capacity allocation planning model is developed by considering the optimal total profit to satisfy the promised volume demanded by customers and to obtain the best migration decision among production lines for machines and tools. Finally, sensitivity analysis based on the actual case is provided to explore the effect of various parameter levels.

Keywords: capacity planning, capacity allocation, machine migration, resource configuration

Procedia PDF Downloads 458
6766 Formal Implementation of Routing Information Protocol Using Event-B

Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura

Abstract:

The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.

Keywords: dynamic rout RIP, formal method, event-B, pro-B

Procedia PDF Downloads 400
6765 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 91
6764 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis

Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos

Abstract:

The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.

Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy

Procedia PDF Downloads 4
6763 Developing Pedagogy for Argumentation and Teacher Agency: An Educational Design Study in the UK

Authors: Zeynep Guler

Abstract:

Argumentation and the production of scientific arguments are essential components that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. Incorporating argumentation into science classrooms is challenging and can be a long-term process for both students and teachers. Students have difficulty in engaging tasks that require them to craft arguments, evaluate them to seek weaknesses, and revise them. Teachers also struggle with facilitating argumentation when they have underdeveloped science practices, underdeveloped pedagogical knowledge for argumentation science teaching, or underdeveloped teaching practice with argumentation (or a combination of all three). Thus, there is a need to support teachers in developing pedagogy for science teaching as argumentation, planning and implementing teaching practice for facilitating argumentation and also in becoming more agentic in this regards. Looking specifically at the experience of agency within education, it is arguable that agency is necessary for teachers’ renegotiation of professional purposes and practices in the light of changing educational practices. This study investigated how science teachers develop pedagogy for argumentation both individually and with their colleagues and also how teachers become more agentic (or not) through the active engagement of their contexts-for-action that refer to this as an ecological understanding of agency in order to positively influence or change their practice and their students' engagement with argumentation over two academic years. Through educational design study, this study conducted with three secondary science teachers (key stage 3-year 7 students aged 11-12) in the UK to find out if similar or different patterns of developing pedagogy for argumentation and of becoming more agentic emerge as they engage in planning and implementing a cycle of activities during the practice of teaching science with argumentation. Data from video and audio-recording of classroom practice and open-ended interviews with the science teachers were analysed using content analysis. The findings indicated that all the science teachers perceived strong agency in their opportunities to develop and apply pedagogical practices within the classroom. The teachers were pro-actively shaping their practices and classroom contexts in ways that were over and above the amendments to their pedagogy. They demonstrated some outcomes in developing pedagogy for argumentation and becoming more agentic in their teaching in this regards as a result of the collaboration with their colleagues and researcher; some appeared more agentic than others. The role of the collaboration between their colleagues was seen crucial for the teachers’ practice in the schools: close collaboration and support from other teachers in planning and implementing new educational innovations were seen as crucial for the development of pedagogy and becoming more agentic in practice. They needed to understand the importance of scientific argumentation but also understand how it can be planned and integrated into classroom practice. They also perceived constraint emerged from their lack of competence and knowledge in posing appropriate questions to help the students engage in argumentation, providing support for the students' construction of oral and written arguments.

Keywords: argumentation, teacher professional development, teacher agency, students' construction of argument

Procedia PDF Downloads 131
6762 A Case Study of Business Analytic Use in European Football: Analysis and Implications

Authors: M. C. Schloesser

Abstract:

The purpose of this paper is to explore the use and impact of business analytics in European football. Despite good evidence from other major sports leagues, research on this topic in Europe is currently very scarce. This research relies on expert interviews on the use and objective of business analytics. Along with revenue data over 16 seasons spanning from 2004/05 to 2019/20 from Manchester City FC, we conducted a time series analysis to detect a structural breakpoint on the different revenue streams, i.e., sponsorship and ticketing, after analytical tools have been implemented. We not only find that business analytics have indeed been applied at Manchester City FC and revenue increase is the main objective of their utilization but also that business analytics is indeed a good means to increase revenues if applied sufficiently. We can thereby support findings from other sports leagues. Consequently, professional sports organizations are advised to apply business analytics if they aim to increase revenues. This research has shown that analytical practices do, in fact, support revenue growth and help to work more efficiently. As the knowledge of analytical practices is very confidential and not publicly available, we had to select one club as a case study which can be considered a research limitation. Other practitioners should explore other clubs or leagues. Further, there are other factors that can lead to increased revenues that need to be considered. Additionally, sports organizations need resources to be able to apply and utilize business analytics. Consequently, findings might only apply to the top teams of the European football leagues. Nonetheless, this paper combines insights and results on usage, objectives, and impact of business analytics in European professional football and thereby fills a current research gap.

Keywords: business analytics, expert interviews, revenue management, time series analysis

Procedia PDF Downloads 78
6761 Disparities in Suicide and Mental Health among Student Athletes of Ethnic and Racial Minorities Compared to Their White Non-latinx Counterparts

Authors: Elizabeth Russo, Angelica Terepka

Abstract:

The present paper reviews literature examining trends among suicide, suicidal ideation, and mental illness rates in ethnic and racial minority student-athletes. While the rates of suicide amongst student athlete populations is lower than rates of suicide seen in the general student populations, there is a discrepancy amongst rates of suicide in student athletes; specifically, those identifying with racial and ethnic minority backgrounds endorse higher rates of suicidal ideation. The samples from the existing literature consisted of White, Black, Hispanic/Latinx, Asian/ Pacific Islander, Multiracial, and Native American student-athletes. Studies suggest that ethnic and racial minority students are more susceptible to suicide, depression, and other mental health concerns compared to their white counterparts. Across the literature, White student athletes appeared to have more social and academic support from fellow classmates, university administration and professors, and staff within their athletic departments. Student athletes who did not identify as White endorsed higher rates of loneliness, felt ethnically and racially underrepresented within their athletic department, and endorsed lack of appropriate medical treatment for injuries by athletic department medical staff. Additionally, non-White student athletes receive less peer support and must balance additional stressors such as discrimination in contrast to their White/non-Latinx peers. Recommendations for athletic departments and mental health providers supporting student athletes who identify as racial and ethnic minorities are discussed.

Keywords: racial and ethnic minority, suicide, student-athlete, suicidal ideation

Procedia PDF Downloads 81
6760 Long Term Examination of the Profitability Estimation Focused on Benefits

Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke

Abstract:

Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.

Keywords: cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis

Procedia PDF Downloads 443
6759 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 89
6758 Integrated Gesture and Voice-Activated Mouse Control System

Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant

Procedia PDF Downloads 9
6757 Teachers' Pedagogical Content Knowledge and Students' Achievement: A Correlational study at the Elementary level

Authors: Abrar Ajmal

Abstract:

This quantitative study explored elementary school teachers' pedagogical content knowledge and effects on grade 8 students' achievement in Punjab, Pakistan. A teacher sample (N=100) rated competencies across inquiry-focused teaching, conceptual building, interaction practices and peer collaboration promotion. A student sample (N=120) self-reported academic abilities, intrinsic motivation, help-seeking and accountability. Findings reveal teachers highly endorse learner-centric strategies, although peer interaction promotion seems less common currently. Meanwhile, significant gender disparities in self-perceived expertise emerge, favouring female over male educators across all facets measured. Additionally, teachers' knowledge positively—and significantly—correlates with student achievement overall and for both genders, highlighting the importance of professional enrichment. However, female pupils demonstrate greater confidence, drive, utilization of academic support, and ownership over learning than male counterparts. Recommendations include ongoing teacher training, targeted competency building for male students and teachers, leveraging gender peer collaboration similarities, and holistic female support amid widening divides. Sustaining instructional quality through empowering, equitable practices that nurture disadvantaged and gifted learners alike can spur systemic improvements. Ultimately, the fire line confirms the interrelations between teachers' multifaceted knowledge and student success.

Keywords: pedagogical knowledge, academic achievement, teacher gender differences, student gender differences, empowering instruction

Procedia PDF Downloads 45
6756 An Exploration of Health Promotion Approach to Increase Optimal Complementary Feeding among Pastoral Mothers Having Children between 6 and 23 Months in Dikhil, Djibouti

Authors: Haruka Ando

Abstract:

Undernutrition of children is a critical issue, especially for people in the remote areas of the Republic of Djibouti, since household food insecurity, inadequate child caring and feeding, unhealthy environment and lack of clean water, as well as insufficient maternal and child healthcare, are underlying causes which affect. Nomadic pastoralists living in the Dikhil region (Dikhil) are socio-economically and geographically more vulnerable due to displacement, which in turn worsens the situation of child stunting. A high prevalence of inappropriate complementary feeding among pastoral mothers might be a significant barrier to child growth. This study aims to identify health promotion intervention strategies that would support an increase in optimal complementary feeding among pastoral mothers of children aged 6-23 months in Dikhil. There are four objectives; to explore and to understand the existing practice of complementary feeding among pastoral mothers in Dikhil; to identify the barriers in appropriate complementary feeding among the mothers; to critically explore and analyse the strategies for an increase in complementary feeding among the mothers; to make pragmatic recommendations to address the barriers in Djibouti. This is an in-depth study utilizing a conceptual framework, the behaviour change wheel, to analyse the determinants of complementary feeding and categorize health promotion interventions for increasing optimal complementary feeding among pastoral mothers living in Dikhil. The analytical tool was utilized to appraise the strategies to mitigate the selected barriers against optimal complementary feeding. The data sources were secondary literature from both published and unpublished sources. The literature was systematically collected. The findings of the determinants including the barriers of optimal complementary feeding were identified: heavy household workload, caring for multiple children under five, lack of education, cultural norms and traditional eating habits, lack of husbands' support, poverty and food insecurity, lack of clean water, low media coverage, insufficient health services on complementary feeding, fear, poor personal hygiene, and mothers' low decision-making ability and lack of motivation for food choice. To mitigate selected barriers of optimal complementary feeding, four intervention strategies based on interpersonal communication at the community-level were chosen: scaling up mothers' support groups, nutrition education, grandmother-inclusive approach, and training for complementary feeding counseling. The strategies were appraised through the criteria of effectiveness and feasibility. Scaling up mothers' support groups could be the best approach. Mid-term and long-term recommendations are suggested based on the situation analysis and appraisal of intervention strategies. Mid-term recommendations include complementary feeding promotion interventions are integrated into the healthcare service providing system in Dikhil, and donor agencies advocate and lobby the Ministry of Health Djibouti (MoHD) to increase budgetary allocation on complementary feeding promotion to implement interventions at a community level. Moreover, the recommendations include a community health management team in Dikhil training healthcare workers and mother support groups by using complementary feeding communication guidelines and monitors behaviour change of pastoral mothers and health outcome of their children. Long-term recommendations are the MoHD develops complementary feeding guidelines to cover sector-wide collaboration for multi-sectoral related barriers.

Keywords: Afar, child food, child nutrition, complementary feeding, complementary food, developing countries, Djibouti, East Africa, hard-to-reach areas, Horn of Africa, nomad, pastoral, rural area, Somali, Sub-Saharan Africa

Procedia PDF Downloads 123
6755 Acceptability of the Carers-ID Intervention for Family Carers of People with Intellectual Disabilities

Authors: Mark Linden, Michael Brown, Lynne Marsh, Maria Truesdale, Stuart Todd, Nathan Hughes, Trisha Forbes, Rachel Leonard

Abstract:

Background: Family carers of people with intellectual disabilities (ID) face ongoing challenges in accessing services and often experience poor mental health. Online support programmes may prove effective in addressing the mental health and well-being needs of family carers. This study sought to test the acceptability of a newly developed online support programme for carers of people with intellectual disabilities called Carers-ID. Methods A sequential mixed-methods explanatory design was utilised. An adapted version of the Acceptability of Health Apps among Adolescents (AHAA) Scale was distributed to family carers who had viewed the Carers-ID.com intervention. Following this, participants were invited to take part in an online interview. Interview questions focused on participants’ experiences of using the programme and its acceptability. Qualitative and quantitative data were analysed separately and then brought together through the triangulation protocol developed by Farmer et al (2006). Findings: Seventy family carers responded to the acceptability survey, whilst 10 took part in interviews. Six themes were generated from interviews with family carers. Based on our triangulation, four areas of convergence were identified, these included, programme usability and ease, attitudes towards the programme, perceptions of effectiveness, and programme relatability. Conclusions: In order to be acceptable, online interventions for carers of people with ID need to be accessible, understandable and easy to use, as carers time is precious. Further research is needed to investigate the effectiveness of online interventions for family carers, specifically considering which carers the intervention works for, and for whom it may not.

Keywords: intellectual disability, family carer, acceptability study, online intervention

Procedia PDF Downloads 90
6754 Characteristics of Inclusive Circular Business Models in Social Entrepreneurship

Authors: Svitlana Yermak, Olubukola Aluko

Abstract:

The purpose of this study was a literature review on the topic of social entrepreneurship, a review of new trends and best practices, the study of existing inclusive business models and their interaction with the principles of the circular economy for possible implementation in the practice of Ukraine in war and post-war times in conditions of scarce resources. Thus, three research questions were identified and substantiated: to determine the characteristics of social entrepreneurship, consider the features in Ukraine and the UK; highlight the criteria for inclusion in social entrepreneurship and its legal support; explore examples of existing inclusive circular business models to illustrate how the two concepts may be combined. A detailed review of the literature selected from the Scopus and Web of Science databases was carried out. The study revealed signs of social entrepreneurship, the main of which are doing business and making a profit, as well as the social orientation of the business, which is prescribed in the constituent documents of the enterprise immediately upon its creation. Considered are the characteristics of social entrepreneurship in the UK and Ukraine. It has been established that in the UK, social entrepreneurship is clearly regulated by the state; there are special legislative norms and support programs, in contrast to Ukraine, where these processes are only partially regulated. The study identified the main criteria for inclusion in inclusive circular business models: economic (sustainability and efficiency, job creation and economic growth, promotion of local development), social (accessibility, equity and fairness, inclusion and participation), and resources in their interconnection. It is substantiated that the resource criterion is especially important for this type of business model. It provides for the efficient and sustainable use of resources, as well as the cyclical nature of resources. And it was concluded that the principles of the circular economy not only do not contradict but, on the contrary, complement and expand the inclusive business models on which social entrepreneurship is based.

Keywords: social entrepreneurship, inclusive business models, circular economy, inclusion criteria

Procedia PDF Downloads 99
6753 Nutritionists' Perspective on the Conception of a Telenutrition Platform for Diabetes Care: Qualitative Study

Authors: Choumous Mannoubi, Dahlia Kairy, Brigitte Vachon

Abstract:

The use of technology allows clinicians to provide an individualized approach in a cost-effective manner and to reach a broader client base more easily. Such interventions can be effective in ensuring self-management and follow-up of people with diabetes, reducing the risk of complications by improving accessibility to care services, and better adherence to health recommendations. Consideration of users' opinions and fears to inform the design and implementation stages of these telehealth services seems to be essential to improve their acceptance and usability. The objective of this study is to describe the telepractice of nutritionists supporting the therapeutic management of diabetic patients and document the functional requirements of nutritionists for the design of a tele-nutrition platform. To best identify the requirements and constraints of nutritionists, we conducted individual semi-structured interviews with 10 nutritionists who offered tele-nutrition services. Using a qualitative design with a descriptive approach based on the Nutrition Care Process Model (mNCP) framework, we explored in depth the state of nutritionists' telepractice in public and private health care settings, as well as their requirements for teleconsultation. Qualitative analyses revealed that nutritionists primarily used telephone calls during the COVID 19 pandemic to provide teleconsultations. Nutritionists identified the following important features for the design of a tele-nutrition platform: it should support interprofessional collaboration, allow for the development and monitoring of a care plan, integrate with the existing IT environment, be easy to use, accommodate different levels of patient literacy, and allow for easy sharing of educational materials to support nutrition education.

Keywords: telehealth, nutrition, diabetes, telenutrition, teleconsultation, telemonitoring

Procedia PDF Downloads 133
6752 Arabic Text Classification: Review Study

Authors: M. Hijazi, A. Zeki, A. Ismail

Abstract:

An enormous amount of valuable human knowledge is preserved in documents. The rapid growth in the number of machine-readable documents for public or private access requires the use of automatic text classification. Text classification can be defined as assigning or structuring documents into a defined set of classes known in advance. Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information written in the Arabic language on the web. This paper presents a review on the published researches of Arabic Text Classification using classical data representation, Bag of words (BoW), and using conceptual data representation based on semantic resources such as Arabic WordNet and Wikipedia.

Keywords: Arabic text classification, Arabic WordNet, bag of words, conceptual representation, semantic relations

Procedia PDF Downloads 425
6751 Construction Engineering and Cocoa Agriculture: A Synergistic Approach for Improved Livelihoods of Farmers

Authors: Felix Darko-Amoah, Daniel Acquah

Abstract:

In contemporary ecosystems for developing countries like Ghana, the need to explore innovative solutions for sustainable livelihoods of farmers is more important than ever. With Ghana’s population growing steadily and the demand for food, fiber and shelter increasing, it is imperative that the construction industry and agriculture come together to address the challenges faced by farmers in the country. In order to enhance the livelihoods of cocoa farmers in Ghana, this paper provides an innovative strategy that aims to integrate the areas of civil engineering and cash crop agriculture. This study focuses on cocoa cultivation in poorer nations, where farmers confront a variety of difficulties include restricted access to financing, subpar infrastructure, and insufficient support services. We seek to improve farmers' access to financing, improve infrastructure, and provide support services that are essential to their success by combining the fields of building engineering and cocoa production. The findings of the study are beneficial to cocoa producers, community extension agents, and construction engineers. In order to accomplish our objectives, we conducted 307 of field investigations in particular cocoa growing communities in the Western Region of Ghana. Several studies have shown that there is a lack of adequate infrastructure and financing, leading to low yields, subpar beans, and low farmer profitability in developing nations like Ghana. Our goal is to give farmers access to better infrastructure, better financing, and support services that are crucial to their success through the fusion of construction engineering and cocoa production. Based on data gathered from the field investigations, the results show that the employment of appropriate technology and methods for developing structures, roads, and other infrastructure in rural regions is one of the essential components of this strategy. For instance, we find that using affordable, environmentally friendly materials like bamboo, rammed earth, and mud bricks can assist to cut expenditures while also protecting the environment. By applying simple relational techniques to the data gathered, the results also show that construction engineers are crucial in planning and building infrastructure that is appropriate for the local environment and circumstances and resilient to natural disasters like floods. Thus, the convergence of construction engineering and cash crop cultivation is another crucial component of the agriculture-construction interplay. For instance, farmers can receive financial assistance to buy essential inputs, such as seeds, fertilizer, and tools, as well as training in proper farming methods. Moreover, extension services can be offered to assist farmers in marketing their crops and enhancing their livelihoods and revenue. In conclusion, our analysis of responses from the 307 participants depicts that the combination of construction engineering and cash crop agriculture offers an innovative approach to improving farmers' livelihoods in cocoa farming communities in Ghana. In conclusion, by inculcating the findings of this study into core decision-making, policymakers can help farmers build sustainable and profitable livelihoods by addressing challenges such as limited access to financing, poor infrastructure, and inadequate support services.

Keywords: cocoa agriculture, construction engineering, farm buildings and equipment, improved livelihoods of farmers

Procedia PDF Downloads 89
6750 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 345