Search results for: NPI processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3718

Search results for: NPI processing

508 Experimental Quantification of the Intra-Tow Resin Storage Evolution during RTM Injection

Authors: Mathieu Imbert, Sebastien Comas-Cardona, Emmanuelle Abisset-Chavanne, David Prono

Abstract:

Short cycle time Resin Transfer Molding (RTM) applications appear to be of great interest for the mass production of automotive or aeronautical lightweight structural parts. During the RTM process, the two components of a resin are mixed on-line and injected into the cavity of a mold where a fibrous preform has been placed. Injection and polymerization occur simultaneously in the preform inducing evolutions of temperature, degree of cure and viscosity that furthermore affect flow and curing. In order to adjust the processing conditions to reduce the cycle time, it is, therefore, essential to understand and quantify the physical mechanisms occurring in the part during injection. In a previous study, a dual-scale simulation tool has been developed to help determining the optimum injection parameters. This tool allows tracking finely the repartition of the resin and the evolution of its properties during reactive injections with on-line mixing. Tows and channels of the fibrous material are considered separately to deal with the consequences of the dual-scale morphology of the continuous fiber textiles. The simulation tool reproduces the unsaturated area at the flow front, generated by the tow/channel difference of permeability. Resin “storage” in the tows after saturation is also taken into account as it may significantly affect the repartition and evolution of the temperature, degree of cure and viscosity in the part during reactive injections. The aim of the current study is, thanks to experiments, to understand and quantify the “storage” evolution in the tows to adjust and validate the numerical tool. The presented study is based on four experimental repeats conducted on three different types of textiles: a unidirectional Non Crimp Fabric (NCF), a triaxial NCF and a satin weave. Model fluids, dyes and image analysis, are used to study quantitatively, the resin flow in the saturated area of the samples. Also, textiles characteristics affecting the resin “storage” evolution in the tows are analyzed. Finally, fully coupled on-line mixing reactive injections are conducted to validate the numerical model.

Keywords: experimental, on-line mixing, high-speed RTM process, dual-scale flow

Procedia PDF Downloads 169
507 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 452
506 Strengthening Strategy across Languages: A Cognitive and Grammatical Universal Phenomenon

Authors: Behnam Jay

Abstract:

In this study, the phenomenon called “Strengthening” in human language refers to the strategic use of multiple linguistic elements to intensify specific grammatical or semantic functions. This study explores cross-linguistic evidence demonstrating how strengthening appears in various grammatical structures. In French and Spanish, double negatives are used not to cancel each other out but to intensify the negation, challenging the conventional understanding that double negatives result in an affirmation. For example, in French, il ne sait pas (He dosn't know.) uses both “ne” and “pas” to strengthen the negation. Similarly, in Spanish, No vio a nadie. (He didn't see anyone.) uses “no” and “nadie” to achieve a stronger negative meaning. In Japanese, double honorifics, often perceived as erroneous, are reinterpreted as intentional efforts to amplify politeness, as seen in forms like ossharareru (to say, (honorific)). Typically, an honorific morpheme appears only once in a predicate, but native speakers often use double forms to reinforce politeness. In Turkish, the word eğer (indicating a condition) is sometimes used together with the conditional suffix -se(sa) within the same sentence to strengthen the conditional meaning, as in Eğer yağmur yağarsa, o gelmez. (If it rains, he won't come). Furthermore, the combination of question words with rising intonation in various languages serves to enhance interrogative force. These instances suggest that strengthening is a cross-linguistic strategy that may reflect a broader cognitive mechanism in language processing. This paper investigates these cases in detail, providing insights into why languages may adopt such strategies. No corpus was used for collecting examples from different languages. Instead, the examples were gathered from languages the author encountered during their research, focusing on specific grammatical and morphological phenomena relevant to the concept of strengthening. Due to the complexity of employing a comparative method across multiple languages, this approach was chosen to illustrate common patterns of strengthening based on available data. It is acknowledged that different languages may have different strengthening strategies in various linguistic domains. While the primary focus is on grammar and morphology, it is recognized that the strengthening phenomenon may also appear in phonology. Future research should aim to include a broader range of languages and utilize more comprehensive comparative methods where feasible to enhance methodological rigor and explore this phenomenon more thoroughly.

Keywords: strengthening, cross-linguistic analysis, syntax, semantics, cognitive mechanism

Procedia PDF Downloads 32
505 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 51
504 Impact of Different Rearing Diets on the Performance of Adult Mealworms Tenebrio molitor

Authors: Caroline Provost, Francois Dumont

Abstract:

Production of insects for human and animal consumption is an increasingly important activity in Canada. Protein production is more efficient and less harmful to the environment using insect rearing compared to the impact of traditional livestock, poultry and fish farms. Insects are rich in essential amino acids, essential fatty acids and trace elements. Thus, insect-based products could be used as a food supplement for livestock and domestic animals and may even find their way into the diets of high performing athletes or fine dining. Nevertheless, several parameters remain to be determined to ensure efficient and profitable production that meet the potential of these sectors. This project proposes to improve the production processes, rearing diets and processing methods for three species with valuable gastronomic and nutritional potential: the common mealworms (Tenebrio molitor), the small mealworm (Alphitobius diaperinus), and the giant mealworm (Zophobas morio). The general objective of the project is to acquire specific knowledge for mass rearing of insects dedicated to animal and human consumption in order to respond to current market opportunities and meet a growing demand for these products. Mass rearing of the three species of mealworm was produced to provide the individuals needed for the experiments. Mealworms eat flour from different cereals (e.g. wheat, barley, buckwheat). These cereals vary in their composition (protein, carbohydrates, fiber, vitamins, antioxidant, etc.), but also in their purchase cost. Seven different diets were compared to optimize the yield of the rearing. Diets were composed of cereal flour (e.g. wheat, barley) and were either mixed or left alone. Female fecundity, larvae mortality and growing curves were observed. Some flour diets have positive effects on female fecundity and larvae performance while each mealworm was found to have specific diet requirements. Trade-offs between mealworm performance and costs need to be considered. Experiments on the effect of flour composition on several parameters related to performance and nutritional and gastronomic value led to the identification of a more appropriate diet for each mealworm.

Keywords: mass rearing, mealworm, human consumption, diet

Procedia PDF Downloads 151
503 Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation

Authors: Mannar R. Maurya, Bithika Sarkar, Fernando Avecilla

Abstract:

Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol.

Keywords: oxovanadium(IV)/dioxidovanadium(V) complexes, NMR spectroscopy, Crystal structure, peroxidase mimic activity towards oxidation of pyrogallol, Oxidation of 1-phenylethanol

Procedia PDF Downloads 347
502 The Impact of the Method of Extraction on 'Chemchali' Olive Oil Composition in Terms of Oxidation Index, and Chemical Quality

Authors: Om Kalthoum Sallem, Saidakilani, Kamiliya Ounaissa, Abdelmajid Abid

Abstract:

Introduction and purposes: Olive oil is the main oil used in the Mediterranean diet. Virgin olive oil is valued for its organoleptic and nutritional characteristics and is resistant to oxidation due to its high monounsaturated fatty acid content (MUFAs), and low polyunsaturates (PUFAs) and the presence of natural antioxidants such as phenols, tocopherols and carotenoids. The fatty acid composition, especially the MUFA content, and the natural antioxidants provide advantages for health. The aim of the present study was to examine the impact of method of extraction on the chemical profiles of ‘Chemchali’ olive oil variety, which is cultivated in the city of Gafsa, and to compare it with chetoui and chemchali varieties. Methods: Our study is a qualitative prospective study that deals with ‘Chemchali’ olive oil variety. Analyses were conducted during three months (from December to February) in different oil mills in the city of Gafsa. We have compared ‘Chemchali’ olive oil obtained by continuous method to this obtained by superpress method. Then we have analyzed quality index parameters, including free fatty acid content (FFA), acidity, and UV spectrophotometric characteristics and other physico-chemical data [oxidative stability, ß-carotene, and chlorophyll pigment composition]. Results: Olive oil resulting from super press method compared with continuous method is less acid(0,6120 vs. 0,9760), less oxydazible(K232:2,478 vs. 2,592)(k270:0,216 vs. 0,228), more rich in oleic acid(61,61% vs. 66.99%), less rich in linoleic acid(13,38% vs. 13,98 %), more rich in total chlorophylls pigments (6,22 ppm vs. 3,18 ppm ) and ß-carotene (3,128 mg/kg vs. 1,73 mg/kg). ‘Chemchali’ olive oil showed more equilibrated total content in fatty acids compared with the varieties ’Chemleli’ and ‘Chetoui’. Gafsa’s variety ’Chemlali’ have significantly less saturated and polyunsaturated fatty acids. Whereas it has a higher content in monounsaturated fatty acid C18:2, compared with the two other varieties. Conclusion: The use of super press method had benefic effects on general chemical characteristics of ‘Chemchali’ olive oil, maintaining the highest quality according to the ecocert legal standards. In light of the results obtained in this study, a more detailed study is required to establish whether the differences in the chemical properties of oils are mainly due to agronomic and climate variables or, to the processing employed in oil mills.

Keywords: olive oil, extraction method, fatty acids, chemchali olive oil

Procedia PDF Downloads 384
501 Analysis of Constraints and Opportunities in Dairy Production in Botswana

Authors: Som Pal Baliyan

Abstract:

Dairy enterprise has been a major source of employment and income generation in most of the economies worldwide. Botswana government has also identified dairy as one of the agricultural sectors towards diversification of the mineral dependent economy of the country. The huge gap between local demand and supply of milk and milk products indicated that there are not only constraints but also; opportunities exist in this sub sector of agriculture. Therefore, this study was an attempt to identify constraints and opportunities in dairy production industry in Botswana. The possible ways to mitigate the constraints were also identified. The findings should assist the stakeholders especially, policy makers in the formulation of effective policies for the growth of dairy sector in the country. This quantitative study adopted a survey research design. A final survey followed by a pilot survey was conducted for data collection. The purpose of the pilot survey was to collect basic information on the nature and extent of the constraints, opportunities and ways to mitigate the constraints in dairy production. Based on the information from pilot survey, a four point Likert’s scale type questionnaire was constructed, validated and tested for its reliability. The data for the final survey were collected from purposively selected twenty five dairy farms. The descriptive statistical tools were employed to analyze data. Among the twelve constraints identified; high feed costs, feed shortage and availability, lack of technical support, lack of skilled manpower, high prevalence of pests and diseases and, lack of dairy related technologies were the six major constraints in dairy production. Grain feed production, roughage feed production, manufacturing of dairy feed, establishment of milk processing industry and, development of transportation systems were the five major opportunities among the eight opportunities identified. Increasing production of animal feed locally, increasing roughage feed production locally, provision of subsidy on animal feed, easy access to sufficient financial support, training of the farmers and, effective control of pests and diseases were identified as the six major ways to mitigate the constraints. It was recommended that the identified constraints and opportunities as well as the ways to mitigate the constraints need to be carefully considered by the stakeholders especially, policy makers during the formulation and implementation of the policies for the development of dairy sector in Botswana.

Keywords: dairy enterprise, milk production, opportunities, production constraints

Procedia PDF Downloads 413
500 Incorporation of Noncanonical Amino Acids into Hard-to-Express Antibody Fragments: Expression and Characterization

Authors: Hana Hanaee-Ahvaz, Monika Cserjan-Puschmann, Christopher Tauer, Gerald Striedner

Abstract:

Incorporation of noncanonical amino acids (ncAA) into proteins has become an interesting topic as proteins featured with ncAAs offer a wide range of different applications. Nowadays, technologies and systems exist that allow for the site-specific introduction of ncAAs in vivo, but the efficient production of proteins modified this way is still a big challenge. This is especially true for 'hard-to-express' proteins where low yields are encountered even with the native sequence. In this study, site-specific incorporation of azido-ethoxy-carbonyl-Lysin (azk) into an anti-tumor-necrosis-factor-α-Fab (FTN2) was investigated. According to well-established parameters, possible site positions for ncAA incorporation were determined, and corresponding FTN2 genes were constructed. Each of the modified FTN2 variants has one amber codon for azk incorporated either in its heavy or light chain. The expression level for all variants produced was determined by ELISA, and all azk variants could be produced with a satisfactory yield in the range of 50-70% of the original FTN2 variant. In terms of expression yield, neither the azk incorporation position nor the subunit modified (heavy or light chain) had a significant effect. We confirmed correct protein processing and azk incorporation by mass spectrometry analysis, and antigen-antibody interaction was determined by surface plasmon resonance analysis. The next step is to characterize the effect of azk incorporation on protein stability and aggregation tendency via differential scanning calorimetry and light scattering, respectively. In summary, the incorporation of ncAA into our Fab candidate FTN2 worked better than expected. The quantities produced allowed a detailed characterization of the variants in terms of their properties, and we can now turn our attention to potential applications. By using click chemistry, we can equip the Fabs with additional functionalities and make them suitable for a wide range of applications. We will now use this option in a first approach and develop an assay that will allow us to follow the degradation of the recombinant target protein in vivo. Special focus will be laid on the proteolytic activity in the periplasm and how it is influenced by cultivation/induction conditions.

Keywords: degradation, FTN2, hard-to-express protein, non-canonical amino acids

Procedia PDF Downloads 241
499 Attention and Creative Problem-Solving: Cognitive Differences between Adults with and without Attention Deficit Hyperactivity Disorder

Authors: Lindsey Carruthers, Alexandra Willis, Rory MacLean

Abstract:

Introduction: It has been proposed that distractibility, a key diagnostic criterion of Attention Deficit Hyperactivity Disorder (ADHD), may be associated with higher creativity levels in some individuals. Anecdotal and empirical evidence has shown that ADHD is therefore beneficial to creative problem-solving, and the generation of new ideas and products. Previous studies have only used one or two measures of attention, which is insufficient given that it is a complex cognitive process. The current study aimed to determine in which ways performance on creative problem-solving tasks and a range of attention tests may be related, and if performance differs between adults with and without ADHD. Methods: 150 adults, 47 males and 103 females (mean age=28.81 years, S.D.=12.05 years), were tested at Edinburgh Napier University. Of this set, 50 participants had ADHD, and 100 did not, forming the control group. Each participant completed seven attention tasks, assessing focussed, sustained, selective, and divided attention. Creative problem-solving was measured using divergent thinking tasks, which require multiple original solutions for one given problem. Two types of divergent thinking task were used: verbal (requires written responses) and figural (requires drawn responses). Each task is scored for idea originality, with higher scores indicating more creative responses. Correlational analyses were used to explore relationships between attention and creative problem-solving, and t-tests were used to study the between group differences. Results: The control group scored higher on originality for figural divergent thinking (t(148)= 3.187, p< .01), whereas the ADHD group had more original ideas for the verbal divergent thinking task (t(148)= -2.490, p < .05). Within the control group, figural divergent thinking scores were significantly related to both selective (r= -.295 to -.285, p < .01) and divided attention (r= .206 to .290, p < .05). Alternatively, within the ADHD group, both selective (r= -.390 to -.356, p < .05) and divided (r= .328 to .347, p < .05) attention are related to verbal divergent thinking. Conclusions: Selective and divided attention are both related to divergent thinking, however the performance patterns are different between each group, which may point to cognitive variance in the processing of these problems and how they are managed. The creative differences previously found between those with and without ADHD may be dependent on task type, which to the author’s knowledge, has not been distinguished previously. It appears that ADHD does not specifically lead to higher creativity, but may provide explanation for creative differences when compared to those without the disorder.

Keywords: ADHD, attention, creativity, problem-solving

Procedia PDF Downloads 459
498 Impact of Intelligent Transportation System on Planning, Operation and Safety of Urban Corridor

Authors: Sourabh Jain, S. S. Jain

Abstract:

Intelligent transportation system (ITS) is the application of technologies for developing a user–friendly transportation system to extend the safety and efficiency of urban transportation systems in developing countries. These systems involve vehicles, drivers, passengers, road operators, managers of transport services; all interacting with each other and the surroundings to boost the security and capacity of road systems. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. Intelligent transportation system is a product of the revolution in information and communications technologies that is the hallmark of the digital age. The basic ITS technology is oriented on three main directions: communications, information, integration. Information acquisition (collection), processing, integration, and sorting are the basic activities of ITS. In the paper, attempts have been made to present the endeavor that was made to interpret and evaluate the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of six lanes as well as eight lanes divided road network. Two categories of data have been collected such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, stop watch, radar gun, and mobile GPS (GPS tracker lite). From the analysis, the performance interpretations incorporated were the identification of peak and off-peak hours, congestion and level of service (LOS) at midblock sections and delay followed by plotting the speed contours. The paper proposed the urban corridor management strategies based on sensors integrated into both vehicles and on the roads that those have to be efficiently executable, cost-effective, and familiar to road users. It will be useful to reduce congestion, fuel consumption, and pollution so as to provide comfort, safety, and efficiency to the users.

Keywords: ITS strategies, congestion, planning, mobility, safety

Procedia PDF Downloads 182
497 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 100
496 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 233
495 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 124
494 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process

Authors: Jitendar Kumar Tiwari, Ajay Mandal, N. Sathish, A. K. Srivastava

Abstract:

Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.

Keywords: graphene, hardness, porosity, powder bed fusion, tensile properties

Procedia PDF Downloads 131
493 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 113
492 Prevalence of Foodborne Pathogens in Pig and Cattle Carcass Samples Collected from Korean Slaughterhouses

Authors: Kichan Lee, Kwang-Ho Choi, Mi-Hye Hwang, Young Min Son, Bang-Hun Hyun, Byeong Yeal Jung

Abstract:

Recently, worldwide food safety authorities have been strengthening food hygiene in order to curb foodborne illness outbreaks. The hygiene status of Korean slaughterhouses has been monitored annually by Animal and Plant Quarantine Agency and provincial governments through foodborne pathogens investigation using slaughtered pig and cattle meats. This study presented the prevalence of food-borne pathogens from 2014 to 2016 in Korean slaughterhouses. Sampling, microbiological examinations, and analysis of results were performed in accordance with ‘Processing Standards and Ingredient Specifications for Livestock Products’. In total, swab samples from 337 pig carcasses (100 samples in 2014, 135 samples in 2015, 102 samples in 2016) and 319 cattle carcasses (100 samples in 2014, 119 samples in 2015, 100 samples in 2016) from twenty slaughterhouses were examined for Listeria monocytogenes, Campylobacter jejuni, Campylobacter coli, Salmonella spp., Staphylococcus aureus, Clostridium perfringens, Yersinia enterocolitica, Escherichia coli O157:H7 and non-O157 enterohemorrhagic E. coli (EHEC, serotypes O26, O45, O103, O104, O111, O121, O128 and O145) as foodborne pathogens. The samples were analyzed using cultural and PCR-based methods. Foodborne pathogens were isolated in 78 (23.1%) out of 337 pig samples. In 2014, S. aureus (n=17) was predominant, followed by Y. enterocolitica (n=7), C. perfringens (n=2) and L. monocytogenes (n=2). In 2015, C. coli (n=14) was the most prevalent, followed by L. monocytogenes (n=4), S. aureus (n=3), and C. perfringens (n=2). In 2016, S. aureus (n=16) was the most prevalent, followed by C. coli (n=13), L. monocytogenes (n=2) and C. perfringens (n=1). In case of cattle carcasses, foodborne bacteria were detected in 41 (12.9%) out of 319 samples. In 2014, S. aureus (n=16) was the most prevalent, followed by Y. enterocolitica (n=3), C. perfringens (n=3) and L. monocytogenes (n=2). In 2015, L. monocytogenes was isolated from 4 samples, S. aureus from three, C. perfringens, Y. enterocolitica and Salmonella spp. from one, respectively. In 2016, L. monocytogenes (n=6) was the most prevalent, followed by C. perfringens (n=3) C. jejuni (n=1), respectively. It was found that 10 carcass samples (4 cattle and 6 pigs) were contaminated with two bacterial pathogen tested. Interestingly, foodborne pathogens were more detected from pig carcasses than cattle carcasses. Although S. aureus was predominantly detected in this study, other foodborne pathogens were also isolated in slaughtered meats. Results of this study alerted the risk of foodborne pathogen infection for humans from slaughtered meats. Therefore, the authors insisted that it was important to enhance hygiene level of slaughterhouses according to Hazard Analysis and Critical Control Point.

Keywords: carcass, cattle, foodborne, Korea, pathogen, pig

Procedia PDF Downloads 348
491 Impact of Elements of Rock and Water Combination on Landscape Perception: A Visual Landscape Quality Assessment on Kaludiya Pokuna in Sri Lanka

Authors: Clarence Dissanayake, Anishka A. Hettiarachchi

Abstract:

Landscape architecture needs to encompass a placemaking process carefully composing and manipulating landscape elements to address perceptual needs of humans, especially aesthetic, psychological and spiritual. The objective of this qualitative investigation is to inquire the impact of elements of rock and water combination on landscape perception and related feelings, emotions, and behavior. The past empirical studies have assessed the impact of landscape elements in isolation on user preference, yet the combined effect of elements have been less considered. This research was conducted with reference to the verity of qualities of water and rock through a visual landscape quality assessment focusing on landscape qualities derived from five visual concepts (coherence, historicity imageability, naturalness, and ephemera). 'Kaludiya Pokuna' archeological site in Anuradhapura was investigated with a sample of University students (n=19, male 14, female 5, age 20-25) using a five-point Likert scale via a perception based questionnaire and a visitor employed photographic survey (VEP). Two hypothetical questions were taken into investigation concerning biophilic (naturalness) and topophilic (historicity) aspects of humans to prefer a landscape with rock and water. The findings revealed that this combination encourages both biophilic and topophilic aspects, but in varying degrees. The identified hierarchy of visual concepts based on visitor’s preference signify coherence (93%), historicity (89%), imageability (79%), naturalness (75%) and ephemera (70%) respectively. It was further revealed that this combination creates a scenery more coherent dominating information processing aspect of humans to perceive a landscape over the biophilic and topophilic aspects. Different characteristics and secondary landscape effects generated by rock and water combination were found to affect in transforming a space into a place, full filling the aesthetic and spiritual aspects of the visitors. These findings enhance a means of making places for people, resource management and historical landscape conservation. Equalization of gender based participation, taking diverse cases and increasing the sample size with more analytical photographic analysis are recommended to enhance the quality of further research.

Keywords: landscape perception, visitor’s preference, rock and water combination, visual concepts

Procedia PDF Downloads 230
490 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 312
489 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans

Authors: O. Ekrami, P. Claes, S. Van Dongen

Abstract:

Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.

Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing

Procedia PDF Downloads 144
488 Modelling Distress Sale in Agriculture: Evidence from Maharashtra, India

Authors: Disha Bhanot, Vinish Kathuria

Abstract:

This study focusses on the issue of distress sale in horticulture sector in India, which faces unique challenges, given the perishable nature of horticulture crops, seasonal production and paucity of post-harvest produce management links. Distress sale, from a farmer’s perspective may be defined as urgent sale of normal or distressed goods, at deeply discounted prices (way below the cost of production) and it is usually characterized by unfavorable conditions for the seller (farmer). The small and marginal farmers, often involved in subsistence farming, stand to lose substantially if they receive lower prices than expected prices (typically framed in relation to cost of production). Distress sale maximizes price uncertainty of produce leading to substantial income loss; and with increase in input costs of farming, the high variability in harvest price severely affects profit margin of farmers, thereby affecting their survival. The objective of this study is to model the occurrence of distress sale by tomato cultivators in the Indian state of Maharashtra, against the background of differential access to set of factors such as - capital, irrigation facilities, warehousing, storage and processing facilities, and institutional arrangements for procurement etc. Data is being collected using primary survey of over 200 farmers in key tomato growing areas of Maharashtra, asking information on the above factors in addition to seeking information on cost of cultivation, selling price, time gap between harvesting and selling, role of middleman in selling, besides other socio-economic variables. Farmers selling their produce far below the cost of production would indicate an occurrence of distress sale. Occurrence of distress sale would then be modelled as a function of farm, household and institutional characteristics. Heckman-two-stage model would be applied to find the probability/likelihood of a famer falling into distress sale as well as to ascertain how the extent of distress sale varies in presence/absence of various factors. Findings of the study would recommend suitable interventions and promotion of strategies that would help farmers better manage price uncertainties, avoid distress sale and increase profit margins, having direct implications on poverty.

Keywords: distress sale, horticulture, income loss, India, price uncertainity

Procedia PDF Downloads 248
487 Recommendations for Teaching Word Formation for Students of Linguistics Using Computer Terminology as an Example

Authors: Svetlana Kostrubina, Anastasia Prokopeva

Abstract:

This research presents a comprehensive study of the word formation processes in computer terminology within English and Russian languages and provides listeners with a system of exercises for training these skills. The originality is that this study focuses on a comparative approach, which shows both general patterns and specific features of English and Russian computer terms word formation. The key point is the system of exercises development for training computer terminology based on Bloom’s taxonomy. Data contain 486 units (228 English terms from the Glossary of Computer Terms and 258 Russian terms from the Terminological Dictionary-Reference Book). The objective is to identify the main affixation models in the English and Russian computer terms formation and to develop exercises. To achieve this goal, the authors employed Bloom’s Taxonomy as a methodological framework to create a systematic exercise program aimed at enhancing students’ cognitive skills in analyzing, applying, and evaluating computer terms. The exercises are appropriate for various levels of learning, from basic recall of definitions to higher-order thinking skills, such as synthesizing new terms and critically assessing their usage in different contexts. Methodology also includes: a method of scientific and theoretical analysis for systematization of linguistic concepts and clarification of the conceptual and terminological apparatus; a method of nominative and derivative analysis for identifying word-formation types; a method of word-formation analysis for organizing linguistic units; a classification method for determining structural types of abbreviations applicable to the field of computer communication; a quantitative analysis technique for determining the productivity of methods for forming abbreviations of computer vocabulary based on the English and Russian computer terms, as well as a technique of tabular data processing for a visual presentation of the results obtained. a technique of interlingua comparison for identifying common and different features of abbreviations of computer terms in the Russian and English languages. The research shows that affixation retains its productivity in the English and Russian computer terms formation. Bloom’s taxonomy allows us to plan a training program and predict the effectiveness of the compiled program based on the assessment of the teaching methods used.

Keywords: word formation, affixation, computer terms, Bloom's taxonomy

Procedia PDF Downloads 26
486 Development of Three-Dimensional Groundwater Model for Al-Corridor Well Field, Amman–Zarqa Basin

Authors: Moayyad Shawaqfah, Ibtehal Alqdah, Amjad Adaileh

Abstract:

Coridoor area (400 km2) lies to the north – east of Amman (60 km). It lies between 285-305 E longitude and 165-185 N latitude (according to Palestine Grid). It been subjected to exploitation of groundwater from new eleven wells since the 1999 with a total discharge of 11 MCM in addition to the previous discharge rate from the well field 14.7 MCM. Consequently, the aquifer balance is disturbed and a major decline in water level. Therefore, suitable groundwater resources management is required to overcome the problems of over pumping and its effect on groundwater quality. Three–dimensional groundwater flow model Processing Modeflow for Windows Pro (PMWIN PRO, 2003) has been used in order to calculate the groundwater budget, aquifer characteristics, and to predict the aquifer response under different stresses for the next 20 years (2035). The model was calibrated for steady state conditions by trial and error calibration. The calibration was performed by matching observed and calculated initial heads for year 2001. Drawdown data for period 2001-2010 were used to calibrate transient model by matching calculated with observed one, after that, the transient model was validated by using the drawdown data for the period 2011-2014. The hydraulic conductivities of the Basalt- A7/B2 aquifer System are ranging between 1.0 and 8.0 m/day. The low conductivity value was found at the north-west and south-western parts of the study area, the high conductivity value was found at north-western corner of the study area and the average storage coefficient is about 0.025. The water balance for the Basalt and B2/A7 formation at steady state condition with a discrepancy of 0.003%. The major inflows come from Jebal Al Arab through the basalt and through the limestone aquifer (B2/A7 12.28 MCMY aquifer and from excess rainfall is about 0.68 MCM/a. While the major outflows from the Basalt-B2/A7 aquifer system are toward Azraq basin with about 5.03 MCMY and leakage to A1/6 aquitard with 7.89 MCMY. Four scenarios have been performed to predict aquifer system responses under different conditions. Scenario no.2 was found to be the best one which indicates that the reduction the abstraction rates by 50% of current withdrawal rate (25.08 MCMY) to 12.54 MCMY. The maximum drawdowns were decreased to reach about, 7.67 and 8.38m in the years 2025 and 2035 respectively.

Keywords: Amman/Zarqa Basin, Jordan, groundwater management, groundwater modeling, modflow

Procedia PDF Downloads 218
485 Utilizing Topic Modelling for Assessing Mhealth App’s Risks to Users’ Health before and during the COVID-19 Pandemic

Authors: Pedro Augusto Da Silva E Souza Miranda, Niloofar Jalali, Shweta Mistry

Abstract:

BACKGROUND: Software developers utilize automated solutions to scrape users’ reviews to extract meaningful knowledge to identify problems (e.g., bugs, compatibility issues) and possible enhancements (e.g., users’ requests) to their solutions. However, most of these solutions do not consider the health risk aspects to users. Recent works have shed light on the importance of including health risk considerations in the development cycle of mHealth apps to prevent harm to its users. PROBLEM: The COVID-19 Pandemic in Canada (and World) is currently forcing physical distancing upon the general population. This new lifestyle made the usage of mHealth applications more essential than ever, with a projected market forecast of 332 billion dollars by 2025. However, this new insurgency in mHealth usage comes with possible risks to users’ health due to mHealth apps problems (e.g., wrong insulin dosage indication due to a UI error). OBJECTIVE: These works aim to raise awareness amongst mHealth developers of the importance of considering risks to users’ health within their development lifecycle. Moreover, this work also aims to help mHealth developers with a Proof-of-Concept (POC) solution to understand, process, and identify possible health risks to users of mHealth apps based on users’ reviews. METHODS: We conducted a mixed-method study design. We developed a crawler to mine the negative reviews from two samples of mHealth apps (my fitness, medisafe) from the Google Play store users. For each mHealth app, we performed the following steps: • The reviews are divided into two groups, before starting the COVID-19 (reviews’ submission date before 15 Feb 2019) and during the COVID-19 (reviews’ submission date starts from 16 Feb 2019 till Dec 2020). For each period, the Latent Dirichlet Allocation (LDA) topic model was used to identify the different clusters of reviews based on similar topics of review The topics before and during COVID-19 are compared, and the significant difference in frequency and severity of similar topics are identified. RESULTS: We successfully scraped, filtered, processed, and identified health-related topics in both qualitative and quantitative approaches. The results demonstrated the similarity between topics before and during the COVID-19.

Keywords: natural language processing (NLP), topic modeling, mHealth, COVID-19, software engineering, telemedicine, health risks

Procedia PDF Downloads 133
484 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics

Authors: Namasivayam Navaranjan, Eric Dimla

Abstract:

The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.

Keywords: bioplastics, plastics, renewable resources, biomass

Procedia PDF Downloads 312
483 The Mapping of Pastoral Area as a Basis of Ecological for Beef Cattle in Pinrang Regency, South Sulawesi, Indonesia

Authors: Jasmal A. Syamsu, Muhammad Yusuf, Hikmah M. Ali, Mawardi A. Asja, Zulkharnaim

Abstract:

This study was conducted and aimed in identifying and mapping the pasture as an ecological base of beef cattle. A survey was carried out during a period of April to June 2016, in Suppa, Mattirobulu, the district of Pinrang, South Sulawesi province. The mapping process of grazing area was conducted in several stages; inputting and tracking of data points into Google Earth Pro (version 7.1.4.1529), affirmation and confirmation of tracking line visualized by satellite with a variety of records at the point, a certain point and tracking input data into ArcMap Application (ArcGIS version 10.1), data processing DEM/SRTM (S04E119) with respect to the location of the grazing areas, creation of a contour map (a distance of 5 m) and mapping tilt (slope) of land and land cover map-making. Analysis of land cover, particularly the state of the vegetation was done through the identification procedure NDVI (Normalized Differences Vegetation Index). This procedure was performed by making use of the Landsat-8. The results showed that the topography of the grazing areas of hills and some sloping surfaces and flat with elevation vary from 74 to 145 above sea level (asl), while the requirements for growing superior grass and legume is an altitude of up to 143-159 asl. Slope varied between 0 - > 40% and was dominated by a slope of 0-15%, according to the slope/topography pasture maximum of 15%. The range of NDVI values for pasture image analysis results was between 0.1 and 0.27. Characteristics of vegetation cover of pasture land in the category of vegetation density were low, 70% of the land was the land for cattle grazing, while the remaining approximately 30% was a grove and forest included plant water where the place for shelter of the cattle during the heat and drinking water supply. There are seven types of graminae and 5 types of legume that was dominant in the region. Proportionally, graminae class dominated up 75.6% and legume crops up to 22.1% and the remaining 2.3% was another plant trees that grow in the region. The dominant weed species in the region were Cromolaenaodorata and Lantana camara, besides that there were 6 types of floor plant that did not include as forage fodder.

Keywords: pastoral, ecology, mapping, beef cattle

Procedia PDF Downloads 359
482 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 302
481 Depictions of Human Cannibalism and the Challenge They Pose to the Understanding of Animal Rights

Authors: Desmond F. Bellamy

Abstract:

Discourses about animal rights usually assume an ontological abyss between human and animal. This supposition of non-animality allows us to utilise and exploit non-humans, particularly those with commercial value, with little regard for their rights or interests. We can and do confine them, inflict painful treatments such as castration and branding, and slaughter them at an age determined only by financial considerations. This paper explores the way images and texts depicting human cannibalism reflect this deprivation of rights back onto our species and examines how this offers new perspectives on our granting or withholding of rights to farmed animals. The animals we eat – sheep, pigs, cows, chickens and a small handful of other species – are during processing de-animalised, turned into commodities, and made unrecognisable as formerly living beings. To do the same to a human requires the cannibal to enact another step – humans must first be considered as animals before they can be commodified or de-animalised. Different iterations of cannibalism in a selection of fiction and non-fiction texts will be considered: survivalism (necessitated by catastrophe or dystopian social collapse), the primitive savage of colonial discourses, and the inhuman psychopath. Each type of cannibalism shows alternative ways humans can be animalised and thereby dispossessed of both their human and animal rights. Human rights, summarised in the UN Universal Declaration of Human Rights as ‘life, liberty, and security of person’ are stubbornly denied to many humans, and are refused to virtually all farmed non-humans. How might this paradigm be transformed by seeing the animal victim replaced by an animalised human? People are fascinated as well as repulsed by cannibalism, as demonstrated by the upsurge of films on the subject in the last few decades. Cannibalism is, at its most basic, about envisaging and treating humans as objects: meat. It is on the dinner plate that the abyss between human and ‘animal’ is most challenged. We grasp at a conscious level that we are a species of animal and may become, if in the wrong place (e.g., shark-infested water), ‘just food’. Culturally, however, strong traditions insist that humans are much more than ‘just meat’ and deserve a better fate than torment and death. The billions of animals on death row awaiting human consumption would ask the same if they could. Depictions of cannibalism demonstrate in graphic ways that humans are animals, made of meat and that we can also be butchered and eaten. These depictions of us as having the same fleshiness as non-human animals reminds us that they have the same capacities for pain and pleasure as we do. Depictions of cannibalism, therefore, unconsciously aid in deconstructing the human/animal binary and give a unique glimpse into the often unnoticed repudiation of animal rights.

Keywords: animal rights, cannibalism, human/animal binary, objectification

Procedia PDF Downloads 140
480 Application of Neuroscience in Aligning Instructional Design to Student Learning Style

Authors: Jayati Bhattacharjee

Abstract:

Teaching is a very dynamic profession. Teaching Science is as much challenging as Learning the subject if not more. For instance teaching of Chemistry. From the introductory concepts of subatomic particles to atoms of elements and their symbols and further presenting the chemical equation and so forth is a challenge on both side of the equation Teaching Learning. This paper combines the Neuroscience of Learning and memory with the knowledge of Learning style (VAK) and presents an effective tool for the teacher to authenticate Learning. The model of ‘Working Memory’, the Visio-spatial sketchpad, the central executive and the phonological loop that transforms short-term memory to long term memory actually supports the psychological theory of Learning style i.e. Visual –Auditory-Kinesthetic. A closer examination of David Kolbe’s learning model suggests that learning requires abilities that are polar opposites, and that the learner must continually choose which set of learning abilities he or she will use in a specific learning situation. In grasping experience some of us perceive new information through experiencing the concrete, tangible, felt qualities of the world, relying on our senses and immersing ourselves in concrete reality. Others tend to perceive, grasp, or take hold of new information through symbolic representation or abstract conceptualization – thinking about, analyzing, or systematically planning, rather than using sensation as a guide. Similarly, in transforming or processing experience some of us tend to carefully watch others who are involved in the experience and reflect on what happens, while others choose to jump right in and start doing things. The watchers favor reflective observation, while the doers favor active experimentation. Any lesson plan based on the model of Prescriptive design: C+O=M (C: Instructional condition; O: Instructional Outcome; M: Instructional method). The desired outcome and conditions are independent variables whereas the instructional method is dependent hence can be planned and suited to maximize the learning outcome. The assessment for learning rather than of learning can encourage, build confidence and hope amongst the learners and go a long way to replace the anxiety and hopelessness that a student experiences while learning Science with a human touch in it. Application of this model has been tried in teaching chemistry to high school students as well as in workshops with teachers. The response received has proven the desirable results.

Keywords: working memory model, learning style, prescriptive design, assessment for learning

Procedia PDF Downloads 354
479 Carotenoid Bioaccessibility: Effects of Food Matrix and Excipient Foods

Authors: Birgul Hizlar, Sibel Karakaya

Abstract:

Recently, increasing attention has been given to carotenoid bioaccessibility and bioavailability in the field of nutrition research. As a consequence of their lipophilic nature and their specific localization in plant-based tissues, carotenoid bioaccessibility and bioavailability is generally quite low in raw fruits and vegetables, since carotenoids need to be released from the cellular matrix and incorporated in the lipid fraction during digestion before being absorbed. Today’s approach related to improving the bioaccessibility is to design food matrix. Recently, the newest approach, excipient food, has been introduced to improve the bioavailability of orally administered bioactive compounds. The main idea is combining food and another food (the excipient food) whose composition and/or structure is specifically designed for improving health benefits. In this study, effects of food processing, food matrix and the addition of excipient foods on the carotenoid bioaccessibility of carrots were determined. Different excipient foods (olive oil, lemon juice and whey curd) and different food matrices (grating, boiling and mashing) were used. Total carotenoid contents of the grated, boiled and mashed carrots were 57.23, 51.11 and 62.10 μg/g respectively. No significant differences among these values indicated that these treatments had no effect on the release of carotenoids from the food matrix. Contrary to, changes in the food matrix, especially mashing caused significant increase in the carotenoid bioaccessibility. Although the carotenoid bioaccessibility was 10.76% in grated carrots, this value was 18.19% in mashed carrots (p<0.05). Addition of olive oil and lemon juice as excipients into the grated carrots caused 1.23 times and 1.67 times increase in the carotenoid content and the carotenoid bioaccessibility respectively. However, addition of the excipient foods in the boiled carrot samples did not influence the release of carotenoid from the food matrix. Whereas, up to 1.9 fold increase in the carotenoid bioaccessibility was determined by the addition of the excipient foods into the boiled carrots. The bioaccessibility increased from 14.20% to 27.12% by the addition of olive oil, lemon juice and whey curd. The highest carotenoid content among mashed carrots was found in the mashed carrots incorporated with olive oil and lemon juice. This combination also caused a significant increase in the carotenoid bioaccessibility from 18.19% to 29.94% (p<0.05). When compared the results related with the effect of the treatments on the carotenoid bioaccessibility, mashed carrots containing olive oil, lemon juice and whey curd had the highest carotenoid bioaccessibility. The increase in the bioaccessibility was approximately 81% when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. In conclusion, these results demonstrated that the food matrix and addition of the excipient foods had a significant effect on the carotenoid content and the carotenoid bioaccessibility.

Keywords: carrot, carotenoids, excipient foods, food matrix

Procedia PDF Downloads 466