Search results for: healthcare data security
24641 Optimizing the Location of Parking Areas Adapted for Dangerous Goods in the European Road Transport Network
Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio
Abstract:
The transportation of dangerous goods by lorries throughout Europe must be done by using the roads conforming the European Road Transport Network. In this network, there are several parking areas where lorry drivers can park to rest according to the regulations. According to the "European Agreement concerning the International Carriage of Dangerous Goods by Road", parking areas where lorries transporting dangerous goods can park to rest, must follow several security stipulations to keep safe the rest of road users. At this respect, these lorries must be parked in adapted areas with strict and permanent surveillance measures. Moreover, drivers must satisfy several restrictions about resting and driving time. Under these facts, one may expect that there exist enough parking areas for the transport of this type of goods in order to obey the regulations prescribed by the European Union and its member countries. However, the already-existing parking areas are not sufficient to cover all the stops required by drivers transporting dangerous goods. Our main goal is, starting from the already-existing parking areas and the loading-and-unloading location, to provide an optimal answer to the following question: how many additional parking areas must be built and where must they be located to assure that lorry drivers can transport dangerous goods following all the stipulations about security and safety for their stops? The sense of the word “optimal” is due to the fact that we give a global solution for the location of parking areas throughout the whole European Road Transport Network, adjusting the number of additional areas to be as lower as possible. To do so, we have modeled the problem using graph theory since we are working with a road network. As nodes, we have considered the locations of each already-existing parking area, each loading-and-unloading area each road bifurcation. Each road connecting two nodes is considered as an edge in the graph whose weight corresponds to the distance between both nodes in the edge. By applying a new efficient algorithm, we have found the additional nodes for the network representing the new parking areas adapted for dangerous goods, under the fact that the distance between two parking areas must be less than or equal to 400 km.Keywords: trans-european transport network, dangerous goods, parking areas, graph-based modeling
Procedia PDF Downloads 28424640 Data Hiding in Gray Image Using ASCII Value and Scanning Technique
Authors: R. K. Pateriya, Jyoti Bharti
Abstract:
This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message
Procedia PDF Downloads 41924639 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems
Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi
Abstract:
The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.Keywords: mobile databases, synchronization, cache, response time
Procedia PDF Downloads 41024638 Use of Life Cycle Data for State-Oriented Maintenance
Authors: Maximilian Winkens, Matthias Goerke
Abstract:
The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention
Procedia PDF Downloads 50024637 An Interactive User-Oriented Approach to Optimizing Public Space Lighting
Authors: Tamar Trop, Boris Portnov
Abstract:
Public Space Lighting (PSL) of outdoor urban areas promotes comfort, defines spaces and neighborhood identities, enhances perceived safety and security, and contributes to residential satisfaction and wellbeing. However, if excessive or misdirected, PSL leads to unnecessary energy waste and increased greenhouse gas emissions, poses a non-negligible threat to the nocturnal environment, and may become a potential health hazard. At present, PSL is designed according to international, regional, and national standards, which consolidate best practice. Yet, knowledge regarding the optimal light characteristics needed for creating a perception of personal comfort and safety in densely populated residential areas, and the factors associated with this perception, is still scarce. The presented study suggests a paradigm shift in designing PSL towards a user-centered approach, which incorporates pedestrians' perspectives into the process. The study is an ongoing joint research project between China and Israel Ministries of Science and Technology. Its main objectives are to reveal inhabitants' perceptions of and preferences for PSL in different densely populated neighborhoods in China and Israel, and to develop a model that links instrumentally measured parameters of PSL (e.g., intensity, spectra and glare) with its perceived comfort and quality, while controlling for three groups of attributes: locational, temporal, and individual. To investigate measured and perceived PSL, the study employed various research methods and data collection tools, developed a location-based mobile application, and used multiple data sources, such as satellite multi-spectral night-time light imagery, census statistics, and detailed planning schemes. One of the study’s preliminary findings is that higher sense of safety in the investigated neighborhoods is not associated with higher levels of light intensity. This implies potential for energy saving in brightly illuminated residential areas. Study findings might contribute to the design of a smart and adaptive PSL strategy that enhances pedestrians’ perceived safety and comfort while reducing light pollution and energy consumption.Keywords: energy efficiency, light pollution, public space lighting, PSL, safety perceptions
Procedia PDF Downloads 13824636 Digital Advance Care Planning and Directives: Early Observations of Adoption Statistics and Responses from an All-Digital Consumer-Driven Approach
Authors: Robert L. Fine, Zhiyong Yang, Christy Spivey, Bonnie Boardman, Maureen Courtney
Abstract:
Importance: Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Reengineering ACP by using a web-based, consumer-driven process has recently been suggested. We report early experience with such a process. Objective: Begin to analyze the potential of the creation and use of ACP/ADs as generated by a consumer-friendly, digital process by 1) assessing the likelihood that consumers would create ACP/ADs without structured intervention by medical or legal professionals, and 2) analyzing the responses to determine if the plans can help doctors better understand a person’s goals, preferences, and priorities for their medical treatments and the naming of healthcare agents. Design: The authors chose 900 users of MyDirectives.com, a digital ACP/AD tool, solely based on their state of residence in order to achieve proportional representation of all 50 states by population size and then reviewed their responses, summarizing these through descriptive statistics including treatment preferences, demographics, and revision of preferences. Setting: General United States population. Participants: The 900 participants had an average age of 50.8 years (SD = 16.6); 84.3% of the men and 91% of the women were in self-reported good health when signing their ADs. Main measures: Preferences regarding the use of life-sustaining treatments, where to spend final days, consulting a supportive and palliative care team, attempted cardiopulmonary resuscitation (CPR), autopsy, and organ and tissue donation. Results: Nearly 85% of respondents prefer cessation of life-sustaining treatments during their final days whenever those may be, 76% prefer to spend their final days at home or in a hospice facility, and 94% wanted their future doctors to consult a supportive and palliative care team. 70% would accept attempted CPR in certain limited circumstances. Most respondents would want an autopsy under certain conditions, and 62% would like to donate their organs. Conclusions and relevance: Analysis of early experience with an all-digital web-based ACP/AD platform demonstrates that individuals from a wide range of ages and conditions can engage in an interrogatory process about values, goals, preferences, and priorities for their medical treatments by developing advance directives and easily make changes to the AD created. Online creation, storage, and retrieval of advance directives has the potential to remove barriers to ACP/AD and, thus, to further improve patient-centered end-of-life care.Keywords: Advance Care Plan, Advance Decisions, Advance Directives, Consumer; Digital, End of Life Care, Goals, Living Wills, Prefences, Universal Advance Directive, Statements
Procedia PDF Downloads 33124635 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 4824634 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 45824633 Clinical Advice Services: Using Lean Chassis to Optimize Nurse-Driven Telephonic Triage of After-Hour Calls from Patients
Authors: Eric Lee G. Escobedo-Wu, Nidhi Rohatgi, Fouzel Dhebar
Abstract:
It is challenging for patients to navigate through healthcare systems after-hours. This leads to delays in care, patient/provider dissatisfaction, inappropriate resource utilization, readmissions, and higher costs. It is important to provide patients and providers with effective clinical decision-making tools to allow seamless connectivity and coordinated care. In August 2015, patient-centric Stanford Health Care established Clinical Advice Services (CAS) to provide clinical decision support after-hours. CAS is founded on key Lean principles: Value stream mapping, empathy mapping, waste walk, takt time calculations, standard work, plan-do-check-act cycles, and active daily management. At CAS, Clinical Assistants take the initial call and manage all non-clinical calls (e.g., appointments, directions, general information). If the patient has a clinical symptom, the CAS nurses take the call and utilize standardized clinical algorithms to triage the patient to home, clinic, urgent care, emergency department, or 911. Nurses may also contact the on-call physician based on the clinical algorithm for further direction and consultation. Since August 2015, CAS has managed 228,990 calls from 26 clinical specialties. Reporting is built into the electronic health record for analysis and data collection. 65.3% of the after-hours calls are clinically related. Average clinical algorithm adherence rate has been 92%. An average of 9% of calls was escalated by CAS nurses to the physician on call. An average of 5% of patients was triaged to the Emergency Department by CAS. Key learnings indicate that a seamless connectivity vision, cascading, multidisciplinary ownership of the problem, and synergistic enterprise improvements have contributed to this success while striving for continuous improvement.Keywords: after hours phone calls, clinical advice services, nurse triage, Stanford Health Care
Procedia PDF Downloads 18024632 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain
Authors: Sabri Serkan Güllüoğlu
Abstract:
Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.Keywords: data mining, association rule mining, market basket analysis, purchasing
Procedia PDF Downloads 48924631 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 64424630 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 27124629 Sustainable Reconstruction: Towards Guidelines of Post-Disaster Vulnerability Reduction for Permanent Informal Housing in Malaysia Due to Flooding
Authors: Ruhizal Roosli, Julaihi Wahid, Abu Hassan Abu Bakar, Faizal Baharum
Abstract:
This paper reports on the progress of a study on the reconstruction project after the ‘Yellow Flood’ disaster in Kelantan, Malaysia. Malaysia still does not have guidelines to build housing after a disaster especially in disaster-prone areas. At the international level, many guidelines have been prepared that is found suitable for post-disaster housing. Which guidelines can be adapted that best describes the situation in Malaysia? It was reported that the houses should be built on stilts, which can withstand certain level of impact during flooding. Unfortunately, until today no specific guideline was available to assist homeowners to rebuild their homes after disaster. In addition, there is also no clear operational procedure to monitor the progress of this construction work. This research is an effort to promoting resilient housing; safety and security; and secure tenure in a prone area. At the end of this study, key lessons will be emerged from the review process and data analysis. These inputs will then have influenced to the content that will be developed and presented as guidelines. An overall objective is to support humanitarian responses to disaster and conflicts for resilience house construction to flood prone area. Interviews with the field based staff were from recent post-disaster housing workforce (disaster management mechanism in Malaysia especially in Kelantan). The respondents were selected based on their experiences in disaster response particularly related to housing provision. These key lessons are perhaps the best practical (operational and technical) guidelines comparing to other International cases to be adapted to the national situations.Keywords: disaster, guideline, housing, Malaysia, reconstruction
Procedia PDF Downloads 52824628 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 8224627 Changes in the Subjective Interpretation of Poverty Due to COVID-19: The Case of a Peripheral County of Hungary
Authors: Eszter Siposne Nandori
Abstract:
The paper describes how the subjective interpretation of poverty changed during the COVID-19 pandemic. The results of data collection at the end of 2020 are compared to the results of a similar survey from 2019. The methods of systematic data collection are used to collect data about the beliefs of the population about poverty. The analysis is carried out in Borsod-Abaúj-Zemplén County, one of the most backward areas in Hungary. The paper concludes that poverty is mainly linked to material values, and it did not change from 2019 to 2020. Some slight changes, however, highlight the effect of the pandemic: poverty is increasingly seen as a generational problem in 2020, and another important change is that isolation became more closely related to poverty.Keywords: Hungary, interpretation of poverty, pandemic, systematic data collection, subjective poverty
Procedia PDF Downloads 13224626 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification
Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone
Abstract:
This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.Keywords: automation, data abstraction, maps, specification, tree, verification
Procedia PDF Downloads 17324625 Accurate Position Electromagnetic Sensor Using Data Acquisition System
Authors: Z. Ezzouine, A. Nakheli
Abstract:
This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.Keywords: electromagnetic sensor, accurately, data acquisition, position measurement
Procedia PDF Downloads 28824624 Diabetic Screening in Rural Lesotho, Southern Africa
Authors: Marie-Helena Docherty, Sion Edryd Williams
Abstract:
The prevalence of diabetes mellitus is increasing worldwide. In Sub-Saharan Africa, type 2 diabetes represents over 90% of all types of diabetes with the number of diabetic patients expected to rise. This represents a huge economic burden in an area already contending with high rates of other significant diseases, including the highest worldwide prevalence of HIV. Diabetic complications considerably impact on morbidity and mortality. The epidemiological data for the region quotes high rates of retinopathy (7-63%), neuropathy (27-66%) and microalbuminuria (10-83%). It is therefore imperative that diabetic screening programmes are established. It is recognised that in many parts of the developing world the implementation and management of such programmes is limited by a lack of available resources. The International Diabetes Federation produced guidelines in 2012 taking these limitations into account suggesting that all diabetic patients should have access to basic screening. These guidelines are consistent with the national diabetic guidelines produced by the Lesotho Medical Council. However, diabetic care in Lesotho is delivered at the local level, with variable levels of quality. A cross sectional study was performed in the outpatient department of Maluti Hospital in Mapoteng, Lesotho, a busy rural hospital in the Berea district. Demographic data on gender, age and modality of treatment were collected over a six-week time period. Information regarding 3 basic screening parameters was obtained. These parameters included eye screening (defined as a documented ophthalmology review within the last 12 months), foot screening (defined as a documented foot health assessment by any health care professional within the last 12 months) and secondary prevention (defined as a documented blood pressure and lipid profile reading within the last 12 months). These parameters were selected on the basis of the absolute minimum level of resources in Maluti Hospital. Renal screening was excluded, as the hospital does not have access to reliable renal profile checks or urinalysis. There is however a fully functioning on-site ophthalmology department run by a senior ophthalmologist with the ability to provide retinal photography, retinal surgery and photocoagulation therapy. Data was collected on 183 type 2 diabetics. 112 patients were male and 71 were female. The average age was 43 years. 4 patients were diet controlled, 140 patients were on oral hypoglycaemic agents (metformin and/or glibenclamide), and 39 patients were on a combination of insulin and oral hypoglycaemics. In the preceding 12 months, 5 patients had undergone eye screening (3%), 24 patients had undergone foot screening (13%), and 31 patients had lipid profile testing (17%). All patients had a documented blood pressure reading (100%). Our results show that screening is poorly performed in the basic indicators suggested by the IDF and the Lesotho Medical Council. On the basis of these results, a screening programme was developed using the mnemonic SaFE; secondary prevention, foot and eye care. This is simple, memorable and transferable between healthcare professionals. In the future, the expectation would be to expand upon this current programme to include renal screening, and to further develop screening pertaining to secondary prevention.Keywords: Africa, complications, rural, screening
Procedia PDF Downloads 28924623 The Quality of the Presentation Influence the Audience Perceptions
Authors: Gilang Maulana, Dhika Rahma Qomariah, Yasin Fadil
Abstract:
Purpose: This research meant to measure the magnitude of the influence of the quality of the presentation to the targeted audience perception in catching information presentation. Design/Methodology/Approach: This research uses a quantitative research method. The kind of data that uses in this research is the primary data. The population in this research are students the economics faculty of Semarang State University. The sampling techniques uses in this research is purposive sampling. The retrieving data uses questionnaire on 30 respondents. The data analysis uses descriptive analysis. Result: The quality of presentation influential positive against perception of the audience. This proved that the more qualified presentation will increase the perception of the audience. Limitation: Respondents were limited to only 30 people.Keywords: quality of presentation, presentation, audience, perception, semarang state university
Procedia PDF Downloads 39824622 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 11624621 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials
Authors: Sheikh Omar Sillah
Abstract:
Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring
Procedia PDF Downloads 8524620 mm-Wave Wearable Edge Computing Module Hosted by Printed Ridge Gap Waveguide Structures: A Physical Layer Study
Authors: Matthew Kostawich, Mohammed Elmorsy, Mohamed Sayed Sifat, Shoukry Shams, Mahmoud Elsaadany
Abstract:
6G communication systems represent the nominal future extension of current wireless technology, where its impact is extended to touch upon all human activities, including medical, security, and entertainment applications. As a result, human needs are allocated among the highest priority aspects of the system design and requirements. 6G communications is expected to replace all the current video conferencing with interactive virtual reality meetings involving high data-rate transmission merged with massive distributed computing resources. In addition, the current expansion of IoT applications must be mitigated with significant network changes to provide a reasonable Quality of Service (QoS). This directly implies a high demand for Human-Computer Interaction (HCI) through mobile computing modules in future wireless communication systems. This article proposes the utilization of a Printed Ridge Gap Waveguide (PRGW) to host the wearable nodes. To the best of our knowledge, we propose for the first time a physical layer analysis within the context of a complete architecture. A thorough study is provided on the impact of the distortion of the guiding structure on the overall system performance. The proposed structure shows small latency and small losses, highlighting its compatibility with future applications.Keywords: ridge gap waveguide, edge computing module, 6G, multimedia IoT applications
Procedia PDF Downloads 7824619 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 38924618 Field Production Data Collection, Analysis and Reporting Using Automated System
Authors: Amir AlAmeeri, Mohamed Ibrahim
Abstract:
Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast
Procedia PDF Downloads 16024617 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46924616 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 16524615 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics
Procedia PDF Downloads 58424614 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 46724613 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge
Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada
Abstract:
According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.Keywords: ancestral knowledge, climate change, medicinal plants, solar energy
Procedia PDF Downloads 24224612 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility
Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha
Abstract:
Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.Keywords: data citation, data reuse, research data sharing, webometrics
Procedia PDF Downloads 183