Search results for: self-regulated learning theory
8160 Improving Part-Time Instructors’ Academic Outcomes with Gamification
Authors: Jared R. Chapman
Abstract:
This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.Keywords: gamification, engagement, motivation, academic outcomes
Procedia PDF Downloads 698159 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles
Authors: Paulo Sérgio Ribeiro de Araújo Bogas
Abstract:
Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing
Procedia PDF Downloads 838158 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones
Authors: Vineesh Amin, Ananya Agrawal
Abstract:
In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling
Procedia PDF Downloads 2108157 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas
Authors: Yen Chia-Ju, Cheng Ding-Ruei
Abstract:
This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment
Procedia PDF Downloads 4448156 Developing Second Language Learners’ Reading Comprehension through Content and Language Integrated Learning
Authors: Kaine Gulozer
Abstract:
A strong methodological conception in the practice of teaching, content, and language integrated learning (CLIL) is adapted to boost efficiency in the second language (L2) instruction with a range of proficiency levels. This study aims to investigate whether the incorporation of two different mediums of meaningful CLIL reading activities (in-school and out-of-school settings) influence L2 students’ development of comprehension skills differently. CLIL based instructional methodology was adopted and total of 50 preparatory year students (N=50, 25 students for each proficiency level) from two distinct language proficiency learners (elementary and intermediate) majoring in engineering faculties were recruited for the study. Both qualitative and quantitative methods through a post-test design were adopted. Data were collected through a questionnaire, a reading comprehension test and a semi-structured interview addressed to the two proficiency groups. The results show that both settings in relation to the development of reading comprehension are beneficial, whereas the impact of the reading activities conducted in school settings was higher at the elementary language level of students than that of the one conducted out-of-class settings based on the reported interview results. This study suggests that the incorporation of meaningful CLIL reading activities in both settings for both proficiency levels could create students’ self-awareness of their language learning process and the sense of ownership in successful improvements of field-specific reading comprehension. Further potential suggestions and implications of the study were discussed.Keywords: content and language integrated learning, in-school setting, language proficiency, out-of-school setting, reading comprehension
Procedia PDF Downloads 1468155 Opinions of Pre-Service Teachers on Online Language Teaching: COVID-19 Pandemic Perspective
Authors: Neha J. Nandaniya
Abstract:
In the present research paper researcher put focuses on the opinions of pre-service teachers have been taken regarding online language teaching, which was held during the COVID-19 pandemic and is still going on. The researcher developed a three-point rating scale in Google Forms to find out the views of trainees on online language learning, in which 167 B. Ed. trainees having language content and method gave their responses. After scoring the responses obtained by the investigator, the chi-square value was calculated, and the findings were concluded. The major finding of the study is language learning is not as effective as offline teaching mode.Keywords: online language teaching, ICT competency, B. Ed. trainees, COVID-19 pandemic
Procedia PDF Downloads 868154 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning
Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic
Abstract:
Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method
Procedia PDF Downloads 2498153 The Estimation of Human Vital Signs Complexity
Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius
Abstract:
Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis
Procedia PDF Downloads 3448152 A Value-Based Approach to Recognize Authentic Transformational Leaders' Delivering Process of Corporate Social Responsibility Values
Authors: Yi-Jung Chen, Yunshi Liu
Abstract:
To explain how followers can perceive whether or not transformational leaders are authentic on the basis of their leadership behaviors based on value-based leadership theory, this study adopts the dual-focus model of transformational leadership and evaluates leaders’ corporate social responsibility values along with followers’ perceptions of leaders’ values. Using dyadic questionnaires, the final study sample consisted of 252 followers and 43 leaders at a private firm in Taiwan. Results show that followers perceive corporate social responsibility values of transformational leaders through their group-focused leadership behaviors because such group-focused leadership is in line with these values.Keywords: authentic transformational leadership, corporate social responsibility value, value-based leadership theory, dual-focus leadership
Procedia PDF Downloads 3108151 Socio-Economic Child’S Wellbeing Impasse in South Africa: Towards a Theory-Based Solution Model
Authors: Paulin Mbecke
Abstract:
Research Issue: Under economic constraints, socio-economic conditions of households worsen discounting child’s wellbeing to the bottom of many governments and households’ priority lists. In such situation, many governments fail to rebalance priorities in providing services such as education, housing and social security which are the prerequisites for the wellbeing of children. Consequently, many households struggle to respond to basic needs especially those of children. Although economic conditions play a crucial role in creating prosperity or poverty in households and therefore the wellbeing or misery for children; they are not the sole cause. Research Insights: The review of the South African Index of Multiple Deprivation and the South African Child Gauge establish the extent to which economic conditions impact on the wellbeing or misery of children. The analysis of social, cultural, environmental and structural theories demonstrates that non-economic factors contribute equally to the wellbeing or misery of children, yet, they are disregarded. In addition, the assessment of a child abuse database proves a weak correlation between economic factors (prosperity or poverty) and child’s wellbeing or misery. Theoretical Implications: Through critical social research theory and modelling, the paper proposes a Theory-Based Model that combines different factors to facilitate the understanding of child’s wellbeing or misery. Policy Implications: The proposed model assists in broad policy and decision making and reviews processes in promoting child’s wellbeing and in preventing, intervening and managing child’s misery with regard to education, housing, and social security.Keywords: children, child’s misery, child’s wellbeing, household’s despair, household’s prosperity
Procedia PDF Downloads 2848150 Understanding the Nature of Conflicts in Africa: Analytical and Theoretical Explanations
Authors: Kingfahd Adewale Adedapo, Adekunle Ajisebiyawo
Abstract:
The focus of this paper is to explore the different theoretical perspectives that underline academic attempts at understanding and explaining the nature of conflicts in Africa. The African environment is riddled with the past history of conflicts among groups either for an economic outlet or imperial space, and most often, such past negative interactions have made it difficult even now for some of these groups to live harmoniously together within the present state system and to trust each other. The paper observed that no one theory or explanatory schema could offer a holistic explanation of conflict in Africa. At best, each of the possible theories can only offer a partial explanation of the causes and nature of conflict in a particular African society or state. This paper, therefore, attempted to synthesize the many sources of theories of conflicts and provided the intellectual background from which these different theories emanated. Therefore, if this paper has done anything at all, it is to offer the basis for assessing different theoretical strands aimed at offering cogent and reliable explanations for most of the conflicts in Africa and especially in the West African sub-region.Keywords: conflict, functionalism, humanitarianism, structuralism, theory
Procedia PDF Downloads 1058149 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1018148 A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams
Authors: P. Pramod Kumar, Madhu Salumari, V. V. Subba Rao
Abstract:
Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement.Keywords: CNT, buckling, micromechanics, FSDT
Procedia PDF Downloads 2798147 Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids
Authors: S. N. Derrar, M. Sekkal-Rahal
Abstract:
The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations.Keywords: biological imaging, hyperpolarizability, nonlinear optics, probing molecule
Procedia PDF Downloads 3798146 Natural Law in the Mu’Tazilite Theology
Authors: Samaneh Khalili
Abstract:
Natural law theory, in moral philosophy, refers to a system of unchanging values held to be mutual to all humans and can be discovered through reason. The natural law theory is commonly associated with western Philosophers. In contrast, discussions on notions of natural law in Islamic intellectual history were relatively rare. This paper aims to show that the moral theory developed by the Mu'tazilite thinkers can be classified in the ideas of natural law. In doing so, this study will demonstrate that the objective and unchanging values, according to Mu'tazilite theologians, provide the guidelines for assessing the Islamic law rules in the field of human coexistence. The focus of the paper lies on ʿAbd al-Ğabbār, who was the most influential thinker in the late epoch of the Muʿtazila. Although ʿAbd al-Ǧabbār did not leave a text with a systematic discussion of natural law, his teaching of nature, human reason, and the moral values of actions are all scattered throughout his work -'al-Muġnī fī abwāb at-tawḥīd wa-l-'adl'. It is necessary to focus on ʿAbd al-Ǧabbār's theories on reason, nature, and ethics since natural law revolves around the basic concepts of nature, reason, and moral value. While analyzing the concept of the Nature, it will attempt to answer how he explains the world's physical structure and God's relationship to natural events. Moreover, from ʿAbd al-Ǧabbār's point of view, is nature a self-determined system that follows its inner principle in every kind of change, or is nature guided by an external power? Does causality govern natural events? About the concept of reason, an attempt is made to examine how human reason, according to ʿAbd al-Ǧabbār, conceives moral attributes. Finally, the Autor will discuss the concepts of objective values and the place of rights and duties derived from Islamic law in ʿAbd al-Ǧabbār's thought.Keywords: Islamic law, Mu'tazilite theology, natural law in Islamic theology, objective and unchanging values.
Procedia PDF Downloads 978145 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1508144 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin
Abstract:
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory
Procedia PDF Downloads 2788143 Corporate Social Responsibility and Dividend Policy
Authors: Mohammed Benlemlih
Abstract:
Using a sample of 22,839 US firm-year observations over the 1991-2012 period, we find that high CSR firms pay more dividends than low CSR firms. The analysis of individual components of CSR provides strong support for this main finding: five of the six individual dimensions are also associated with high dividend payout. When analyzing the stability of dividend payout, our results show that socially irresponsible firms adjust dividends more rapidly than socially responsible firms do: dividend payout is more stable in high CSR firms. Additional results suggest that firms involved in two controversial activities -the military and alcohol - are associated with low dividend payouts. These findings are robust to alternative assumptions and model specifications, alternative measures of dividend, additional control, and several approaches to address endogeneity. Overall, our results are consistent with the expectation that high CSR firms may use dividend policy to manage the agency problems related to overinvestment in CSR.Keywords: corporate social responsibility, dividend policy, Lintner model, agency theory, signaling theory, dividend stability
Procedia PDF Downloads 2658142 Discursively Examination of 8th Grade Students’ Geometric Thinking Levels
Authors: Ferdağ Çulhan, Emine Gaye Çontay
Abstract:
Geometric thinking levels created by Van Hiele are used to determine students' progress in geometric thinking. Many studies have been conducted on geometric thinking levels and they have taken their place in teaching curricula over time. It is thought that geometric thinking levels, which have become so important in teaching, can be examined in depth. In order to make an in-depth analysis, it was decided that the most appropriate management was discourse analysis. In this study, the focus is on examining the geometric thinking levels of 8th grade students from a discursive point of view. Sfard (2008)'s "Commognitive" theory will be used to conduct discursive analysis. The "Global Van Hiele Questionnaire" created by Patkin (2014) and translated into Turkish for this research will be used in the research. The "Global Van Hiele Questionnaire" contains questions from the sub-learning domain of triangles and quadrilaterals, circles and geometric objects. It has a wider scope than many "Van Hiele Questionnaires". “Global Van Hiele Questionnaire” will be applied to 8th grade students. Then, the geometric thinking levels of the students will be determined and interviews will be held with two students from each of the 1st, 2nd and 3rd levels. The interviews will be recorded and the students' discourses will be examined. By evaluating the relations between the students' geometric thinking levels and their discourses, it will be examined how much their discourse reflects their level of thinking. In this way, it is thought that students' geometric thinking processes can be better understood.Keywords: mathematical discourses, commognitive framework, geometric thinking levels, van hiele
Procedia PDF Downloads 1298141 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 848140 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 908139 Autopoietic Socio-technical Systems: A New Lens for Understanding Anticipation
Authors: Gregory Vigneaux
Abstract:
The capacity to anticipate future events across varying time scales is integral to the effective operation of both emergency management and emergency services organizations. This paper provides fresh insight into anticipation by first offering a novel conceptualization of organizations in both fields by twisting together socio-technical systems and autopoietic theory. The result of this intertwining of theory is a view of emergency management and emergency services organizations as self-reproducing systems driven by socio-technical processes contingent upon both inflows and outflows across a boundary produced by the system’s own activity. Flowing from this perspective is an approach to anticipation that extends from a system’s intent of continuing to reproduce its identity over a dynamic landscape. This discussion takes a pragmatic turn through Maturana and Verden-Zöller’s domains of structural change, classifying anticipated events and connecting them with types of responses involving inflows, outflows, and socio-technical processes.Keywords: risk, anticipation, organizations, planning, transformation, identity
Procedia PDF Downloads 1208138 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'
Authors: Kevin R. Wilson, Roger Mantie
Abstract:
Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.Keywords: community arts-based learning, participatory education, pedagogy, service learning
Procedia PDF Downloads 4018137 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes
Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek
Abstract:
Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling
Procedia PDF Downloads 1408136 The Learning Experience of Two Students with Visual Impairments in the EFL Courses: A Case Study
Authors: May Ling González-Ruiz, Ana Cristina Solís-Solís
Abstract:
Everyday more people can thrive towards the dream of pursuing a university diploma. This can be more attainable for some than for others who may face different types of limitations. Even though not all limitations come from within the individual but most of the times they come from without it may include the environment, the support of the person’s family, the school – its infrastructure, administrative procedures, and attitudes. This is a qualitative type of research that is developed through a case study. It is based on the experiences of two students who are visually impaired and who have attended a public university in Costa Rica. We enquire about the experiences of these two students in the English as a Foreign Language courses at the university scenario. An in-depth analysis of their lived experiences is presented. Their values, attitudes, and expectations serve as the guiding elements for this research. Findings are presented in light of the Social Justice Approach to inclusive education. Some of the most salient aspects found have to do with the attitudes the students used to face challenges; others point at those elements that may have hindered the learning experience of the persons observed and to those that encouraged them to continue their journey and successfully achieve a diploma.Keywords: inclusion, case study, visually impaired student, learning experience, social justice approach
Procedia PDF Downloads 1388135 Design of Organic Inhibitors from Quantum Chemistry
Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene
Abstract:
The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT
Procedia PDF Downloads 2348134 Stability of Solutions of Semidiscrete Stochastic Systems
Authors: Ramazan Kadiev, Arkadi Ponossov
Abstract:
Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.Keywords: abrupt changes, exponential stability, regularization, stochastic noises
Procedia PDF Downloads 1878133 An Empirical Investigation of Mobile Banking Services Adoption in Pakistan
Authors: Aijaz A. Shaikh, Richard Glavee-Geo, Heikki Karjaluoto
Abstract:
Adoption of Information Systems (IS) is receiving increasing attention such that its implications have been closely monitored and studied by the IS management community, industry and professional gatekeepers. Building on previous research regarding the adoption of technology, this paper develops and validates an integrated model of the adoption of mobile banking. The model originates from the Technology Acceptance Model (TAM) and the Theory of Planned Behaviour (TPB). This paper intends to offer a preliminary scrutiny of the antecedents of the adoption of mobile banking services in the context of a developing country. Data was collected from Pakistan. The findings showed that an integrated TAM and TPB model greatly explains the adoption intention of mobile banking; and perceived behavioural control and its antecedents play a significant role in predicting adoption Theoretical and managerial implications of findings are presented and discussed.Keywords: developing country, mobile banking service adoption, technology acceptance model, theory of planned behavior
Procedia PDF Downloads 4198132 A Multi-Cluster Enterprise Framework for Evolution of Knowledge System among Enterprises, Governments and Research Institutions
Authors: Sohail Ahmed, Ke Xing
Abstract:
This research theoretically explored the evolution mechanism of enterprise technological innovation capability system (ETICS) from the perspective of complex adaptive systems (CAS). Starting from CAS theory, this study proposed an analytical framework for ETICS, its concepts and theory by integrating CAS methodology into the management of technological innovation capability of enterprises and discusses how to use the principles of complexity to analyze the composition, evolution and realization of the technological innovation capabilities in complex dynamic environment. This paper introduces the concept and interaction of multi-agent, the theoretical background of CAS and summarizes the sources of technological innovation, the elements of each subject and the main clusters of adaptive interactions and innovation activities. The concept of multi-agents is applied through the linkages of enterprises, research institutions and government agencies with the leading enterprises in industrial settings. The study was exploratory based on CAS theory. Theoretical model is built by considering technological and innovation literature from foundational to state of the art projects of technological enterprises. On this basis, the theoretical model is developed to measure the evolution mechanism of enterprise technological innovation capability system. This paper concludes that the main characteristics for evolution in technological systems are based on enterprise’s research and development personal, investments in technological processes and innovation resources are responsible for the evolution of enterprise technological innovation performance. The research specifically enriched the application process of technological innovation in institutional networks related to enterprises.Keywords: complex adaptive system, echo model, enterprise knowledge system, research institutions, multi-agents.
Procedia PDF Downloads 698131 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 80