Search results for: plastic bottle consumption
1332 A Review on the Use of Herbal Alternatives to Antibiotics in Poultry Diets
Authors: Sasan Chalaki, Seyed Ali Mirgholange, Touba Nadri, Saman Chalaki
Abstract:
In the current world, proper poultry nutrition has garnered special attention as one of the fundamental factors for enhancing their health and performance. Concerns related to the excessive use of antibiotics in the poultry industry and their role in antibiotic resistance have transformed this issue into a global challenge in public health and the environment. On the other hand, poultry farming plays a vital role as a primary source of meat and eggs in human nutrition, and improving their health and performance is crucial. One effective approach to enhance poultry nutrition is the utilization of the antibiotic properties of plant-based ingredients. The use of plant-based alternatives as natural antibiotics in poultry nutrition not only aids in improving poultry health and performance but also plays a significant role in reducing the consumption of synthetic antibiotics and preventing antibiotic resistance-related issues. Plants contain various antibacterial compounds, such as flavonoids, tannins, and essential oils. These compounds are recognized as active agents in combating bacteria. Plant-based antibiotics are compounds extracted from plants with antibacterial properties. They are acknowledged as effective substitutes for chemical antibiotics in poultry diets. The advantages of plant-based antibiotics include reducing the risk of resistance to chemical antibiotics, increasing poultry growth performance, and lowering the risk of disease transmission.Keywords: poultry, antibiotics, essential oils, plant-based
Procedia PDF Downloads 781331 Systems Approach on Thermal Analysis of an Automatic Transmission
Authors: Sinsze Koo, Benjin Luo, Matthew Henry
Abstract:
In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.Keywords: thermal management, automatic transmission, hybrid, and systematic approach
Procedia PDF Downloads 3771330 First and Second Analysis on the Reheat Organic Rankine Cycle
Authors: E. Moradimaram, H. Sayehvand
Abstract:
In recent years the increasing use of fossil fuels has led to various environmental problems including urban pollution, ozone layer depletion and acid rains. Moreover, with the increased number of industrial centers and higher consumption of these fuels, the end point of the fossil energy reserves has become more evident. Considering the environmental pollution caused by fossil fuels and their limited availability, renewable sources can be considered as the main substitute for non-renewable resources. One of these resources is the Organic Rankine Cycles (ORCs). These cycles while having high safety, have low maintenance requirements. Combining the ORCs with other systems, such as ejector and reheater will increase overall cycle efficiency. In this study, ejector and reheater are used to improve the thermal efficiency (ηth), exergy efficiency (η_ex) and net output power (w_net); therefore, the ORCs with reheater (RORCs) are proposed. A computational program has been developed to calculate the thermodynamic parameters required in Engineering Equations Solver (EES). In this program, the analysis of the first and second law in RORC is conducted, and a comparison is made between them and the ORCs with Ejector (EORC). R245fa is selected as the working fluid and water is chosen as low temperature heat source with a temperature of 95 °C and a mass transfer rate of 1 kg/s. The pressures of the second evaporator and reheater are optimized in terms of maximum exergy efficiency. The environment is at 298.15 k and at 101.325 kpa. The results indicate that the thermodynamic parameters in the RORC have improved compared to EORC.Keywords: Organic Rankine Cycle (ORC), Organic Rankine Cycle with Reheater (RORC), Organic Rankine Cycle with Ejector (EORC), exergy efficiency
Procedia PDF Downloads 1631329 Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation
Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski
Abstract:
This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate.Keywords: biomass pretreatment, mechanical fragmentation, biomass, methane fermentation
Procedia PDF Downloads 5801328 Antimicrobial Properties of SEBS Compounds with Copper Microparticles
Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana
Abstract:
Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.Keywords: air conditioner, antimicrobial, cooper, SEBS
Procedia PDF Downloads 2821327 Quantification of Enzymatic Activities of Proteins, Peroxidase and Phenylalanine Ammonia Lyase, in Growing Phaseolus vulgaris L, with Application Bacterial Consortium to Control Fusarium and Rhizoctonia
Authors: Arredondo Valdés Roberto, Hernández Castillo Francisco Daniel, Laredo Alcalá Elan Iñaky, Gonzalez Gallegos Esmeralda, Castro Del Angel Epifanio
Abstract:
The common bean or Phaseolus vulgaris L. is the most important food legume for direct consumption in the world. Fusarium dry rot in the major fungus disease affects Phaseolus vulgaris L, after planting. In another hand, Rhizoctonia can be found on all underground parts of the plant and various times during the growing season. In recent years, the world has conducted studies about the use of natural products as substitutes for herbicides and pesticides, because of possible ecological and economic benefits. Plants respond to fungal invasion by activating defense responses associated with accumulation of several enzymes and inhibitors, which prevent pathogen infection. This study focused on the role of proteins, peroxidase (POD), phenylalanine ammonia lyase (PAL), in imparting resistance to soft rot pathogens by applied different bacterial consortium, formulated and provided by Biofertilizantes de Méxicanos industries, analyzing the enzyme activity at different times of application (6 h, 12 h and 24 h). The resistance of these treatments was correlated with high POD and PAL enzyme activity as well as increased concentrations of proteins. These findings show that PAL, POD and synthesis of proteins play a role in imparting resistance to Phaseolus vulgaris L. soft rot infection by Fusarium and Rhizoctonia.Keywords: fusarium, peroxidase, phenylalanine ammonia lyase, rhizoctonia
Procedia PDF Downloads 3521326 Agriculture Water Quality Evaluation in Minig Basin
Authors: Ben Salah Nahla
Abstract:
The problem of water in Tunisia affects the quality and quantity. Tunisia is in a situation of water shortage. It was estimated that 4.6 Mm3/an. Moreover, the quality of water in Tunisia is also mediocre. In fact, 50% of the water has a high salinity (> 1.5g/l). There are several parameters which affect water quality such as sodium, fluoride. An excess of this parameter may induce some human health. Furthermore, the mining basin area has a problem of industrial waste. This problem may affect the water quality of the groundwater. Therefore, the purpose of this work is to assess the water quality in Basin Mining and the impact of fluorine. For this research, some water samples were done in the field and specific water analysis was implemented in the laboratory. Sampling is carried out on eight drilling in the area of the mining region. In the following, we will look at water view composition, physical and chemical quality. A physical-chemical analysis of water from a survey of the Mining area of Tunisia was performed and showed an excess for the following items: fluorine, sodium, sulfate. So many chemicals may be present in water. However, only a small number of them immediately concern in terms of health in all circumstances. Fluorine (F) is one particular chemical that is considered both necessary for the human body, but an excess of the rate of this chemical causes serious diseases. Sodium fluoride and sodium silicofluoride are more soluble and may spread in animals and plants where their toxicity largest organizations. The more complex particles such as cryolite and fluorite, almost insoluble, are more stable and less toxic. Thereafter, we will study the problem of excess fluorine in the water. The latter intended for human consumption must always comply with the limits for microbiological quality parameters and physical-chemical parameters defined by European standards (1.5 mg/l) and Tunisian (2 mg/l).Keywords: water, minier basin, fluorine, silicofluoride
Procedia PDF Downloads 5821325 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment
Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan
Abstract:
In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.Keywords: border security, sensors, abnormal activity detection, ontologies
Procedia PDF Downloads 4811324 Acceptance and Commitment Therapy as a Treatment for Alcohol Use Disorders in South Korea
Authors: Kim Eunha
Abstract:
This study examined a group-based intervention for alcohol use disorders based on the principles of acceptance and commitment therapy (ACT) in patients (N=22; 63.7% female; M = 38.2 years old; 100% South Korean) in a residential alcohol addiction treatment program. Patients were randomly assigned to either ACT group (receiving the ACT intervention) or control group (receiving treatment as usual). The ACT intervention consisted of four 2-hr group sessions scheduled during two weeks. The first session focused on the negative effects of suppression and avoidance, and a rationale for defusion and acceptance using several of the well-known ACT metaphors (e.g., Two Scales Metaphor, Man in the Hole). The second session taught defusion and acceptance skills through such exercises as mindfulness, cutting a sour fruit, naming one’s thoughts, and physicalizing. The third session included another mindfulness exercise and encouraged the participants to identify their values and set up life goals. The last session included more discussion on values and life goals, especially related to family and intimacy. The effects of the interventions were assessed using intent-to-treat analyses. The ACT interventions resulted in smaller immediate gains in motivation to stay sober and reductions in depression, anxiety, and experiential avoidance. In addition, at a 2-month follow up, those who attended the ACT group reported a lower average level of alcohol consumption and higher treatment attendance compared to the control group. These preliminary findings suggest that additional treatment and testing of ACT for alcohol use disorders will be crucial.Keywords: acceptance and commitment therapy, alcohol use disorders, defusion, values
Procedia PDF Downloads 2201323 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 2231322 Development of Value Added Product Based on Millets and Hemp Seed (cannabis sativa L.)
Authors: Khushi Kashyap, Pratibha Singh
Abstract:
In the recent years increasing interest in vegetarian diets has been observed, a major problem in this type of diet is to provide the appropriate amount of protein .Value addition of food is current most talked topic because of increasing nutritional awareness among consumers today. An investigation was conducted to develop protein rich multi-millet hemp seed khakhra. The seeds of cannabis sativa L. have been a significant source of food for thousand of year. In recent years, hemp has not been thoroughly explored for its nutritional potential due to the mistaken belief regarding the cannabis plants. Methodology- two variations was prepared referencing standard recipe. Variation 1 was prepared using 25g ragi, 25g bajra,40g whole wheat flour with 10g hemp seed powder, variation 2(RF-25g,BF25g,WWF-35g,HS-15g). The product was subjected to sensory evolution by semi trained panel members using 9 point hedonic on 50 panelists. Result- result of the sensory evaluation revealed that the product incorporated with 15g of hemp seed were similar to control I texture, taste and overall quality and was more acceptable by the panelist and was selected as final product seed. On estimation of the nutrient content 30g of khakhra provides 107kcal of energy,12g protein,75g carbohydrate, and 9.6g of fats with shelf life of 3 months. Conclusion- khakhras can be eaten as a snack at any time of the day. hemp seed powder incorporated in it enhances its nutritive value and makes it more nutritious. It is suitable for consumption of all the age group.Keywords: cannabis sativa, hemp, protein, seed
Procedia PDF Downloads 911321 A New Smart Plug for Home Energy Management
Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu
Abstract:
Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.Keywords: energy efficiency, home energy management, smart home, smart plug
Procedia PDF Downloads 7281320 Estimation of World Steel Production by Process
Authors: Reina Kawase
Abstract:
World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%.Keywords: global steel production, production distribution scenario, steel making process, supply-demand balance
Procedia PDF Downloads 4501319 Run-Time Customisation of Soft-Core CPUs on Field Programmable Gate Array
Authors: Rehab Abdullah Shendi
Abstract:
The use of customised soft-core processors in which instructions can be integrated into a system in application hardware is increasing in the Field Programmable Gate Array (FPGA) field. Specifically, the partial run-time reconfiguration of FPGAs in specialised processors for a particular domain can be very beneficial. In this report, the design and implementation for the customisation of a soft-core MIPS processor using an FPGA and partial reconfiguration (PR) of FPGA technology will be addressed to achieve efficient resource use. This can be achieved using a PR design flow that helps the design fit into a smaller device. Moreover, the impact of static power consumption could be reduced due to runtime reconfiguration. This will be done by configurable custom instructions implemented in the hardware as an extension on the MIPS CPU. The aim of this project is to investigate the PR of FPGAs for run-time adaptations of the instruction set of a soft-core CPU, including the integration of custom instructions and the exploration of the potential to use the MultiBoot feature available in Xilinx FPGAs to carry out the PR process. The system will be evaluated and tested on a Nexus 3 development board featuring a Xilinx Spartran-6 FPGA. The system will be able to load reconfigurable custom instructions dynamically into user programs with the help of the trap handler when the custom instruction is called by the MIPS CPU. The results of this experiment demonstrate that custom instructions in hardware can speed up a certain function and many instructions can be saved when compared to a software implementation of the same function. Implementing custom instructions in hardware is perfectly possible and worth exploring.Keywords: customisation, FPGA, MIPS, partial reconfiguration, PR
Procedia PDF Downloads 2671318 Investigation of Mechanical Properties of Aluminum Tailor Welded Blanks
Authors: Dario Basile, Manuela De Maddis, Raffaella Sesana, Pasquale Russo Spena, Roberto Maiorano
Abstract:
Nowadays, the reduction of CO₂ emissions and the decrease in energy consumption are the main aims of several industries, especially in the automotive sector. To comply with the increasingly restrictive regulations, the automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles. One of the latest technologies, and still developing, is based on the fabrication of the body-in-white and car parts through the stamping of Aluminum Tailor Welded Blanks. Tailor Welded Blanks (TWBs) are generally the combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly butt-welded together by laser sources. The use of aluminum TWBs has several advantages such as low density and corrosion resistance adequate. However, their use is still limited by the lower formability with respect to the parent materials and the more intrinsic difficulty of laser welding of aluminum sheets (i.e., internal porosity) that, although its use in automated industries is constantly growing, remains a process to be further developed and improved. This study has investigated the effect of the main laser welding process parameters (laser power, welding speed, and focal distance) on the mechanical properties of aluminum TWBs made of 6xxx series. The research results show that a narrow weldability window can be found to ensure welded joints with high strength and limited or no porosity.Keywords: aluminum sheets, automotive industry, laser welding, mechanical properties, tailor welded blanks
Procedia PDF Downloads 1091317 Exploring the Intricate Microbiology of Street Cuisine: Delving into Potential Dangers in Order to Enhance Safety and Quality
Authors: Raana Babadi Fathipour
Abstract:
Street foods hold a significant place in the tapestry of socioeconomic and cultural norms, beloved across the globe. Serving as a convenient and affordable option for city dwellers seeking nourishment, these culinary delights also serve as a vital source of income for vendors, particularly women. Additionally, street food acts as a mirror reflecting traditional local customs and practices, an element that draws tourists to experience the authenticity of a culture firsthand. Despite its many virtues, concerns have emerged regarding the microbiological safety of street food worldwide. Often prepared and sold in subpar conditions without proper oversight or regulation, street food has become synonymous with potential health risks. The presence of elevated levels of fecal indicator bacteria and various pathogens in these unregulated delicacies further perpetuates anxieties surrounding their consumption. This analysis delves into the intricate microbiological intricacies inherent in street food, shedding light on the pertinent safety concerns and prevalent pathogens. Additionally, it elaborates on the worldwide standing of this vital economic endeavor. Moreover, it advocates for the adoption of molecular detection techniques over conventional culture-based methods to gain a more comprehensive grasp of the true microbial risks posed by street cuisine. Acknowledgment marks the initial step towards resolving any given issue.Keywords: foodborne pathogens, microbiological safety, street food, viruses
Procedia PDF Downloads 511316 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity
Authors: William Middleton, Nodumo Zulu, Sue Harrison
Abstract:
Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design
Procedia PDF Downloads 991315 Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study
Authors: Ahmed Tamer AlMotasem, Jens Bergström, Anders Gåård, Pavel Krakhmalev, Thijs Jan Holleboom
Abstract:
In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation.Keywords: adhesion, cementite, galling, molecular dynamics
Procedia PDF Downloads 3011314 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay
Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin
Abstract:
Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.Keywords: design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay
Procedia PDF Downloads 1231313 Cleaner Production Options for Fishery Wastes Around Lake Tana-Ethiopia
Authors: Abate Getnet Demisash, Beshatu Taye Hatew, Ababo Geleta Gudisa
Abstract:
As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity and setting up cleaner production option for the site with experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area and some of the main reasons raised were they have no option than doing this for discharging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in generation rate of 72,822.61 kg per year which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33% and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization which involves biodiesel production was chosen as a potential method. Laboratory scale experiments were performed to produce renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p and 153°C flash points which shows the product has values in compliance with American Society for Testing and Materials (ASTM) standards.Keywords: biodiesel, cleaner production, renewable energy, clean energy, waste to energy
Procedia PDF Downloads 1421312 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower
Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya
Abstract:
High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network
Procedia PDF Downloads 2311311 A Qualitative Study of Health-Related Beliefs and Practices among Vegetarians
Authors: Lorena Antonovici, Maria Nicoleta Turliuc
Abstract:
The process of becoming a vegetarian involves changes in several life aspects, including health. Despite its relevance, however, little research has been carried out to analyze vegetarians' self-perceived health, and even less empirical attention has received in the Romanian population. This study aimed to assess health-related beliefs and practices among vegetarian adults in a Romanian sample. We have undertaken 20 semi-structured interviews (10 males, 10 females) based on a snowball sample with a mean age of 31 years. The interview guide was divided into three sections: causes of adopting the diet, general aspects (beliefs, practices, tensions, and conflicts) and consequences of adopting the diet (significant changes, positive aspects, and difficulties, physical and mental health). Additional anamnestic data were reported by means of a questionnaire. Data analyses were performed using Tropes text analysis software (v. 8.2) and SPSS software (v. 24.0.) Findings showed that most of the participants considered a vegetarian diet as a natural and healthy choice as opposed to meat-eating, which is not healthy, and its consumption should be moderated among omnivores. A higher proportion of participants (65%) had an average body mass index (BMI), and several women even assumed having certain affections that no longer occur after following a vegetarian diet. Moreover, participants admitted having better moods and mental health status, given their self-contentment with the dietary choice. Relatives were perceived as more skeptical about their practices than others, and especially women had this view. This study provides a valuable insight into health-related beliefs and practices and how a vegetarian diet might interact.Keywords: beliefs, health, practices, vegetarians
Procedia PDF Downloads 1241310 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures
Authors: Jitka Hroudová, Martin Sedlmajer, Jiří Zach
Abstract:
Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.Keywords: thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.
Procedia PDF Downloads 3041309 Evaluation of Existing Wheat Genotypes of Bangladesh in Response to Salinity
Authors: Jahangir Alam, Ayman El Sabagh, Kamrul Hasan, Shafiqul Islam Sikdar, Celaleddin Barutçular, Sohidul Islam
Abstract:
The experiment (Germination test and seedling growth) was carried out at the laboratory of Agronomy Department, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh during January 2014. Germination and seedling growth of 22 existing wheat genotypes in Bangladesh viz. Kheri, Kalyansona, Sonora, Sonalika, Pavon, Kanchan, Akbar, Barkat, Aghrani, Prativa, Sourab, Gourab, Shatabdi, Sufi, Bijoy, Prodip, BARI Gom 25, BARI Gom 26, BARI Gom 27, BARI Gom 28, Durum and Triticale were tested with three salinity levels (0, 100 and 200 mM NaCl) for 10 days in sand culture in small plastic pot. Speed of germination as expressed by germination percentage (GP), rate of germination (GR), germination coefficient (GC) and germination vigor index (GVI) of all wheat genotypes was delayed and germination percentage was reduced due to salinization compared to control. The lower reduction of GP, GR, GC and VI due to salinity was observed in BARI Gom 25, BARI Gom 27, Shatabdi, Sonora, and Akbbar and higher reduction was recorded in BARI Gom 26, Duram, Triticale, Sufi and Kheri. Shoot and root lengths, fresh and dry weights were found to be affected due to salinization and shoot was more affected than root. Under saline conditions, longer shoot and root length were recorded in BARI Gom 25, BARI Gom 27, Akbar, and Shatabdi, i.e. less reduction of shoot and root lengths was observed while, BARI Gom 26, Duram, Prodip and Triticale produced shorted shoot and root lengths. In this study, genotypes BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed better performance in terms shoot and root growth (fresh and dry weights) and proved to be tolerant genotypes to salinity. On the other hand, Duram, BARI Gom 26, Triticale, Kheri and Prodip affected seriously in terms of fresh and dry weights by the saline environment. BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed more salt tolerance index (STI) based on shoot dry weight while, BARI Gom 26, Triticale, Durum, Sufi, Prodip and Kalyanson demonstrate lower STI value under saline conditions. Based on the most salt tolerance and susceptible trait, genotypes under 100 and 200 mM NaCl stresses can be arranged as salt tolerance genotypes: BARI Gom 25> BARI Gom 27> Shatabdi> Sonora, and salt susceptible genotypes: BARI Gom 26> Durum> Triticale> Prodip> Sufi> Kheri. Considering the experiment, it can be concluded that the BARI Gom 25 may be treated as the most salt tolerant and BARI Gom 26 as the most salt sensitive genotypes in Bangladesh.Keywords: genotypes, germination, salinity, wheat
Procedia PDF Downloads 3061308 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj
Authors: Marziyeh Khavari
Abstract:
In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.Keywords: climate change, neural network, hazelnut, global warming
Procedia PDF Downloads 1321307 Degradation of Different Organic Contaminates Using Corona Discharge Plasma
Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm
Abstract:
In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution
Procedia PDF Downloads 3381306 Investigation of Physical Performance of Denim Fabrics Washed with Sustainable Foam Washing Process
Authors: Hazal Yılmaz, Hale Karakaş
Abstract:
In the scope of the study, it is aimed to investigate and review the performance of denim fabrics that are foam washed. Foam washing was compared as an alternative to stone washing in terms of sustainability and performance parameters. For this purpose, seven different denim fabrics, which are both stone washed and foam washed separately in 3 different washing durations (30-60-90 mins), were compared. In the study, the same fabrics were processed with both foam and stone separately. The washing process steps were reviewed, and their water consumption values were compared. After washing, a total of 42 fabric samples were obtained, and tensile strength, tear strength, abrasion, weight loss after abrasion, rubbing fastness, color fastness tests were carried out on the fabric samples. The obtained test results were reviewed and evaluated. As a result of tests, it has been observed that the performance of foam washed fabrics in terms of tensile, tear strength and rubbing fastness test results are better than stone washed fabrics, and it has been seen that foam washed fabrics' color fastness test results are as stone washed. As a result of all these tests, it can be seen that foam washing is an alternative to stone washing due to its performance parameters and its sustainability performance with less water usage.Keywords: denim fabrics, denim washing, foam washing, performance properties, stone washing, sustainability
Procedia PDF Downloads 711305 A Corpus-Based Approach to Understanding Market Access in Fisheries and Aquaculture: A Systematic Literature Review
Authors: Cheryl Marie Cordeiro
Abstract:
Although fisheries and aquaculture studies might seem marginal to international business (IB) studies in general, fisheries and aquaculture IB (FAIB) management is currently facing increasing pressure to meet global demand and consumption for fish in the next coming decades. In part address to this challenge, the purpose of this systematic review of literature (SLR) study is to investigate the use of the term ‘market access’ in its context of use in the generic literature and business sector discourse, in comparison to the more specific literature and discourse in fisheries, aquaculture and seafood. This SLR aims to uncover the knowledge/interest gaps between the academic subject discourses and business sector practices. Corpus driven in methodology and using a triangulation method of three different text analysis software including AntConc, VOSviewer and Web of Science (WoS) analytics, the SLR results indicate a gap in conceptual knowledge and business practices in how ‘market access’ is conceived and used in the context of the pharmaceutical healthcare industry and FAIB research and practice. While it is acknowledged that the product orientation of different business sectors might differ, this SLR study works with the assumption that both business sectors are global in orientation. These business sectors are complex in their operations from product to market. This SLR suggests a conceptual model in understanding the challenges, the potential barriers as well as avenues for solutions to developing market access for FAIB.Keywords: market access, fisheries and aquaculture, international business, systematic literature review
Procedia PDF Downloads 1461304 The Impact of Water Resources on Economic and Social Development in Kuwait
Authors: Obaid Alotaibi
Abstract:
The geographical location of the State of Kuwait contributed significantly to the suffering of Kuwait in the past, due to the scarcity of natural water resources and the inability of the State's financial resources to provide other water resources to meet the needs of the population. The problem of water scarcity in Kuwait remained until the beginning of the second half of the twentieth century, as the country's economic conditions revived with the emergence and export of oil; which was clearly reflected in the steady growth of the population. To cope with this population, increase, it was necessary to expand the various development programs to include all sectors of the state. The process of development and urbanization could not start without finding solutions to the problem of water shortage in Kuwait. The only option for officials to meet the needs of the population and the different sectors of water development is the desalination of seawater. This process necessitated the establishment of six desalination plants along the coast of Kuwait and extended freshwater arteries to reach everywhere on the land. However, this does not mean that the problem of water shortage has been completely solved. The desalination plants are not meeting the country's future water needs, especially considering the increasing population growth. These stations are nearing completion and they need to be replaced, renovation and maintenance, require significant expenses. Therefore, it was necessary for scientific research to address the issue of water in Kuwait, whether in the field of development of existing resources or in the field of rationalization of consumption and protection of available resources. The study focused on how to address the increasing demand for water resulting from population increase, the impact of water on economic and social development, the prospects of water resources in Kuwait and its ability to meet the needs of the country by 2030.Keywords: economic, development, Kuwait, social, water resources
Procedia PDF Downloads 1271303 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: Solar energy, Heat Demand, Renewable , Pollution
Procedia PDF Downloads 252