Search results for: network capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8609

Search results for: network capacity

5489 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 456
5488 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country

Authors: Latif Yanar, Muharrem Kaçan

Abstract:

In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.

Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making

Procedia PDF Downloads 391
5487 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries

Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez

Abstract:

Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.

Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS

Procedia PDF Downloads 128
5486 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 218
5485 Big Data Analytics and Public Policy: A Study in Rural India

Authors: Vasantha Gouri Prathapagiri

Abstract:

Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.

Keywords: Digital India Mission, public service delivery system, public policy, Indian administration

Procedia PDF Downloads 159
5484 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 392
5483 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India

Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan

Abstract:

The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.

Keywords: data sharing, collaboration, public health research, chronic disease

Procedia PDF Downloads 450
5482 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform

Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry

Abstract:

The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.

Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems

Procedia PDF Downloads 490
5481 Integrating a Security Operations Centre with an Organization’s Existing Procedures, Policies and Information Technology Systems

Authors: M. Mutemwa

Abstract:

A Cybersecurity Operation Centre (SOC) is a centralized hub for network event monitoring and incident response. SOCs are critical when determining an organization’s cybersecurity posture because they can be used to detect, analyze and report on various malicious activities. For most organizations, a SOC is not part of the initial design and implementation of the Information Technology (IT) environment but rather an afterthought. As a result, it is not natively a plug and play component; therefore, there are integration challenges when a SOC is introduced into an organization. A SOC is an independent hub that needs to be integrated with existing procedures, policies and IT systems of an organization such as the service desk, ticket logging system, reporting, etc. This paper discussed the challenges of integrating a newly developed SOC to an organization’s existing IT environment. Firstly, the paper begins by looking at what data sources should be incorporated into the Security Information and Event Management (SIEM) such as which host machines, servers, network end points, software, applications, web servers, etc. for security posture monitoring. That is which systems need to be monitored first and the order by which the rest of the systems follow. Secondly, the paper also describes how to integrate the organization’s ticket logging system with the SOC SIEM. That is how the cybersecurity related incidents should be logged by both analysts and non-technical employees of an organization. Also the priority matrix for incident types and notifications of incidents. Thirdly, the paper looks at how to communicate awareness campaigns from the SOC and also how to report on incidents that are found inside the SOC. Lastly, the paper looks at how to show value for the large investments that are poured into designing, building and running a SOC.

Keywords: cybersecurity operation centre, incident response, priority matrix, procedures and policies

Procedia PDF Downloads 153
5480 H.263 Based Video Transceiver for Wireless Camera System

Authors: Won-Ho Kim

Abstract:

In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.

Keywords: wireless video transceiver, video surveillance camera, H.263 video encoding digital signal processing

Procedia PDF Downloads 364
5479 A Case Study Approach on Co-Constructing the Idea of 'Safety' with Children

Authors: Beng Zhen Yeow

Abstract:

In most work that involves children, the voice of the children is often not heard. This is ironic since a lot of discussions might involve their welfare and safety. It might seem natural that the professionals should hear from them about what they wish for instead of deciding what is best for them. However, this, unfortunately, might be more the exception than the norm in most case and hence in many instances, children are merely 'subjects' in conversations about safety instead of active participants in the construction or creation of safety in the family. There might be many reasons why it does not happen in our work. Firstly, professionals have learnt how to 'socialise' into their professional roles and hence in the process become 'un-childlike'. Secondly, there is also a lack of professional training with regards to how to talk with children. Finally, there might be also a lack of concrete tools and techniques that are developed to facilitate the process. In this paper, the case study method is used to show how the idea of safety could be concretised and discussed with children and their family members, and hence making them active participants and co-creators of their own safety. Specific skills and techniques are highlighted through the case study. In this case, there was improvement in outcomes like no repeated offence or abuse. In addition, children were also able to advocate for their own safety after six months of intervention and how the family members were able to explicitly say what they can do to improve safety. The professionals in the safety network reported significant improvements. On top of that, the abused child who was removed due to child protection concerns, had verbalized observations of change in mother’s parenting abilities, and has requested for home leave to begin due to ownership of safety planning and having confidence to co-create safety for her siblings and herself together with the professionals in the safety network. Children becoming active participants in the co-creation of safety not only serve the purpose in allowing them to own a 'voice' but at the same time, give them greater confidence to protect themselves at home and in other contexts outside of home.

Keywords: partnering for safety, collaborative social work, family and systemic psychotherapy, child protection

Procedia PDF Downloads 120
5478 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 132
5477 Building Education Leader Capacity through an Integrated Information and Communication Technology Leadership Model and Tool

Authors: Sousan Arafeh

Abstract:

Educational systems and schools worldwide are increasingly reliant on information and communication technology (ICT). Unfortunately, most educational leadership development programs do not offer formal curricular and/or field experiences that prepare students for managing ICT resources, personnel, and processes. The result is a steep learning curve for the leader and his/her staff and dissipated organizational energy that compromises desired outcomes. To address this gap in education leaders’ development, Arafeh’s Integrated Technology Leadership Model (AITLM) was created. It is a conceptual model and tool that educational leadership students can use to better understand the ICT ecology that exists within their schools. The AITL Model consists of six 'infrastructure types' where ICT activity takes place: technical infrastructure, communications infrastructure, core business infrastructure, context infrastructure, resources infrastructure, and human infrastructure. These six infrastructures are further divided into 16 key areas that need management attention. The AITL Model was created by critically analyzing existing technology/ICT leadership models and working to make something more authentic and comprehensive regarding school leaders’ purview and experience. The AITL Model then served as a tool when it was distributed to over 150 educational leadership students who were asked to review it and qualitatively share their reactions. Students said the model presented crucial areas of consideration that they had not been exposed to before and that the exercise of reviewing and discussing the AITL Model as a group was useful for identifying areas of growth that they could pursue in the leadership development program and in their professional settings. While development in all infrastructures and key areas was important for students’ understanding of ICT, they noted that they were least aware of the importance of the intangible area of the resources infrastructure. The AITL Model will be presented and session participants will have an opportunity to review and reflect on its impact and utility. Ultimately, the AITL Model is one that could have significant policy and practice implications. At the very least, it might help shape ICT content in educational leadership development programs through curricular and pedagogical updates.

Keywords: education leadership, information and communications technology, ICT, leadership capacity building, leadership development

Procedia PDF Downloads 116
5476 Numerical Modelling of Prestressed Geogrid Reinforced Soil System

Authors: Soukat Kumar Das

Abstract:

Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil.

Keywords: bearing, geogrid, prestressed, reinforced

Procedia PDF Downloads 402
5475 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 100
5474 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 173
5473 Effectiveness of Prehabilitation on Improving Emotional and Clinical Recovery of Patients Undergoing Open Heart Surgeries

Authors: Fatma Ahmed, Heba Mostafa, Bassem Ramdan, Azza El-Soussi

Abstract:

Background: World Health Organization stated that by 2020 cardiac disease will be the number one cause of death worldwide and estimates that 25 million people per year will suffer from heart disease. Cardiac surgery is considered an effective treatment for severe forms of cardiovascular diseases that cannot be treated by medical treatment or cardiac interventions. In spite of the benefits of cardiac surgery, it is considered a major stressful experience for patients who are candidate for surgery. Prehabilitation can decrease incidences of postoperative complications as it prepares patients for surgical stress through enhancing their defenses to meet the demands of surgery. When patients anticipate the postoperative sequence of events, they will prepare themselves to act certain behaviors, identify their roles and actively participate in their own recovery, therefore, anxiety levels are decreased and functional capacity is enhanced. Prehabilitation programs can comprise interventions that include physical exercise, psychological prehabilitation, nutritional optimization and risk factor modification. Physical exercises are associated with improvements in the functioning of the various physiological systems, reflected in increased functional capacity, improved cardiac and respiratory functions and make patients fit for surgical intervention. Prehabilitation programs should also prepare patients psychologically in order to cope with stress, anxiety and depression associated with postoperative pain, fatigue, limited ability to perform the usual activities of daily living through acting in a healthy manner. Notwithstanding the benefits of psychological preparations, there are limited studies which investigated the effect of psychological prehabilitation to confirm its effect on psychological, quality of life and physiological outcomes of patients who had undergone cardiac surgery. Aim of the study: The study aims to determine the effect of prehabilitation interventions on outcomes of patients undergoing cardiac surgeries. Methods: Quasi experimental study design was used to conduct this study. Sixty eligible and consenting patients were recruited and divided into two groups: control and intervention group (30 participants in each). One tool namely emotional, physiological, clinical, cognitive and functional capacity outcomes of prehabilitation intervention assessment tool was utilized to collect the data of this study. Results: Data analysis showed significant improvement in patients' emotional state, physiological and clinical outcomes (P < 0.000) with the use of prehabilitation interventions. Conclusions: Cardiac prehabilitation in the form of providing information about surgery, circulation exercise, deep breathing exercise, incentive spirometer training and nutritional education implemented daily by patients scheduled for elective open heart surgery one week before surgery have been shown to improve patients' emotional state, physiological and clinical outcomes.

Keywords: emotional recovery, clinical recovery, coronary artery bypass grafting patients, prehabilitation

Procedia PDF Downloads 204
5472 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030

Authors: Paul Kipchumba

Abstract:

Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.

Keywords: co2 emissions, cost factors, electricity generation, non-cost factors

Procedia PDF Downloads 365
5471 Analysis of Network Connectivity for Ship-To-Ship Maritime Communication Using IEEE 802.11 on Maritime Environment of Tanjung Perak, Indonesia

Authors: Ahmad Fauzi Makarim, Okkie Puspitorini, Hani'ah Mahmudah, Nur Adi Siswandari, Ari Wijayanti

Abstract:

As a maritime country, Indonesia needs a solution in maritime connectivity which can assist the maritime communication system which including communication from harbor to the ship or ship to ship. The needs of many application services for maritime communication, whether for safety reasons until voyage service to help the process of voyage activity needs connection with a high bandwith. To support the government efforts in handling that kind of problem, a research is conducted in maritime communication issue by applying the new developed technology in Indonesia, namely IEEE 802.11. In this research, 3 outdoor WiFi devices are used in which have a frequency of 5.8 GHz. Maritime of Tanjung Perak harbor in Surabaya until Karang Jamuang Island are used as the location of the research with defining permission of ship node spreading by Navigation District Class 1. That maritime area formed by state 1 and state 2 areas which are the narrow area with average wave height of 0.7 meter based on the data from BMKG S urabaya. After that, wave height used as one of the parameters which are used in analyzing characteristic of signal propagation at sea surface, so it can be determined on the coverage area of transmitter system. In this research has been used three samples of outdoor wifi, there is the coverage of device A can be determined about 2256 meter, device B 4000 meter, and device C 1174 meter. Then to analyze of network connectivity for the ship to ship is used AODV routing algorithm system based on the value of the power transmit was smallest of all nodes within the transmitter coverage.

Keywords: maritime of Indonesia, maritime communications, outdoor wifi, coverage, AODV

Procedia PDF Downloads 350
5470 Understanding the Reasons for Flooding in Chennai and Strategies for Making It Flood Resilient

Authors: Nivedhitha Venkatakrishnan

Abstract:

Flooding in urban areas in India has become a usual ritual phenomenon and a nightmare to most cities, which is a consequence of man-made disruption resulting in disaster. The City planning in India falls short of withstanding hydro generated disasters. This has become a barrier and challenge in the process of development put forth by urbanization, high population density, expanding informal settlements, environment degradation from uncollected and untreated waste that flows into natural drains and water bodies, this has disrupted the natural mechanism of hazard protection such as drainage channels, wetlands and floodplains. The magnitude and the impact of the mishap was high because of the failure of development policies, strategies, plans that the city had adopted. In the current scenario, cities are becoming the home for future, with economic diversification bringing in more investment into cities especially in domains of Urban infrastructure, planning and design. The uncertainty of the Urban futures in these low elevated coastal zones faces an unprecedented risk and threat. The study on focuses on three major pillars of resilience such as Recover, Resist and Restore. This process of getting ready to handle the situation bridges the gap between disaster response management and risk reduction requires a shift in paradigm. The study involved a qualitative research and a system design approach (framework). The initial stages involved mapping out of the urban water morphology with respect to the spatial growth gave an insight of the water bodies that have gone missing over the years during the process of urbanization. The major finding of the study was missing links between traditional water harvesting network was a major reason resulting in a manmade disaster. The research conceptualized the ideology of a sponge city framework which would guide the growth through institutional frameworks at different levels. The next stage was on understanding the implementation process at various stage to ensure the shift in paradigm. Demonstration of the concepts at a neighborhood level where, how, what are the functions and benefits of each component. Quantifying the design decision with rainwater harvest, surface runoff and how much water is collected and how it could be collected, stored and reused. The study came with further recommendation for Water Mitigation Spaces that will revive the traditional harvesting network.

Keywords: flooding, man made disaster, resilient city, traditional harvesting network, waterbodies

Procedia PDF Downloads 140
5469 Analysis of Fuel Adulteration Consequences in Bangladesh

Authors: Mahadehe Hassan

Abstract:

In most countries manufacturing, trading and distribution of gasoline and diesel fuels belongs to the most important sectors of national economy. For Bangladesh, a robust, well-functioning, secure and smartly managed national fuel distribution chain is an essential precondition for achieving Government top priorities in development and modernization of transportation infrastructure, protection of national environment and population health as well as, very importantly, securing due tax revenue for the State Budget. Bangladesh is a developing country with complex fuel supply network, high fuel taxes incidence and – till now - limited possibilities in application of modern, automated technologies for Government national fuel market control. Such environment allows dishonest physical and legal persons and organized criminals to build and profit from illegal fuel distribution schemes and fuel illicit trade. As a result, the market transparency and the country attractiveness for foreign investments, law-abiding economic operators, national consumers, State Budget and the Government ability to finance development projects, and the country at large suffer significantly. Research shows that over 50% of retail petrol stations in major agglomerations of Bangladesh sell adulterated fuels and/or cheat customers on the real volume of the fuel pumped into their vehicles. Other forms of detected fuel illicit trade practices include misdeclaration of fuel quantitative and qualitative parameters during internal transit and selling of non-declared and smuggled fuels. The aim of the study is to recommend the implementation of a National Fuel Distribution Integrity Program (FDIP) in Bangladesh to address and resolve fuel adulteration and illicit trade problems. The program should be customized according to the specific needs of the country and implemented in partnership with providers of advanced technologies. FDIP should enable and further enhance capacity of respective Bangladesh Government authorities in identification and elimination of all forms of fuel illicit trade swiftly and resolutely. FDIP high-technology, IT and automation systems and secure infrastructures should be aimed at the following areas (1) fuel adulteration, misdeclaration and non-declaration; (2) fuel quality and; (3) fuel volume manipulation at retail level. Furthermore, overall concept of FDIP delivery and its interaction with the reporting and management systems used by the Government shall be aligned with and support objectives of the Vision 2041 and Smart Bangladesh Government programs.

Keywords: fuel adulteration, octane, kerosene, diesel, petrol, pollution, carbon emissions

Procedia PDF Downloads 74
5468 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources

Authors: Guanglin Song

Abstract:

(Objective) Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. (Methods) A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city.(Conclusion) The findings reveal that:1.there exists overall maldistribution and over-concentration of healthcare resources in Study Area, characterized by structural imbalance; 2.the low rate of primary care utilization in Study Area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem; 3.gradual optimization of the healthcare facility layout in Study Area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance.(Prospects) This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. Provide some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.

Keywords: flow of public services, urban networks, healthcare facilities, spatial planning, urban networks

Procedia PDF Downloads 67
5467 Sustainable Urban Mobility: Rethinking the Bus Stop Infrastructures of Dhaka South

Authors: Hasnun Wara Khondker, M. Tarek Morad

Abstract:

Bangladesh is one of the most populous countries of the world in terms of density. Dhaka, the capital of Bangladesh currently has a population of approximately 15-16 million of which around 9 million people are accommodated in Dhaka South City Corporation (DSCC) within around 109 square kilometer area. Despite having various urban issues, country is at its pick of economic progress and Dhaka is the core of this economic growth. To ensure the proper economic development and citizens wellbeing, city needs an ingenious, congestion-free public transportation network. Bus stop/bus bay is an essential infrastructure for ensuring efficient public transportation flow within the city along with enhancing accessibility, user comfort, and safety through public amenities. At present, there is no established Mass Rapid Transit or Bus Rapid Transit network within the city and therefore these private owned buses are the only major mode of mass transportation of Dhaka city. DSCC has undertaken a project to re-design several bus stops and bus bays according to the universal standard for better urban mobility and user satisfaction. This paper will analyze the design approach of the bus stop/bay infrastructure within Dhaka South, putting the research lens on sustainable urban mobility with case studies of similar kind of urban context. The paper will also study the design process with setting several parameters, i.e., accessibility, passenger safety, comfort, sustainability, etc. Moreover, this research will recommend a guideline for designing a bus stop based on the analysis of the design methods.

Keywords: bus stop, Dhaka, public transportation, sustainable urban mobility, universal accessibility, user safety

Procedia PDF Downloads 379
5466 Evolutionary Analysis of Green Credit Regulation on Greenwashing Behavior in Dual-Layer Network

Authors: Bo-wen Zhu, Bin Wu, Feng Chen

Abstract:

It has become a common measure among governments to support green development of enterprises through Green Credit policies. In China, the Central Bank of China and other authorities even put forward corresponding assessment requirements for proportion of green credit in commercial banks. Policy changes might raise concerns about commercial banks turning a blind eye to greenwashing behavior by enterprises. The lack of effective regulation may lead to a diffusion of such behavior, and eventually result in the phenomenon of “bad money driving out good money”, which could dampen the incentive effect of Green Credit policies. This paper employs a complex network model based on an evolutionary game analysis framework involving enterprises, banks, and regulatory authorities to investigate inhibitory effect of the Green Credit regulation on enterprises’ greenwashing behavior, banks’ opportunistic and collusive behaviors. The findings are as follows: (1) Banking opportunism rises with Green Credit evaluation criteria and requirements for the proportion of credit balance. Restrictive regulation against violating banks is necessary as there is an increasing trend of banks adopting opportunistic strategy. (2) Raising penalties and probability of regulatory inspections can effectively suppress banks’ opportunistic behavior, however, it cannot entirely eradicate the opportunistic behavior on the bank side. (3) Although maintaining a certain inspection probability can inhibit enterprises from adopting greenwashing behavior, enterprises choose a catering production strategy instead. (4) One-time rewards from local government have limited effects on the equilibrium state and diffusion trend of bank regulatory decision-making.

Keywords: green credit, greenwashing behavior, regulation, diffusion effect

Procedia PDF Downloads 24
5465 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics

Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung

Abstract:

Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.

Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment

Procedia PDF Downloads 168
5464 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.

Keywords: biosorption, brown marine macroalgae, copper, ion-exchange

Procedia PDF Downloads 326
5463 The Future of Sharia Financing Analysis of Green Finance Financing Strategies in the Sharia State of Aceh

Authors: Damanhur Munardi, Muhammad Hafiz, Dina Nurmalita Sari, Syarifah Ridani Alifa

Abstract:

Purpose: This research aims to analyze the Benefits, Opportunity, Cost, and Risk aspects of applying the Green Finance concept and to obtain the right Green Finance financing strategy to be implemented within a long-term and short-term strategic framework.Methodology: This research method uses a qualitative-descriptive analysis approach. The analysis technique uses Analytical Network Process (ANP) with a BOCR network structure approach.Findings: The research results show that the most priority long-term strategic alternative based on the long-term BOCR analysis is increasing awareness among the public and industry by 52% and the importance of coordination between related institutions by 50%. Meanwhile, the most priority short-term strategic alternatives are the importance of coordination between related institutions 29%, increasing awareness among the public and industry 28%, the banking industry proactively funding environmentally friendly companies and technology 23%, the existence of Green Finance POS (Standard Operating Procedures) 20%.Implications: This research can be used as a reference for regulators and policymakers in making strategic decisions that can increase green finance financing. The novelty of this research is identifying problems that occur in green finance financing in Aceh province by analyzing opinions from experts in related fields and financial regulators in Aceh to create a strategy that can be implemented to increase green finance financing in Aceh province through BPD in Aceh, namely Bank Aceh.

Keywords: green financing, banking, sharia, islamic

Procedia PDF Downloads 64
5462 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 165
5461 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant

Authors: Maria Altamirano, Alfonso Duran

Abstract:

Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.

Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism

Procedia PDF Downloads 191
5460 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 143