Search results for: conflicting claim on credit of discovery of ridge regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4737

Search results for: conflicting claim on credit of discovery of ridge regression

1617 Conceptualizing Health-Seeking Behavior among Adolescents and Youth with Substance Use Disorder in Urban Kwazulu-Natal. A Candidacy Framework Analysis

Authors: Siphesihle Hlongwane

Abstract:

Background: Globally, alcohol consumption, smoking, and the use of illicit drugs kill more than 11.8 million people each year. In sub-Saharan Africa, substance abuse is responsible for more than 6.4% of all deaths recorded and about 4.7% of all Disability Adjusted Life Years (DALYs), with numbers still expected to grow if no drastic measures are taken to curb and address drug use. In a setting where substance use is rife, understanding contextual factors that influence an individual’s perceived eligibility to seek rehabilitation is paramount. Using the candidacy framework, we unpack how situational factors influence an individual’s perceived eligibility for healthcare uptake in adolescents and youth with substance use disorder (SUD). Methods: The candidacy framework is concerned with how people consider their eligibility for accessing a health service. The study collected and analyzed primary qualitative data to answer the research question. Data were collected between January and July 2022 on participants aged between 18 and 35 for drug users and 18 to 60 for family members. Participants include 20 previous and current drug users and 20 family members that experience the effects of addiction. A pre-drafted semi-structured interview guide was administered to a conveniently sampled population supplemented with a referral sampling method. Data were thematically analyzed using the NVivo 12pro software to manage the data. Findings: Our findings show that people with substance use disorders are aware of their drug use habits and acknowledge their candidacy for health services. Candidacy for health services is also acknowledged by those around them, such as family members and peers, and as such, information on the navigation of health services for drug users is shared by those who have attended health services, those affected by drug use, and this includes health service research by family members to identify accessible health services. While participants reported willingness to quit drug use if assistance is provided, the permeability of health care services is hindered by both individual determinations to quit drug use from long-time use and the availability of health services for drug users, such as rehabilitation centers. Our findings also show that drug users are conscious and can articulate their ailments; however, the hunt for the next dose of drugs and long waiting cues for health service acquisition overshadows their claim to health services. Participants reported a mixture of treatments prescribed, with some more gruesome than others prescribed, thus serving as both a facilitator and barrier for health service uptake. Despite some unorthodox forms of treatments prescribed in health care, the majority of those who enter treatment complete the process of treatment, although some are met with setbacks and sometimes relapse after treatment has finished. Conclusion: Drug users are able to ascertain their candidacy for health services; however, individual and environmental characteristics relating to drug use hinder the use of health services. Drug use interventions need to entice health service uptake as a way to improve candidacy for health use.

Keywords: substance use disorder, rehabilitation, drug use, relapse, South Africa, candidacy framework

Procedia PDF Downloads 97
1616 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 57
1615 The Impact of Talent Management on Improving Employee Loyalty in IT Sector, Kerala, India

Authors: Obaidullah Molakhail, R. Reshmi

Abstract:

Objective: This study explains the impact of talent management on employee loyalty in the IT sector in Kerala, India. Methods: A descriptive investigation was conducted within the confines of this paper to gain insight into the ramifications of talent management on enhancing employee allegiance to the organization. A quantitative study was conducted by distributing questionnaires to respondents in three IT companies. One hundred and seventy questionnaires were distributed, with `150 being utilized and the remainder being discarded. Data was collected from various departments within the companies, and the selection of respondents was conducted randomly. statistical software SPSS (version 26) was used to analyze the data and determine the outcomes. Results: The objective was examined through Pearson correlation to find the relation, and linear regression was used to find the strength of variables as talent management is independent and employee loyalty is the dependent variable. The results reveal that talent management is essential to employee loyalty. If there is a high-level implementation of talent management practices, there will be low turnover rate, it reflected employee loyalty towards the organization. Conclusion: Strategic planners ought to devote their attention to the realm of talent management due to the existence of a correlation between talent management and the loyalty exhibited by employees. The results of this study suggest that there is a favorable correlation between talent management and employee loyalty.

Keywords: talent management, employee loyalty, IT sector, quantitative study

Procedia PDF Downloads 57
1614 An Empirical Investigation of Montesquieu’s Theories on Climate

Authors: Lisa J. Piergallini

Abstract:

This project uses panel regression analyses to investigate the relationships between geography, institutions, and economic development, as guided by the theories of the 18th century French philosopher Montesquieu. Contemporary scholars of political economy perpetually misinterpret Montesquieu’s theories on climate, and in doing so they miss what could be the key to resolving the geography vs. institutions debate. There is a conspicuous gap in this literature, in that it does not consider whether geography and institutors might have an interactive, dynamic effect on economic development. This project seeks to bridge that gap. Data are used for all available countries over the years 1980-2013. Two interaction terms between geographic and institutional variables are employed within the empirical analyses, and these offer a unique contribution to the ongoing geography vs. institutions debate within the political economy literature. This study finds that there is indeed an interactive effect between geography and institutions, and that this interaction has a statistically significant effect on economic development. Democracy (as measured by Polity score) and rule of law and property rights (as measured by the Fraser index) have positive effects on economic development (as measured by GDP per capita), yet the magnitude of these effects are stronger in contexts where a low percent of the national population lives in the geographical tropics. This has implications for promoting economic development, and it highlights the importance of understanding geographical context.

Keywords: Montesquieu, institutions, geography, economic development, political philosophy, political economy

Procedia PDF Downloads 254
1613 Quantifying the Second-Level Digital Divide on Sub-National Level with a Composite Index

Authors: Vladimir Korovkin, Albert Park, Evgeny Kaganer

Abstract:

The paper studies the second-level digital divide (the one defined by the way how digital technology is used in everyday life) between regions of the Russian Federation. The paper offers a systemic review of literature on the measurement of the digital divide; based upon this it suggests a composite Digital Life Index, that captures the complex multi-dimensional character of the phenomenon. The model of the index studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. Regression analysis is used to determine the relative importance of factors like income, human capital, and policy in determining the digital divide. The result of the analysis suggests that the digital divide is driven more by the differences in demand (defined by consumer competencies) than in supply; the role of income is insignificant, and the quality of human capital is the key determinant of the divide. The paper advances the existing methodological literature on the issue and can also inform practical decision-making regarding the strategies of national and regional digital development.

Keywords: digital transformation, second-level digital divide, composite index, digital policy, regional development, Russia

Procedia PDF Downloads 183
1612 Spatial Temporal Rainfall Trends in Australia

Authors: Bright E. Owusu, Nittaya McNeil

Abstract:

Rainfall is one of the most essential quantities in meteorology and hydrology. It has important impacts on people’s daily life and excess or inadequate of it could bring tremendous losses in economy and cause fatalities. Population increase around the globe tends to have a corresponding increase in settlement and industrialization. Some countries are affected by flood and drought occasionally due to climate change, which disrupt most of the daily activities. Knowledge of trends in spatial and temporal rainfall variability and their physical explanations would be beneficial in climate change assessment and to determine erosivity. This study describes the spatial-temporal variability of daily rainfall in Australia and their corresponding long-term trend during 1950-2013. The spatial patterns were investigated by using exploratory factor analysis and the long term trend in rainfall time series were determined by linear regression, Mann-Kendall rank statistics and the Sen’s slope test. The exploratory factor analysis explained most of the variations in the data and grouped Australia into eight distinct rainfall regions with different rainfall patterns. Significant increasing trends in annual rainfall were observed in the northern regions of Australia. However, the northeastern part was the wettest of all the eight rainfall regions.

Keywords: climate change, explanatory factor analysis, Mann-Kendall and Sen’s slope test, rainfall.

Procedia PDF Downloads 350
1611 The Effect of Taxpayer Political Beliefs on Tax Evasion Behavior: An Empirical Study Applied to Tunisian Case

Authors: Nadia Elouaer

Abstract:

Tax revenue is the main state resource and one of the important variables in tax policy. Nevertheless, this resource is continually decreasing, so it is important to focus on the reasons for this decline. Several studies show that the taxpayer is reluctant to pay taxes, especially in countries at risk or in countries in transition, including Tunisia. This study focuses on the tax evasion behavior of a Tunisian taxpayer under the influence of his political beliefs, as well as the influence of different tax compliance variables. Using a questionnaire, a sample of 500 Tunisian taxpayers is used to examine the relationship between political beliefs and taxpayer affiliations and tax compliance variables, as well as the study of the causal link between political beliefs and fraudulent behavior. The data were examined using correlation, factor, and regression analysis and found a positive and statistically significant relationship between the different tax compliance variables and the tax evasion behavior. There is also a positive and statistically significant relationship between tax evasion and political beliefs and affiliations. The study of the relationship between political beliefs and compliance variables shows that they are closely related. The conclusion is to admit that tax evasion and political beliefs are closely linked, and the government should update its tax policy and modernize its administration in order to strengthen the credibility and disclosure of information in order to restore a relationship of trust between public authorities and the taxpayer.

Keywords: fiscal policy, political beliefs, tax evasion, taxpayer behavior

Procedia PDF Downloads 146
1610 Predisposition of Small Scale Businesses in Fagge, Kano State, Nigeria, Towards Profit and Loss Sharing Mode of Finance

Authors: Farida, M. Shehu, Shehu U. R. Aliyu

Abstract:

Access to finance has been recognized in the literature as one of the major impediments confronting small scale businesses (SSBs). This largely arises due to high lending rate, religious inclinations, collateral, etc. Islamic mode finance operates under Profit and Loss Sharing (PLS) arrangement between a borrower (business owner) and a lender (Islamic bank). This paper empirically assesses the determinants of predisposition of small scale business operators in Fagge local government area, Kano State, Nigeria, towards the PLS. Cross-sectional data from a sample of 291 small scale business operators was analyzed using logit and probit regression models. Empirical results reveal that while awareness and religion inclination positively drive interest towards the PLS, lending rate and collateral work against it. The paper, therefore, strongly recommends more advocacy campaigns and setting up of more Islamic banks in the country to cater for the financing and religious needs of SSBs in the study area.

Keywords: Islamic finance, logit and probit models, profit and loss sharing small scale businesses, finance, commerce

Procedia PDF Downloads 368
1609 Unpleasant Symptom Clusters Influencing Quality of Life among Patients with Chronic Kidney Disease

Authors: Anucha Taiwong, Nirobol Kanogsunthornrat

Abstract:

This predictive research aimed to investigate the symptom clusters that influence the quality of life among patients with chronic kidney disease, as indicated in the Theory of Unpleasant Symptoms. The purposive sample consisted of 150 patients with stage 3-4 chronic kidney disease who received care at an outpatient chronic kidney disease clinic of a tertiary hospital in Roi-Et province. Data were collected from January to March 2016 by using a patient general information form, unpleasant symptom form, and quality of life (SF-36) and were analyzed by using descriptive statistics, factor analysis, and multiple regression analysis. Findings revealed six core symptom clusters including symptom cluster of the mental and emotional conditions, peripheral nerves abnormality, fatigue, gastro-intestinal tract, pain and, waste congestion. Significant predictors for quality of life were the two symptom clusters of pain (Beta = -.220; p < .05) and the mental and emotional conditions (Beta=-.204; p<.05) which had predictive value of 19.10% (R2=.191, p<.05). This study indicated that the symptom cluster of pain and the mental and emotional conditions would worsen the patients’ quality of life. Nurses should be attentive in managing the two symptom clusters to facilitate the quality of life among patients with chronic kidney disease.

Keywords: chronic kidney disease, symptom clusters, predictors of quality of life, pre-dialysis

Procedia PDF Downloads 318
1608 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem

Authors: Fatemeh Torfi

Abstract:

Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.

Keywords: fuzzy least-squares, stochastic, location, routing problems

Procedia PDF Downloads 433
1607 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 283
1606 Advances in Genome Editing and Future Prospects for Sorghum Improvement: A Review

Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie Teklu

Abstract:

Recent developments in targeted genome editing accelerated genetic research and opened new potentials to improve crops for better yields and quality. Given the significance of cereal crops as a primary source of food for the global population, the utilization of contemporary genome editing techniques like CRISPR/Cas9 is timely and crucial. CRISPR/Cas technology has enabled targeted genomic modifications, revolutionizing genetic research and exploration. Application of gene editing through CRISPR/Cas9 in enhancing sorghum is particularly vital given the current ecological, environmental, and agricultural challenges exacerbated by climate change. As sorghum is one of the main staple foods of our region and is known to be a resilient crop with a high potential to overcome the above challenges, the application of genome editing technology will enhance the investigation of gene functionality. CRISPR/Cas9 enables the improvement of desirable sorghum traits, including nutritional value, yield, resistance to pests and diseases, and tolerance to various abiotic stresses. Furthermore, CRISPR/Cas9 has the potential to perform intricate editing and reshape the existing elite sorghum varieties, and introduce new genetic variations. However, current research primarily focuses on improving the efficacy of the CRISPR/Cas9 system in successfully editing endogenous sorghum genes, making it a feasible and successful undertaking in sorghum improvement. Recent advancements and developments in CRISPR/Cas9 techniques have further empowered researchers to modify additional genes in sorghum with greater efficiency. Successful application and advancement of CRISPR techniques in sorghum will aid not only in gene discovery and the creation of novel traits that regulate gene expression and functional genomics but also in facilitating site-specific integration events. The purpose of this review is, therefore, to elucidate the current advances in sorghum genome editing and highlight its potential in addressing food security issues. It also assesses the efficiency of CRISPR-mediated improvement and its long-term effects on crop improvement and host resistance against parasites, including tissue-specific activity and the ability to induce resistance. This review ends by emphasizing the challenges and opportunities of CRISPR technology in combating parasitic plants and proposing directions for future research to safeguard global agricultural productivity.

Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield

Procedia PDF Downloads 36
1605 The Effect of Deficit Financing on Macro-Economic Variables in Nigeria (1970-2013)

Authors: Ezeoke Callistus Obiora, Ezeoke Nneka Angela

Abstract:

The study investigated the effect of deficit financing on macroeconomic variables in Nigeria. The specific objectives included to find out the relationship between deficit financing and GDP, interest rate, inflation rate, money supply, exchange rate and private investment respectively on a time series covering a period of 44 years (1970 – 2013). The Ordinary Least Square multiple regression produced statistics for the coefficient of determination (R2), F-test, t-test used for the interpretation of the study. The findings revealed that Deficit financing has significant positive effect on GDP and exchange rate. Again, deficit financing has a positive and insignificant relationship inflation, money supply and investment. Only interest rate recorded negative yet insignificant relationship with deficit financing. The implications of the findings are that deficit financing can be a veritable tool for boosting economic development in Nigeria, but the influential positively rising exchange rate implies that deficit financing devalues the Naira exchange rate to other currencies indicating that deficit financing can affect Nigerians competitive advantage at the world market. Thus, the study concludes that deficit financing has not encouraged economic growth in Nigeria.

Keywords: deficit financing, money supply, exchange rate, inflation, GDP, investment, Nigeria

Procedia PDF Downloads 476
1604 Adoption of International Financial Reporting Standards and Earnings Quality in Listed Deposit Money Banks in Nigeria

Authors: Shehu Usman Hassan

Abstract:

Published accounting information in financial statements are required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. This paper investigates firm attributes from perspective of structure, monitoring, performance elements of listed deposit money banks in Nigeria. The study adopted correlational research design with balanced panel data of 14 banks as sample of the study using multiple regression as a tool of analysis. The result reveals that firms attributes (leverage, profitability, liquidity, bank size and bank growth) has as significant influence on earnings quality of listed deposit money banks in Nigeria after the adoption of IFRS, while the pre period shows that the selected firm attributes has no significant impact on earnings quality. It is therefore concluded that the adoption of IFRS is right and timely.

Keywords: earnings quality, firm attributes, listed deposit money bank, Nigeria

Procedia PDF Downloads 509
1603 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising

Authors: Mokhlisur Rahman

Abstract:

Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.

Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer

Procedia PDF Downloads 65
1602 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 142
1601 Creating Gameful Experience as an Innovative Approach in the Digital Era: A Double-Mediation Model of Instructional Support, Group Engagement and Flow

Authors: Mona Hoyng

Abstract:

In times of digitalization nowadays, the use of games became a crucial new way for digital game-based learning (DGBL) in higher education. In this regard, the development of a gameful experience (GE) among students is decisive when examining DGBL as the GE is a necessary precondition determining the effectiveness of games. In this regard, the purpose of this study is to provide deeper insights into the GE and to empirically investigate whether and how these meaningful learning experiences within games, i.e., GE, among students are created. Based on the theory of experience and flow theory, a double-mediation model was developed considering instructional support, group engagement, and flow as determinants of students’ GE. Based on data of 337 students taking part in a business simulation game at two different universities in Germany, regression-based statistical mediation analysis revealed that instructional support promoted students’ GE. This relationship was further sequentially double mediated by group engagement and flow. Consequently, in the context of DGBL, meaningful learning experiences within games in terms of GE are created and promoted through appropriate instructional support, as well as high levels of group engagement and flow among students.

Keywords: gameful experience, instructional support, group engagement, flow, education, learning

Procedia PDF Downloads 135
1600 Computational Insights Into Allosteric Regulation of Lyn Protein Kinase: Structural Dynamics and Impacts of Cancer-Related Mutations

Authors: Mina Rabipour, Elena Pallaske, Floyd Hassenrück, Rocio Rebollido-Rios

Abstract:

Protein tyrosine kinases, including Lyn kinase of the Src family kinases (SFK), regulate cell proliferation, survival, and differentiation. Lyn kinase has been implicated in various cancers, positioning it as a promising therapeutic target. However, the conserved ATP-binding pocket across SFKs makes developing selective inhibitors challenging. This study aims to address this limitation by exploring the potential for allosteric modulation of Lyn kinase, focusing on how its structural dynamics and specific oncogenic mutations impact its conformation and function. To achieve this, we combined homology modeling, molecular dynamics simulations, and data science techniques to conduct microsecond-length simulations. Our approach allowed a detailed investigation into the interplay between Lyn’s catalytic and regulatory domains, identifying key conformational states involved in allosteric regulation. Additionally, we evaluated the structural effects of Dasatinib, a competitive inhibitor, and ATP binding on Lyn active conformation. Notably, our simulations show that cancer-related mutations, specifically I364L/N and E290D/K, shift Lyn toward an inactive conformation, contrasting with the active state of the wild-type protein. This may suggest how these mutations contribute to aberrant signaling in cancer cells. We conducted a dynamical network analysis to assess residue-residue interactions and the impact of mutations on the Lyn intramolecular network. This revealed significant disruptions due to mutations, especially in regions distant from the ATP-binding site. These disruptions suggest potential allosteric sites as therapeutic targets, offering an alternative strategy for Lyn inhibition with higher specificity and fewer off-target effects compared to ATP-competitive inhibitors. Our findings provide insights into Lyn kinase regulation and highlight allosteric sites as avenues for selective drug development. Targeting these sites may modulate Lyn activity in cancer cells, reducing toxicity and improving outcomes. Furthermore, our computational strategy offers a scalable approach for analyzing other SFK members or kinases with similar properties, facilitating the discovery of selective allosteric modulators and contributing to precise cancer therapies.

Keywords: lyn tyrosine kinase, mutation analysis, conformational changes, dynamic network analysis, allosteric modulation, targeted inhibition

Procedia PDF Downloads 13
1599 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios

Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses

Abstract:

While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.

Keywords: older drivers, simulation, left-turn, human factors

Procedia PDF Downloads 246
1598 Genome-Wide Significant SNPs Proximal to Nicotinic Receptor Genes Impact Cognition in Schizophrenia

Authors: Mohammad Ahangari

Abstract:

Schizophrenia is a psychiatric disorder with symptoms that include cognitive deficits and nicotine has been suggested to have an effect on cognition. In recent years, the advents of Genome-Wide Association Studies(GWAS) has evolved our understanding about the genetic causes of complex disorders such as schizophrenia and studying the role of genome-wide significant genes could potentially lead to the development of new therapeutic agents for treatment of cognitive deficits in schizophrenia. The current study identified six Single Nucleotide Polymorphisms (SNP) from schizophrenia and smoking GWAS that are located on or in close proximity to the nicotinic receptor gene cluster (CHRN) and studied their association with cognition in an Irish sample of 1297 cases and controls using linear regression analysis. Further on, the interaction between CHRN gene cluster and Dopamine receptor D2 gene (DRD2) during working memory was investigated. The effect of these polymorphisms on nicotinic and dopaminergic neurotransmission, which is disrupted in schizophrenia, have been characterized in terms of their effects on memory, attention, social cognition and IQ as measured by a neuropsychological test battery and significant effects in two polymorphisms were found across global IQ domain of the test battery.

Keywords: cognition, dopamine, GWAS, nicotine, schizophrenia, SNPs

Procedia PDF Downloads 344
1597 Measurement of Fatty Acid Changes in Post-Mortem Belowground Carcass (Sus-scrofa) Decomposition: A Semi-Quantitative Methodology for Determining the Post-Mortem Interval

Authors: Nada R. Abuknesha, John P. Morgan, Andrew J. Searle

Abstract:

Information regarding post-mortem interval (PMI) in criminal investigations is vital to establish a time frame when reconstructing events. PMI is defined as the time period that has elapsed between the occurrence of death and the discovery of the corpse. Adipocere, commonly referred to as ‘grave-wax’, is formed when post-mortem adipose tissue is converted into a solid material that is heavily comprised of fatty acids. Adipocere is of interest to forensic anthropologists, as its formation is able to slow down the decomposition process. Therefore, analysing the changes in the patterns of fatty acids during the early decomposition process may be able to estimate the period of burial, and hence the PMI. The current study concerned the investigation of the fatty acid composition and patterns in buried pig fat tissue. This was in an attempt to determine whether particular patterns of fatty acid composition can be shown to be associated with the duration of the burial, and hence may be used to estimate PMI. The use of adipose tissue from the abdominal region of domestic pigs (Sus-scrofa), was used to model the human decomposition process. 17 x 20cm piece of pork belly was buried in a shallow artificial grave, and weekly samples (n=3) from the buried pig fat tissue were collected over an 11-week period. Marker fatty acids: palmitic (C16:0), oleic (C18:1n-9) and linoleic (C18:2n-6) acid were extracted from the buried pig fat tissue and analysed as fatty acid methyl esters using the gas chromatography system. Levels of the marker fatty acids were quantified from their respective standards. The concentrations of C16:0 (69.2 mg/mL) and C18:1n-9 (44.3 mg/mL) from time zero exhibited significant fluctuations during the burial period. Levels rose (116 and 60.2 mg/mL, respectively) and fell starting from the second week to reach 19.3 and 18.3 mg/mL, respectively at week 6. Levels showed another increase at week 9 (66.3 and 44.1 mg/mL, respectively) followed by gradual decrease at week 10 (20.4 and 18.5 mg/mL, respectively). A sharp increase was observed in the final week (131.2 and 61.1 mg/mL, respectively). Conversely, the levels of C18:2n-6 remained more or less constant throughout the study. In addition to fluctuations in the concentrations, several new fatty acids appeared in the latter weeks. Other fatty acids which were detectable in the time zero sample, were lost in the latter weeks. There are several probable opportunities to utilise fatty acid analysis as a basic technique for approximating PMI: the quantification of marker fatty acids and the detection of selected fatty acids that either disappear or appear during the burial period. This pilot study indicates that this may be a potential semi-quantitative methodology for determining the PMI. Ideally, the analysis of particular fatty acid patterns in the early stages of decomposition could be an additional tool to the already available techniques or methods in improving the overall processes in estimating PMI of a corpse.

Keywords: adipocere, fatty acids, gas chromatography, post-mortem interval

Procedia PDF Downloads 131
1596 Percentile Reference Values of Vertical Jumping Performances and Anthropometric Characteristics in Athletic Tunisian Children and Adolescents

Authors: Chirine Aouichaoui, Mohamed Tounsi, Ines Mrizak, Zouhair Tabka, Yassine Trabelsi

Abstract:

The aim of this study was to provide percentile values for vertical jumping performances and anthropometric characteristics for athletic Tunisian children. One thousand and fifty-five athletic Tunisian children and adolescents (643 boys and 412 girls) aged 7-18 years were randomly selected to participate in our study. They were asked to perform squat jumps and countermovement jumps. For each measurement, a least square regression model with high order polynomials was fitted to predict mean and standard deviation of vertical jumping parameters and anthropometric variables. Smoothed percentile curves and percentile values for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles are presented for boys and girls. In conclusion, percentiles values of vertical jumping performances and anthropometric characteristics are provided. The new Tunisian reference charts obtained can be used as a screening tool to determine growth disorders and to estimate the proportion of adolescents with high or low muscular strength levels. This study may help in verifying the effectiveness of a specific training program and detecting highly talented athletes.

Keywords: percentile values, jump height, leg muscle power, athletes, anthropometry

Procedia PDF Downloads 426
1595 Efficiency in Islamic Banks: Some Empirical Evidences in Indonesian Finance Market

Authors: Ahmed Sameer El Khatib

Abstract:

The aim of the present paper is to examine the revenue efficiency of the Indonesian Islamic banking sector. The study also seeks to investigate the potential internal (bank specific) and external (macroeconomic) determinants that influence the revenue efficiency of Indonesian domestic Islamic banks. We employ the whole gamut of domestic and foreign Islamic banks operating in the Indonesian Islamic banking sector during the period of 2009 to 2018. The level of revenue efficiency is computed by using the Data Envelopment Analysis (DEA) method. Furthermore, we employ a panel regression analysis framework based on the Ordinary Least Square (OLS) method to examine the potential determinants of revenue efficiency. The results indicate that the level of revenue efficiency of Indonesian domestic Islamic banks is lower compared to their foreign Islamic bank counterparts. We find that bank market power, liquidity, and management quality significantly influence the improvement in revenue efficiency of the Indonesian domestic Islamic banks during the period under study. By calculating these efficiency concepts, we can observe the efficiency levels of the domestic and foreign Islamic banks. In addition, by comparing both cost and profit efficiency, we can identify the influence of the revenue efficiency on the banks’ profitability.

Keywords: Islamic Finance, Islamic Banks, Revenue Efficiency, Data Envelopment Analysis

Procedia PDF Downloads 239
1594 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 98
1593 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment

Authors: Vera Karla S. Caingles, Glen A. Lorenzo

Abstract:

Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.

Keywords: collapsibility, correlation, expansiveness, landslide, plasticity

Procedia PDF Downloads 158
1592 Systematic Identification of Noncoding Cancer Driver Somatic Mutations

Authors: Zohar Manber, Ran Elkon

Abstract:

Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).

Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements

Procedia PDF Downloads 102
1591 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 129
1590 The Role of Interpersonal and Institutional Trusts for the Public Support of Welfare State

Authors: Nazim Habibov, Alena Auchynnikava, Lida Fan

Abstract:

The exploration of the relationship between social trust and the support of the welfare system in transitional countries has attracted growing interests in recent decades. This study estimates the effects of interpersonal and institutional trust on the support of the welfare system in 27 countries in Eastern Europe the former Soviet Union. We estimate the data sets from the Life-in-Transition Survey 2010 and 2016 with binomial regression models. The results indicate that both interpersonal and institutional trust have positive effects on the support for the welfare system in all the three areas under investigation: helping the needy, public healthcare and public education, both in the less developed countries of the former Soviet Union and in the more developed Eastern European countries. Furthermore, the positive effects of interpersonal and institutional trust on support for helping the needy, public healthcare and public education were found to grow over time. In conclusion, this study confirms that interpersonal and institutional trusts have positive effects for the public support of the welfare system in these transitional countries under investigation, regardless of their level of development.

Keywords: central and eastern Europe, former Soviet union, international social welfare policy, comparative social welfare policy

Procedia PDF Downloads 129
1589 Optimizing Electric Vehicle Charging with Charging Data Analytics

Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat

Abstract:

Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.

Keywords: charging data, electric vehicles, machine learning, waiting times

Procedia PDF Downloads 192
1588 Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance

Authors: Seongryong Kang, Woonjin Kim, Sungjoo Lee

Abstract:

Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer.

Keywords: diversity, intensity, international technology acquisition, performance, technology transfer

Procedia PDF Downloads 360