Search results for: selective catalytic reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5835

Search results for: selective catalytic reduction

2745 Simulated Microgravity Inhibits L-Type Calcium Channel Currents by Up-Regulation of miR-103 in Osteoblasts

Authors: Zhongyang Sun, Shu Zhang

Abstract:

In osteoblasts, L-type voltage sensitive calcium channels (LTCCs), especially the Cav1.2 LTCCs, play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. Several lines of evidence have revealed that the density of bone is increased and the resorption of bone is decreased when these calcium channels in osteoblasts are activated. And numerous studies have shown that mechanical loading promotes bone formation in the modeling skeleton, whereas removal of this stimulus in microgravity results in a reduction in bone mass. However, the effect of microgravity on LTCCs in osteoblasts is still unknown. The aim of this study was to determine whether microgravity exerts influence on LTCCs in osteoblasts and the possible mechanisms underlying. In this study, we demonstrate that simulated microgravity substantially inhibits LTCCs in osteoblast by suppressing the expression of Cav1.2. Then we show that the up-regulation of miR-103 is involved in the down-regulation of Cav1.2 expression and inhibition of LTCCs by simulated microgravity in osteoblasts. Our study provides a novel mechanism of simulated microgravity-induced adverse effects on osteoblasts, offering a new avenue to further investigate the bone loss caused by microgravity.

Keywords: L-type voltage sensitive calcium channels, Cav1.2, osteoblasts, microgravity

Procedia PDF Downloads 287
2744 Factors Affecting Treatment Resilience in Patients with Oesophago-Gastric Cancers Undergoing Palliative Chemotherapy: A Literature Review

Authors: Kiran Datta, Daniella Holland-Hart, Anthony Byrne

Abstract:

Introduction: Oesophago-gastric (OG) cancers are the fifth commonest in the UK, accounting for over 12,000 deaths each year. Most patients will present at later stages of the disease, with only 21% of patients with stage 4 disease surviving longer than a year. As a result, many patients are unsuitable for curative surgery and instead receive palliative treatment to improve prognosis and symptom burden. However, palliative chemotherapy can result in significant toxicity: almost half of the patients are unable to complete their chemotherapy regimen, with this proportion rising significantly in older and frailer patients. In addition, clinical trials often exclude older and frailer patients due to strict inclusion criteria, meaning there is limited evidence to guide which patients are most likely to benefit from palliative chemotherapy. Inappropriate chemotherapy administration is at odds with the goals of palliative treatment and care, which are to improve quality of life, and this also represents a significant resource expenditure. This literature review aimed to examine and appraise evidence regarding treatment resilience in order to guide clinicians in identifying the most suitable candidates for palliative chemotherapy. Factors influencing treatment resilience were assessed, as measured by completion rates, dose reductions, and toxicities. Methods: This literature review was conducted using rapid review methodology, utilising modified systematic methods. A literature search was performed across the MEDLINE, EMBASE, and Cochrane Library databases, with results limited to papers within the last 15 years and available in English. Key inclusion criteria included: 1) participants with either oesophageal, gastro-oesophageal junction, or gastric cancers; 2) patients treated with palliative chemotherapy; 3) available data evaluating the association between baseline participant characteristics and treatment resilience. Results: Of the 2326 papers returned, 11 reports of 10 studies were included in this review after excluding duplicates and irrelevant papers. Treatment resilience factors that were assessed included: age, performance status, frailty, inflammatory markers, and sarcopenia. Age was generally a poor predictor for how well patients would tolerate chemotherapy, while poor performance status was a better indicator of the need for dose reduction and treatment non-completion. Frailty was assessed across one cohort using multiple screening tools and was an effective marker of the risk of toxicity and the requirement for dose reduction. Inflammatory markers included lymphopenia and the Glasgow Prognostic Score, which assessed inflammation and hypoalbuminaemia. Although quick to obtain and interpret, these findings appeared less reliable due to the inclusion of patients treated with palliative radiotherapy. Sarcopenia and body composition were often associated with chemotherapy toxicity but not the rate of regimen completion. Conclusion: This review demonstrates that there are numerous measures that can estimate the ability of patients with oesophago-gastric cancer to tolerate palliative chemotherapy, and these should be incorporated into clinical assessments to promote personalised decision-making around treatment. Age should not be a barrier to receiving chemotherapy and older and frailer patients should be included in future clinical trials to better represent typical patients with oesophago-gastric cancers. Decisions regarding palliative treatment should be guided by these factors identified as well as patient preference.

Keywords: frailty, oesophago-gastric cancer, palliative chemotherapy, treatment resilience

Procedia PDF Downloads 57
2743 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer

Authors: Choy Sonny Yip Hong

Abstract:

This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.

Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential

Procedia PDF Downloads 54
2742 Xanthotoxin: A Plant Derived Furanocoumarin with Antipathogenic and Cytotoxic Activities

Authors: Seyed Mehdi Razavi Khosroshahi

Abstract:

In recent years a great deal of efforts has been made to find natural derivative compounds to replace it's with synthetic drugs, herbicides or pesticides for management of human health and agroecosystem programs. This process can lead to a reduction in environmental harmful effects of synthetic chemicals. Xanthotoxin, as a furanocoumarin compound, found in some genera of the Apiaceae family of plants. The current work focuses on some xanthotoxin cytotoxicity and antipathogenic activities. The results indicated that xanthotoxin showed strong cytotoxic effects against LNCaP cell line with the IC₅₀ value of 0.207 mg/ml in a dose-dependent manner. After treatments of the cell line with 0.1 mg/ml of the compound, the viability of the cells was reached to zero. The current study revealed that xanthotoxin displayed strong antifungal activity against human or plant pathogen fungi, Aspergillus fumigatus, Aspegillusn flavus and Fusarum graminearum with minimum inhibitory concentration values of 52-68 µg/ml. The compound exhibited antibacterial effects on some Erwinia and Xanthomonas species of bacteria, as well

Keywords: Xanthomonas, cytotoxic, antipathogen, LNCaP, Aspergillus fumigatus, spegillusn flavus

Procedia PDF Downloads 123
2741 Effect of Silicon in Mitigating Cadmium Toxicity in Maize

Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.

Keywords: antioxidant, cadmium, maize, silicon

Procedia PDF Downloads 494
2740 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 127
2739 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 204
2738 Shear Reinforcement of Stone Columns During Soil Liquefaction

Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida

Abstract:

The aim of this paper is to assess the effectiveness of stone columns as a liquefaction countermeasure focusing on shear reinforcementbenefit. In fact, stone columns which have high shear modulus relative to the surrounding soils potentially can carry higher shear stress levels. Thus, stone columns provide shear reinforcement and decrease the Cyclic Shear Stress Ratio CSR to which the treated soils would be subjected during an earthquake. In order to quantify the level of shear stress reduction in reinforced soil, several approaches have been developed. Nevertheless, the available approaches do not take into account the improvement of the soil parameters, mainly the shear modulusdue to stone columns installation. Indeed, in situ control tests carried out before and after the installation of stone columns based upon the results of collected data derived from 24 case histories have given evidence of the improvement of the existing soil properties.In this paper, the assessment of shear reinforcement of stone columns that accounts such improvement of the soil parameters due to stone column installation is investigated. Comparative results indicate that considering the improvement effects considerably affect the assessment of shear reinforcement for liquefaction analysis of reinforced soil by stone columns.

Keywords: stone column, liquefaction, shear reinforcement, CSR, soil improvement

Procedia PDF Downloads 130
2737 The Discussion of Peritoneal Dialysis Patients Taking Proper Portion of Valacyclovir

Authors: Wan Shan Chiang, Charn Ting Wang, Wei-Chih Kan, Hui-Chen Huang

Abstract:

Dialysis patients have risk in Zoster virus because of low immune. Valacyclovir (product name: Valtex) 500mg/tab, an anti-zoster virus medicine, is digested in kidney and it has side-effect of nervous system in patients with malfunction kidneys. Although the clinical basis of the proposed administration, we found that patients still have side effects. So we want to explore the appropriate dose of peritoneal dialysis patients. We read small samples of case reports and analyze 8 cases in our hospital, some patients’ Kt/v, match the standard of dialysis, and still go to the toilet, they still have side effect seriously with 500mg portion. The solution to this includes stopping medicine, reduction of medicine, increase of liquid change and timely hemodialysis and all of them speed up the recovery. The safety of medication needs extra attention of medical care employee. If they can tell the doctor if the patient has urine or not in his or her Kt/v, the doctor can prescribe the medicine accordingly. About the limitation, due to the lack of cases and related pharmacokinetics numbers. Therefore, for peritoneal patients, we think 500mg/48hoursis the saves. We also want to remind pharmaceuticals to revise the portion taken by patients, so that the doctor may judge the use.

Keywords: herpes zoster, Valacyclovir, peritoneal dialysis, health education

Procedia PDF Downloads 293
2736 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 75
2735 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State

Authors: Nwanneka Mmonwuba

Abstract:

Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.

Keywords: solid waste, groundwater, disposal, dumpsite

Procedia PDF Downloads 29
2734 Investigation on the Performance of Biodiesel and Natural Gas-Fuelled Diesel Engines for Shipboard Application

Authors: Kelvin Datonye Bob-Manuel

Abstract:

The shipping industry has begun to seriously look at ways of reducing fossil fuel consumption so that current reserves can last longer and operate their ships in a more environmentally friendly way. The concept of Green Shipping or Sustainable Shipping with the use of alternative fuels is now becoming an important issue for ship owners, shipping lines and ship builders globally. This paper provides a critical review of the performance of biodiesel and natural gas-fuelled diesel engines for shipboard application. The emission reduction technique included the use of either neat or emulsified rapeseed methyl ester (RME) for pilot ignition and the emission of NOx, CO2 and SOx were measured at engine speed range of 500 - 1500 r/min. The NOx concentrations were compared with the regulated IMO MARPOL73/78, Annex VI, Tiers I, II, III and United States Environmental Protection Agency (US-EPA) standard. All NOx emissions met Tier I and II levels and the EPA standard for the minimum specification of category 1 engines at higher speed but none met the MARPOL Tier III limit which is for designated Emission Control Areas (ECAs). No trace of soot and SOx emission were observed.

Keywords: dual-fuel, biodiesel, natural gas, NOx, SOx, MARPOL 73/78 Annex VI. USEPA Tier 3, EURO V &VI

Procedia PDF Downloads 395
2733 Dynamic Damage Analysis of Carbon Fiber Reinforced Polymer Composite Confinement Vessels

Authors: Kamal Hammad, Alexey Fedorenko, Ivan Sergeichev

Abstract:

This study uses analytical modeling, experimental testing, and explicit numerical simulations to evaluate failure and spall damage in Carbon Fiber-Reinforced Polymer (CFRP) composite confinement vessels. It investigates the response of composite materials to explosive loading dynamic impact, revealing varied failure modes. Hashin damage was used to model in-plane failure, while the Virtual Crack Closure Technique (VCCT) modeled interlaminar damage. Results show moderate agreement between simulations and experiments regarding free surface velocity and failure stresses, with discrepancies due to wire alignment imperfections, material model limitations, and wave reverberations. The findings can improve design and risk-reduction strategies in high-risk scenarios, leading to enhanced safety and economic efficiency in material assessment and structural design processes.

Keywords: numerical, spall, damage, CFRP, composite, vessels, explosive, dynamic, impact, Hashin, VCCT

Procedia PDF Downloads 15
2732 The Projection of Breaking Sexual Repression: Modern Women in Indian Fictions in Marathi

Authors: Suresh B. Shinde

Abstract:

The present paper examined the selective fictional works of the Indian writers in the Marathi language which reflects the gradual erosion of sexual repression of modern women characters. Furthermore, the study employed the attitudinal survey method to counter check the fictional reality of the Indian women in real life in the modern era. The Indian writers in an early stage from the pre and post-independence period pictured the women characters such as sexually suppressed and adherence to male sexual dominance. Gangadhar Gadgil a ‘Sahitya Akademi’ award winner writer in his story ‘Ek Manus’ shown that a husband, abnormally exploited her wife. G. A. Kulkarni a ‘Sahitya Akademi’ award winner writer shown that a young lady character suppressed her proposal of marriage with she loved due to the social pressure and conventions. Arvind Gokhale and Kamal Desai have also pictured lady characters who suppressed their sexual urges even they were highly educated. In the late 20th century and early 21st century, the trends of Marathi literature is dramatically changed accordingly the women fictions. Gouri Deshpande, the popular story writer, penetrates modern woman very clearly. Two lady characters are living happily together accepting revolts of society for a sexual relationship. Meghna Pethe, another well-known writer in her story, depicts a women character who was lived with her friend as live-in-relationship and enjoying the erotic sex. How so far, it was seen that the pre and post-independence women fictions are gradually changed regarding her sexually urges. This reality leads to design the survey research design in which 100 college girls and 100 middle-aged women were surveyed with sexual attitude scale and feminist identity test. It was hypothesized that the today's college girls would higher on sexual attitude and feminist identity than middle-aged women. Moreover, it was also assumed that sexual attitude and feminist identity would have a strong positive correlation. The obtained data analyzed through Students’ test and Pearson Product Moment Correlation (PPMC). The results reveal that the today's college girls are having a high level of sexual attitude and feminist identity than middle-aged women. Results also reveal that sexual attitude and feminist identity have a strongest positive correlation. How so far the survey research has provided the reality ground to the modern women in Indian fictions in Marathi literature. The findings of the research have been discussed accordingly the gender equality as well as psychological perspectives.

Keywords: sexual repression, women in Indian fictions, sexual attitude, feminist perspectives

Procedia PDF Downloads 312
2731 Grain Size Effect of Durability of Bio-Clogging Treatment

Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht

Abstract:

In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.

Keywords: bio-clogging, granulometry, permeability, nutrition

Procedia PDF Downloads 385
2730 Adsorptive Desulfurization of Using Cu(I) – Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng, Itumeleng Kohitlhetse

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demand researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for the removal of organosulfur compounds (OSC) present in tire pyrolytic oil (TPO). The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion exchange between Na-Y zeolite with a Cu(NO₃)₂ aqueous solution of 0.5M for 48 hours followed by reduction of Cu²⁺ to Cu+. Fixed-bed breakthrough studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene, benzothiophenes (BT), and dibenzothiophenes (DBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of operating conditions such as adsorbent dosage and reaction time were studied to optimize the adsorptive desulfurization process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order DBT> BT> Thiophene. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 93
2729 Applying the Integrative Design Process in Architectural Firms: An Analytical Study on Egyptian Firms

Authors: Carole A. El Raheb, Hassan K. Abdel-Salam, Ingi Elcherif

Abstract:

An architect carrying the design process alone is the main reason for the deterioration of the quality of the architectural product as the complexity of the projects makes it a multi-disciplinary work; then, the Integrative Design Process (IDP) must be applied in the architectural firm especially from the early design phases to improve the product’s quality and to eliminate the ignorance of the principles of design causing the occurrence of low-grade buildings. The research explores the Integrative Design (ID) principles that fit in the architectural practice. Constraints facing this application are presented with strategies and solutions to overcome them. A survey questionnaire was conducted to collect data from a number of recognized Egyptian Architecture, Engineering and Construction (AEC) firms that explores their opinions on using the IDP. This survey emphasizes the importance of the IDP in firms and presents the reasons preventing the firms from applying the IDP. The aim here is to investigate the potentials of integrating this approach into architectural firms emphasizing the importance of this application which ensures the realization of the project’s goal and eliminates the reduction in the project’s quality.

Keywords: application, architectural firms, integrative design principles, integrative design process, the project quality

Procedia PDF Downloads 211
2728 Integrating Non-Psychoactive Phytocannabinoids and Their Cyclodextrin Inclusion Complexes into the Treatment of Glioblastoma

Authors: Kyriaki Hatziagapiou, Konstantinos Bethanis, Olti Nikola, Elias Christoforides, Eleni Koniari, Eleni Kakouri, George Lambrou, Christina Kanaka-Gantenbein

Abstract:

Glioblastoma multiforme (GBM) remains a serious health challenge, as current therapeutic modalities continue to yield unsatisfactory results, with the average survival rarely exceeding 1-2 years. Natural compounds still provide some of the most promising approaches for discovering new drugs. The non-psychotropic cannabidiol (CBD) deriving from Cannabis sativa L. provides such promise. CBD is endowed with anticancer, antioxidant, and genoprotective properties as established in vitro and in in vivo experiments. CBD’s selectivity towards cancer cells and its safe profile suggest its usage in cancer therapies. However, the bioavailability of oral CBD is low due to poor aqueous solubility, erratic gastrointestinal absorption, and significant first-pass metabolism, hampering its therapeutic potential and resulting in a variable pharmacokinetic profile. In this context, CBD can take great advantage of nanomedicine-based formulation strategies. Cyclodextrins (CDs) are cyclic oligosaccharides used in the pharmaceutical industry to incorporate apolar molecules inside their hydrophobic cavity, increasing their stability, water solubility, and bioavailability or decreasing their side effects. CBD-inclusion complexes with CDs could be a good strategy to improve its properties, like solubility and stability to harness its full therapeutic potential. The current research aims to study the potential cytotoxic effect of CBD and CBD-CDs complexes CBD-RMβCD (randomly methylated β-cyclodextrin) and CBD-HPβCD (hydroxypropyl-b-CD) on the A172 glioblastoma cell line. CBD is diluted in 10% DMSO, and CBD/CDs solutions are prepared by mixing solid CBD, solid CDs, and dH2O. For the biological assays, A172 cells are incubated at a range of concentrations of CBD, CBD-RMβCD and CBD-HPβCD, RMβCD, and HPβCD (0,03125-4 mg/ml) at 24, 48, and 72 hours. Analysis of cell viability after incubation with the compounds is performed with Alamar Blue viability assay. CBD’s dilution to DMSO 10% was inadequate, as crystals are observed; thus cytotoxicity experiments are not assessed. CBD’s solubility is enhanced in the presence of both CDs. CBD/CDs exert significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72, and 96 hours versus cells not exposed); as their concentration and time of exposure increases, the reduction of resazurin to resofurin decreases, indicating a reduction in cell viability. The cytotoxic effect is more pronounced in cells exposed to CBD-HPβCD for all concentrations and time-points. RMβCD and HPβCD at the highest concentration of 4 mg/ml also exerted antitumor action per se since manifesting cell growth inhibition. The results of our study could afford the basis of research regarding the use of natural products and their inclusion complexes as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgments: The research is partly funded by ΙΚΥ (State Scholarships Foundation) – Post-doc Scholarships-Partnership Agreement 2014-2020.

Keywords: cannabidiol, cyclodextrins, glioblastoma, hydroxypropyl-b-Cyclodextrin, randomly-methylated-β-cyclodextrin

Procedia PDF Downloads 153
2727 Particle Size Characteristics of Aerosol Jets Produced by A Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 23
2726 Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing

Authors: G. Rajeshwari, V. D. M. Jabez Daniel

Abstract:

Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this.

Keywords: antenna, anti-collision protocols, data management system, reader, reading enhancement, tag

Procedia PDF Downloads 281
2725 To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region

Authors: Shugufta Mohammad Zubair

Abstract:

This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%.

Keywords: food inspection, risk assessment, color card scheme, violations

Procedia PDF Downloads 305
2724 Blood Lipid Management: Combined Treatment with Hydrotherapy and Ozone Bubbles Bursting in Water

Authors: M. M. Wickramasinghe

Abstract:

Cholesterol and triglycerides are lipids, mainly essential to maintain the cellular structure of the human body. Cholesterol is also important for hormone production, vitamin D production, proper digestion functions, and strengthening the immune system. Excess fats in the blood circulation, known as hyperlipidemia, become harmful leading to arterial clogging and causing atherosclerosis. Aim of this research is to develop a treatment protocol to efficiently break down and maintain circulatory lipids by improving blood circulation without strenuous physical exercises while immersed in a tub of water. To achieve the target of strong exercise effect, this method involves generating powerful ozone bubbles to spin, collide, and burst in the water. Powerful emission of air into water is capable of transferring locked energy of the water molecules and releasing energy. This method involves water and air-based impact generated by pumping ozone at the speed of 46 lts/sec with a concentration of 0.03-0.05 ppt according to safety standards of The Federal Institute for Drugs and Medical Devices, BfArM, Germany. The direct impact of ozone bubbles on the muscular system and skin becomes the main target and is capable of increasing the heart rate while immersed in water. A total time duration of 20 minutes is adequate to exert a strong exercise effect, improve blood circulation, and stimulate the nervous and endocrine systems. Unstable ozone breakdown into oxygen release onto the surface of the water giving additional benefits and supplying high-quality air rich in oxygen required to maintain efficient metabolic functions. The breathing technique was introduced to improve the efficiency of lung functions and benefit the air exchange mechanism. The temperature of the water is maintained at 39c to 40c to support arterial dilation and enzyme functions and efficiently improve blood circulation to the vital organs. The buoyancy of water and natural hydrostatic pressure release the tension of the body weight and relax the mind and body. Sufficient hydration (3lts of water per day) is an essential requirement to transport nutrients and remove waste byproducts to process through the liver, kidney, and skin. Proper nutritional intake is an added advantage to optimize the efficiency of this method which aids in a fast recovery process. Within 20-30 days of daily treatment, triglycerides, low-density lipoproteins (LDL), and total cholesterol reduction were observed in patients with abnormal levels of lipid profile. Borderline patients were cleared within 10–15 days of treatment. This is a highly efficient system that provides many benefits and is able to achieve a successful reduction of triglycerides, LDL, and total cholesterol within a short period of time. Supported by proper hydration and nutritional balance, this system of natural treatment maintains healthy levels of lipids in the blood and avoids the risk of cerebral stroke, high blood pressure, and heart attacks.

Keywords: atherosclerosis, cholesterol, hydrotherapy, hyperlipidemia, lipid management, ozone therapy, triglycerides

Procedia PDF Downloads 72
2723 The Effect of Shading on Cooling Tower Performance

Authors: Eitidal Albassam

Abstract:

Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature.

Keywords: dry-bulb temperature, entering air, water consumption, water vaporization

Procedia PDF Downloads 122
2722 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC

Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi

Abstract:

Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.

Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model

Procedia PDF Downloads 340
2721 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai

Authors: Insiya Kapasi, Roshni Udyavar Yehuda

Abstract:

Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.

Keywords: Cluster Redevelopment, Energy Consumption, Energy Efficiency, Typologies

Procedia PDF Downloads 130
2720 Hepatoprotective Activity of Ethanolic Extract of Terminalia paniculata against Anti-Tubercular Drugs (ATT) Induced Hepatotoxicity in Wistar Albino Rats

Authors: Mohana Babu Amberkar, Meena Kumari K, Ravi, Arjun, Christopher Rockson

Abstract:

The aim of this research is to evaluate the hepatoprotective activity of Terminalia paniculata (Tp) against ATT induced hepatic damage in rats.Three hepatotoxic ATT drugs Isoniazid + Rifampicin + Pyrazinamide, silymarin as standard hepatoprotective drug and 0.5% carboxymethylcellulose (CMC) as a control were used. Tp extract and silymarin were administered orally with ATT drugs for 90 days. Two doses 250 and 500 mg/kg of Tp extract, ATT drugs and silymarin were administered as suspensions with 0.5% CMC. ATT treated rats showed a significant increase in aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and lipid peroxides in the serum vs. control. Treatment of silymarin and Tp (250mg/kg) extract showed hepatoprotective activity against the hepatic damage by ATT. This was evident from significant reduction in serum liver enzymes levels, and also there was a significant increase in serum proteins, albumin and total liver tissue thiols as compared to the ATT treated groups. Tp was found to possess hepatoprotective property.

Keywords: antitubercular drugs, hepatoprotective, liver enzymes, Terminalia paniculata

Procedia PDF Downloads 413
2719 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 97
2718 Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C

Authors: R. S. Rajpurohit, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region.

Keywords: asymmetric cyclic loading, ratcheting fatigue, mean stress, stress amplitude, stress rate, plastic strain

Procedia PDF Downloads 243
2717 Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs

Authors: Arturo J. Anci Alméstar, Jose D. Fernandez Huapaya, David Mauricio

Abstract:

Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model.

Keywords: digital payment medium, decision tree, decision making, digital payments taxonomy

Procedia PDF Downloads 159
2716 Harnessing Entrepreneurial Opportunities for National Security

Authors: Itiola Kehinde Adeniran

Abstract:

This paper investigated the influence of harnessing entrepreneurial opportunities on the national security in Nigeria with a specific focus on the security situation of the post-amnesty programmes of the Federal Government in Ondo State. The self-administered structured questionnaire was employed to collect data from one hundred and twenty participants through purposive sampling method. Inferential statistics was used to analyze the data, specifically; ordinary least squares linear regression method was employed with the aid of statistical package for social science (SPSS) version 20 in order to determine the influence of independent variable (entrepreneurial opportunities) on dependent variable (national security). The result showed that business opportunities have a significant influence on the rate of criminal activities. The study also revealed that entrepreneurial opportunity creation and discovery as well as providing a model on how these entrepreneurial opportunities could be effectively and efficiently utilized jointly predict better national security, which counted for 69% variance of crime rate reduction. The paper, therefore, recommended that citizens should be encouraged to develop an interest in the skill-based activities in order to change their mindset towards self-employment which can motivate them in identify entrepreneurial opportunities.

Keywords: entrepreneurship, entrepreneurial opportunities, national security, unemployment

Procedia PDF Downloads 309