Search results for: propulsive efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6701

Search results for: propulsive efficiency

3641 Single Ended Primary Inductance Converter with Internal Model Controller

Authors: Fatih Suleyman Taskincan, Ahmet Karaarslan

Abstract:

In this article, the study and analysis of Single Ended Primary Inductance Converter (SEPIC) are presented for battery charging applications that will be used in military applications. The usage of this kind of converters come from its advantage of non-reverse polarity at outputs. As capacitors charge and discharge through inductance, peak current does not occur on capacitors. Therefore, the efficiency will be high compared to buck-boost converters. In this study, the converter (SEPIC) is designed to be operated with Internal Model Controller (IMC). The traditional controllers like Proportional Integral Controller are not preferred as its linearity behavior. Hence IMC is designed for this converter. This controller is a model-based control and provides more robustness and better set point monitoring. Moreover, it can be used for an unstable process where the conventional controller cannot handle the dynamic operation. Matlab/Simulink environment is used to simulate the converter and its controller, then, the results are shown and discussed.

Keywords: DC/DC converter, single ended primary inductance converter, SEPIC, internal model controller, IMC, switched mode power supply

Procedia PDF Downloads 635
3640 Distribution Planning with Renewable Energy Units Based on Improved Honey Bee Mating Optimization

Authors: Noradin Ghadimi, Nima Amjady, Oveis Abedinia, Roza Poursoleiman

Abstract:

This paper proposed an Improved Honey Bee Mating Optimization (IHBMO) for a planning paradigm for network upgrade. The proposed technique is a new meta-heuristic algorithm which inspired by mating of the honey bee. The paradigm is able to select amongst several choices equi-cost one assuring the optimum in terms of voltage profile, considering various scenarios of DG penetration and load demand. The distributed generation (DG) has created a challenge and an opportunity for developing various novel technologies in power generation. DG prepares a multitude of services to utilities and consumers, containing standby generation, peaks chopping sufficiency, base load generation. The proposed algorithm is applied over the 30 lines, 28 buses power system. The achieved results demonstrate the good efficiency of the DG using the proposed technique in different scenarios.

Keywords: distributed generation, IHBMO, renewable energy units, network upgrade

Procedia PDF Downloads 491
3639 Single-Section Fermentation Reactor with Cellular Mixing System

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

This publication presents a reactor designed for methane fermentation of organic substrates. The design is based on rotating cellular cylinders connected to a biomass feeder and an ultrasonic generator. This allows for simultaneous mixing and partial disintegration of the biomass, as well as stimulating higher metabolic rates within the microorganisms. Such a design allows from 2-fold to 14-fold reduction of power usage when compared to conventional mixing systems. The sludge does not undergo mechanical deformation during the mixing process, which improves substrate biodegradation efficiency by 10-15%. Cavitation occurs near the surface of the rods, partially releasing the biomass and separating it from the destroyed microorganisms. Biogas is released further away from the cellular cylinder rods due to the effect of the ultrasonic waves, in addition to increased biochemical activity of the microorganisms and increased exchange of the nutrient medium with metabolic products, which results in biogas production increase by about 15%.

Keywords: methane fermentation, bioreactors, biomass, mixing system

Procedia PDF Downloads 534
3638 Design of Organic Inhibitors from Quantum Chemistry

Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene

Abstract:

The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.

Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT

Procedia PDF Downloads 239
3637 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 255
3636 Synthesis and Functionalization of Gold Nanostars for ROS Production

Authors: H. D. Duong, J. I. Rhee

Abstract:

In this work, gold nanoparticles in star shape (called gold nanostars, GNS) were synthesized and coated by N-(3-aminopropyl) methacrylamide hydrochloride (PA) and mercaptopropionic acid (MPA) for functionalizing their surface by amine and carboxyl groups and then investigated for ROS production. The GNS with big size and multi-tips seem to be superior in singlet oxygen production as compared with that of small GNS and less tips. However, the functioned GNS in small size could also enhance efficiency of singlet oxygen production about double as compared with that of the intact GNS. In combination with methylene blue (MB+), the functioned GNS could enhance the singlet oxygen production of MB+ after 1h of LED750 irradiation and no difference between small size and big size in this reaction was observed. In combination with 5-aminolevulinic acid (ALA), only GNS coated PA could enhance the singlet oxygen production of ALA and the small size of GNS coated PA was a little higher effect than that of the bigger size. However, GNS coated MPA with small size had strong effect on hydroxyl radical production of ALA.

Keywords: 5-aminolevulinic acid, gold nanostars, methylene blue, ROS production

Procedia PDF Downloads 353
3635 Opportunities of Diversification Strategy Investment among the Top Ten Cryptocurrencies in Crypto Industry

Authors: Surayyo Shaamirova, Anwar Hasan Abdullah Othman

Abstract:

This study investigates the co-integration association between the top 10 cryptocurrencies, namely Bitcoin, Ethereum, Ripple, Bitcoin Cash, EOS, Cardano, Litecoin, Stellar, IOTA, and NEO. The study applies Johansen Juselius co-integration test to examine the long-run co-integration and utilize the Engle and Granger casualty test to examine the short-run relationship. The findings of the study show that there is a strong co-integration relationship among the cryptocurrencies; however, in the short run, there is no causal relationship among the crypto currencies. These results, therefore, suggest that there are portfolio diversification opportunities in the cryptocurrencies industry when it comes to long run investment decisions, on the other hand, the cryptocurrencies industry shows the characteristics of efficiency in the short-run. This is an indication of a non-speculation investment in the cryptocurrencies industry in the short term investment.

Keywords: cryptocurrencies, Johansen-Juselius co-integration test, Engle and Granger casualty test, portfolio diversification

Procedia PDF Downloads 143
3634 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms

Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan

Abstract:

Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.

Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity

Procedia PDF Downloads 259
3633 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 591
3632 Characterization Techniques for Studying Properties of Nanomaterials

Authors: Nandini Sharma

Abstract:

Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.

Keywords: characterization, structural, optical, nanomaterial

Procedia PDF Downloads 151
3631 Entropy Analysis of a Thermo-Acoustic Stack

Authors: Ahmadali Shirazytabar, Hamidreza Namazi

Abstract:

The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation.

Keywords: thermo-acoustics, entropy, second law of thermodynamics, Rott’s linear thermo-acoustic approximation

Procedia PDF Downloads 408
3630 Development of Active Learning Calculus Course for Biomedical Program

Authors: Mikhail Bouniaev

Abstract:

The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.

Keywords: active learning, assessment, calculus, cognitive demand, mathematics, stage-by-stage development of mental action theory

Procedia PDF Downloads 366
3629 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 99
3628 Numerical Study on the EHD Pump with a Recirculating Channel

Authors: Dong Sik Cho, Yong Kweon Suh

Abstract:

Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.

Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage

Procedia PDF Downloads 304
3627 Unleashing the Power of Cerebrospinal System for a Better Computer Architecture

Authors: Lakshmi N. Reddi, Akanksha Varma Sagi

Abstract:

Studies on biomimetics are largely developed, deriving inspiration from natural processes in our objective world to develop novel technologies. Recent studies are diverse in nature, making their categorization quite challenging. Based on an exhaustive survey, we developed categorizations based on either the essential elements of nature - air, water, land, fire, and space, or on form/shape, functionality, and process. Such diverse studies as aircraft wings inspired by bird wings, a self-cleaning coating inspired by a lotus petal, wetsuits inspired by beaver fur, and search algorithms inspired by arboreal ant path networks lend themselves to these categorizations. Our categorizations of biomimetic studies allowed us to define a different dimension of biomimetics. This new dimension is not restricted to inspiration from the objective world. It is based on the premise that the biological processes observed in the objective world find their reflections in our human bodies in a variety of ways. For example, the lungs provide the most efficient example for liquid-gas phase exchange, the heart exemplifies a very efficient pumping and circulatory system, and the kidneys epitomize the most effective cleaning system. The main focus of this paper is to bring out the magnificence of the cerebro-spinal system (CSS) insofar as it relates to our current computer architecture. In particular, the paper uses four key measures to analyze the differences between CSS and human- engineered computational systems. These are adaptability, sustainability, energy efficiency, and resilience. We found that the cerebrospinal system reveals some important challenges in the development and evolution of our current computer architectures. In particular, the myriad ways in which the CSS is integrated with other systems/processes (circulatory, respiration, etc) offer useful insights on how the human-engineered computational systems could be made more sustainable, energy-efficient, resilient, and adaptable. In our paper, we highlight the energy consumption differences between CSS and our current computational designs. Apart from the obvious differences in materials used between the two, the systemic nature of how CSS functions provides clues to enhance life-cycles of our current computational systems. The rapid formation and changes in the physiology of dendritic spines and their synaptic plasticity causing memory changes (ex., long-term potentiation and long-term depression) allowed us to formulate differences in the adaptability and resilience of CSS. In addition, the CSS is sustained by integrative functions of various organs, and its robustness comes from its interdependence with the circulatory system. The paper documents and analyzes quantifiable differences between the two in terms of the four measures. Our analyses point out the possibilities in the development of computational systems that are more adaptable, sustainable, energy efficient, and resilient. It concludes with the potential approaches for technological advancement through creation of more interconnected and interdependent systems to replicate the effective operation of cerebro-spinal system.

Keywords: cerebrospinal system, computer architecture, adaptability, sustainability, resilience, energy efficiency

Procedia PDF Downloads 104
3626 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 91
3625 Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate

Authors: B. Umaru Mohammed, Faris A. Al-Maziad, Mohammad Y. Numan

Abstract:

One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.

Keywords: computer dynamics modelling, comparative analysis, energy computation, double skin facade, single skin curtain wall, maritime desert climate

Procedia PDF Downloads 345
3624 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition

Procedia PDF Downloads 313
3623 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning

Authors: Samina Khalid, Shamila Nasreen

Abstract:

Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.

Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA

Procedia PDF Downloads 504
3622 Numerical Investigation of Heat Transfer Characteristics of Different Rib Shapes in a Gas Turbine Blade

Authors: Naik Nithesh, Andre Rozek

Abstract:

The heat transfer and friction loss performances of a single rib-roughened rectangular cooling channel having four novel rib shapes were evaluated through numerical investigation using Ansys CFX. The investigation was conducted on a rectangular channel of aspect ratio (AR) = 4:1 with rib height to hydraulic diameter ratio (e/Dh) of 0.1 and rib pitch to height ratio (e/P) of 10 at Re = 30,000. The computations were performed by solving the RANS equation using k-ε turbulence model. Fluid flow simulation results of stationery case for different configuration are presented in terms of thermal performance parameter, Nusselt number and friction factor. These parameters indicate that a particular configuration of novel shaped ribs provides better heat transfer characteristics over the conventional 45° ribs. The numerical investigation undertaken in this study indicates an increase in overall efficiency of gas turbine due to increased thermal performance parameter, heat transfer co-efficient and less pumping pressure.

Keywords: gas turbine, rib shapes, nusselt number, thermal performance parameter

Procedia PDF Downloads 524
3621 Experimental and Computational Investigations of Baffle Position Effects on ‎the Performance of Oil and Water Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah‏‎, Md Azlin Md Said ‎

Abstract:

Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow ‎uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. ‎In this study, the effect on hydraulic performance of different baffle structure positions inside a tank ‎was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the ‎numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For ‎laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The ‎measurements were compared with the result of the computational model. The results of the ‎experimental and computational simulations indicate that the best location of a baffle structure is ‎achieved when the standard deviation of the velocity profile and the volume of the circulation zone ‎inside the tank are minimized.‎

Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet

Procedia PDF Downloads 336
3620 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja

Abstract:

A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 225
3619 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization

Procedia PDF Downloads 262
3618 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 72
3617 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 144
3616 Communication of Sensors in Clustering for Wireless Sensor Networks

Authors: Kashish Sareen, Jatinder Singh Bal

Abstract:

The use of wireless sensor networks (WSNs) has grown vastly in the last era, pointing out the crucial need for scalable and energy-efficient routing and data gathering and aggregation protocols in corresponding large-scale environments. Wireless Sensor Networks have now recently emerged as a most important computing platform and continue to grow in diverse areas to provide new opportunities for networking and services. However, the energy constrained and limited computing resources of the sensor nodes present major challenges in gathering data. The sensors collect data about their surrounding and forward it to a command centre through a base station. The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) as they are very useful in target detecting and other applications. However, hierarchical clustering protocols have maximum been used in to overall system lifetime, scalability and energy efficiency. In this paper, the state of the art in corresponding hierarchical clustering approaches for large-scale WSN environments is shown.

Keywords: clustering, DLCC, MLCC, wireless sensor networks

Procedia PDF Downloads 487
3615 The Role of Video in Teaching and Learning Pronunciation: A Case Study

Authors: Kafi Razzaq Ahmed

Abstract:

Speaking fluently in a second language requires vocabulary, grammar, and pronunciation skills. Teaching the English language entails teaching pronunciation. In professional literature, there have been a lot of attempts to integrate technology into improving the pronunciation of learners. The technique is also neglected in Kurdish contexts, Salahaddin University – Erbil included. Thus, the main aim of the research is to point out the efficiency of using video materials for both language teachers and learners within and beyond classroom learning and teaching environments to enhance student's pronunciation. To collect practical data, a research project has been designed. In subsequent research, a posttest will be administered after each lesson to 100 first-year students at Salahaddin University-Erbil English departments. All students will be taught the same material using different methods, one based on video materials and the other based on the traditional approach to teaching pronunciation. Finally, the results of both tests will be analyzed (also knowing the attitudes of both the teachers and the students about both lessons) to indicate the impact of using video in the process of teaching and learning pronunciation.

Keywords: video, pronunciation, teaching, learning

Procedia PDF Downloads 113
3614 Optimization Query Image Using Search Relevance Re-Ranking Process

Authors: T. G. Asmitha Chandini

Abstract:

Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking.

Keywords: Query, keyword, image, re-ranking, semantic, signature

Procedia PDF Downloads 555
3613 The Current Situation of Ang Thong Province’s Court Doll Distribution

Authors: Phutthiwat Waiyawuththanapoom

Abstract:

This research is objected to study the pattern and channel of distribution of Ang Thong’s court doll OTOP product and try to develop the quality of distribution of the court doll product. The population of this research is 50 court doll manufacturers of Ang Thong’s court doll. The data and information was collected by using the questionnaire and use percentage, mean and standard deviation as an analysis tools. The distribution channel of Ang Thong’s court doll can be separated into 3 channels which are direct distribution from the manufacturer, via the middleman and via the co-operated manufacturing group. In the direct distribution from the manufacturer channel, it was found that the manufacturer is given the highest rate of importance to how they keep the inventory. In the distribution via the middleman channel, it was found that the manufacturer is given the highest rate of importance to the distribution efficiency. But in the distribution via the co-operated manufacturing group, it was found that the manufacturer is given the highest rate of importance to the public relationship.

Keywords: distribution, court doll, Ang Thong province, business and social sciences

Procedia PDF Downloads 322
3612 Towards Optimising Building Information Modelling and Building Management System in Higher Education Institutions Facility Management: A Review

Authors: Zhuoqun Sun, Francisco Sierra, A. Booth

Abstract:

With BIM rapidly implemented in the design and construction stage of a project, researchers begin to focus on improving the operation and maintenance stage with the aid of BIM. Since the increasing amount of electronic equipment installed in the building, building management system becomes mainstream for controlling a building, especially in higher education institutions that can play an important role in terms of reducing carbon emission and improving energy efficiency. Currently, an approach to integrate BIM and BMS to improve HEIs facility management has not been established yet. Thus, this paper aims to analyse the benefits, issues, and trends of BIM and BMS integration and their application in HEIs. A systematic literature review was carried out on SCOPUS by applying the PRISMA methodology. 73 articles have been chosen based on keywords, abstracts, and the full content of the articles. The benefit and existed issues from the articles are analysed. The review shows the need to develop a tool to improve facility management through BIM BMS integration.

Keywords: BIM, BMS, HEIs, review

Procedia PDF Downloads 165