Search results for: care networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6486

Search results for: care networks

3426 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 105
3425 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 729
3424 Towards the Use of Innovative Teaching Methodologies in Nursing Education : A South African Study

Authors: R. Bhagwan, M. Subbhan

Abstract:

Nursing is a very challenging field in South Africa and due to the burden of disease it is critical that nursing students are prepared with the adequate knowledge and skills to deliver effective patient care. Despite this very little research has been done on the teaching strategies used by nurse educators to teach nursing students. It is in this context that a survey of all nurse educators at Nursing Colleges and Universities in Kwa-Zulu Natal was undertaken (n=300) to explore what current pedagogical strategies were being used and which more creative methodologies should be implemented in relation to specific nursing content. Findings revealed that most nurse educators still utlize the lecture approach, but although believe other methodologies such as e-learning are important have not done so because of inadequate training. The recommendations made are that more creative pedagogical strategies such as simultation, portfoloios and case studies be adopted.

Keywords: creative, teaching methodologies, dydactic, nursing

Procedia PDF Downloads 606
3423 Trends in All-Cause Mortality and Inpatient and Outpatient Visits for Ambulatory Care Sensitive Conditions during the First Year of the COVID-19 Pandemic: A Population-Based Study

Authors: Tetyana Kendzerska, David T. Zhu, Michael Pugliese, Douglas Manuel, Mohsen Sadatsafavi, Marcus Povitz, Therese A. Stukel, Teresa To, Shawn D. Aaron, Sunita Mulpuru, Melanie Chin, Claire E. Kendall, Kednapa Thavorn, Rebecca Robillard, Andrea S. Gershon

Abstract:

The impact of the COVID-19 pandemic on the management of ambulatory care sensitive conditions (ACSCs) remains unknown. To compare observed and expected (projected based on previous years) trends in all-cause mortality and healthcare use for ACSCs in the first year of the pandemic (March 2020 - March 2021). A population-based study using provincial health administrative data.General adult population (Ontario, Canada). Monthly all-cause mortality, and hospitalizations, emergency department (ED) and outpatient visit rates (per 100,000 people at-risk) for seven combined ACSCs (asthma, COPD, angina, congestive heart failure, hypertension, diabetes, and epilepsy) during the first year were compared with similar periods in previous years (2016-2019) by fitting monthly time series auto-regressive integrated moving-average models. Compared to previous years, all-cause mortality rates increased at the beginning of the pandemic (observed rate in March-May 2020 of 79.98 vs. projected of 71.24 [66.35-76.50]) and then returned to expected in June 2020—except among immigrants and people with mental health conditions where they remained elevated. Hospitalization and ED visit rates for ACSCs remained lower than projected throughout the first year: observed hospitalization rate of 37.29 vs. projected of 52.07 (47.84-56.68); observed ED visit rate of 92.55 vs. projected of 134.72 (124.89-145.33). ACSC outpatient visit rates decreased initially (observed rate of 4,299.57 vs. projected of 5,060.23 [4,712.64-5,433.46]) and then returned to expected in June 2020. Reductions in outpatient visits for ACSCs at the beginning of the pandemic combined with reduced hospital admissions may have been associated with temporally increased mortality—disproportionately experienced by immigrants and those with mental health conditions. The Ottawa Hospital Academic Medical Organization

Keywords: COVID-19, chronic disease, all-cause mortality, hospitalizations, emergency department visits, outpatient visits, modelling, population-based study, asthma, COPD, angina, heart failure, hypertension, diabetes, epilepsy

Procedia PDF Downloads 93
3422 The Competence of Junior Paediatric Doctors in Managing Paediatric Diabetic Ketoacidosis: An Exploration Across Paediatric Care Units

Authors: Mai Ali

Abstract:

The abstract underscores the critical importance of junior paediatricians acquiring expertise in handling paediatric emergencies, with a particular focus on Diabetic Ketoacidosis (DKA). Existing literature reveals a wealth of research on healthcare professionals' knowledge regarding DKA, encompassing diverse cultural backgrounds and medical specialties. Consistently, challenges such as the absence of standardized protocols and inadequacies in training emerge as common issues across healthcare centres. This research proposal seeks to conduct a thematic analysis of the proficiency of paediatric trainees in the United Kingdom in managing DKA within various clinical contexts. The primary objective is to assess their level of competence and propose effective strategies to enhance DKA training comprehensively.

Keywords: DKA, knowledge, Junior paediatricians, local protocols

Procedia PDF Downloads 86
3421 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 229
3420 Dynamics of Hepatitis B Infection Prevention Practices among Pregnant Women Attending Antenatal Care in Central Uganda Using the Constructs of Information-Motivation-Behavioral Skills Model: A Case of Lubaga Hospital Kampala

Authors: Ismail Bamidele Afolabi, Abdulmujeeb Babatunde Aremu, Lawal Abdurraheem Maidoki, Nnodimele Onuigbo Atulomah

Abstract:

Background: Hepatitis B virus infection remains a significant global public health challenge with infectivity as well as the potential for transmission more than 50 to 100 times that of HIV. Annually, global HBV-related mortality is linked primarily to cirrhosis and liver carcinoma. The ever-increasing endemicity of HBV among children under-5-years, owing to vertical transmission and its lingering chronicity in developing countries, will hamper the global efforts concertedly endorsed towards eliminating viral hepatitis as a global public health threat by 2030. Objective: This study assessed information motivation behavioral skills model constructs as predictors of HBV infection prevention practices among consenting expectant mothers attending antenatal care in Central Uganda as a focal point of intervention towards breaking materno-foetal transmission of HBV. Methods: A cross-sectional study with a quantitative data collection approach based on the constructs of the IMB model was used to capture data on the study variables among 385 randomly selected pregnant women between September and October 2020. Data derived from the quantitative instrument were transformed into weighted aggregate scores using SPSS version 26. ANOVA and regression analysis were done to ascertain the study hypotheses with a significance level set as (p ≤ 0.05). Results: Relatively 60% of the respondents were aged between 18 and 28. Expectant mothers with secondary education (42.3%) were predominant. Furthermore, an average but inadequate knowledge (X ̅=5.97±6.61; B=0.57; p<.001), incorrect perception (X ̅=17.10±18.31; B=0.97; p=.014), and good behavioral skills (X ̅=12.39±13.37; B=0.56; p<.001) for adopting prevention practices all statistically predicted the unsatisfactory level of prevention practices (X ̅=15.03±16.20) among the study respondents as measured on rating scales of 12, 33, 21 and 30 respectively. Conclusion: Evidence from this study corroborates the imperativeness of IMB constructs in reducing the burden of HBV infection in developing countries. Therefore, the inadequate HBV knowledge and misperception among obstetric populations necessitate personalized health education during antenatal visits and subsequent health campaigns in order to inform better prevention practices and, in turn, reduce the lingering chronicity of HBV infection in developing countries.

Keywords: behavioral skills, HBV infection, knowledge, perception, pregnant women, prevention practices

Procedia PDF Downloads 97
3419 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 554
3418 Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology

Authors: F. Rahmani, F. Razaghian, A. R. Kashaninia

Abstract:

This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ~72% PAE and output power of > 39 dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5 GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The load- and source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal.

Keywords: power amplifier (PA), high power, class-J and class-E, high efficiency

Procedia PDF Downloads 494
3417 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 350
3416 Familiarity with Nursing and Description of Nurses Duties

Authors: Narges Solaymani

Abstract:

medical training of patients. Nursing is a very important profession in the societies of the world. Although in the past, all caregivers of the sick and disabled were called nurses, nowadays, a nurse is a person who has a university education in this field. There are nurses in bachelor's, master's, and doctoral degrees in nursing. New courses have been launched in the master's degree based on duty-oriented nurses. A nurse cannot have an independent treatment center but is a member of the treatment team in established treatment centers such as hospitals, clinics, or offices. Nurses can establish counseling centers and provide nursing services at home. According to the standards, the number of nurses should be three times the number of doctors or twice the number of hospital beds, or there should be three nurses for every thousand people. Also, international standards show that in the internal and surgical department, every 4 to 6 patients should have a nurse.

Keywords: Nurse, Intensive Care, CPR, Bandage

Procedia PDF Downloads 78
3415 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller

Authors: Latif Adnane, Benaatou Wafa, Pla Vicent

Abstract:

Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.

Keywords: handover, UMTS, mobility, simulation, OPNET modeler

Procedia PDF Downloads 322
3414 Mitigating the Unwillingness of e-Forums Members to Engage in Information Exchange

Authors: Dora Triki, Irena Vida, Claude Obadia

Abstract:

Social networks such as e-Forums or dating sites often face the reluctance of key members to participate. Relying on the conation theory, this study investigates this phenomenon and proposes solutions to mitigate the issue. We show that highly experienced e-Forum members refuse to share business information in a peer to peer information exchange forums. However, forums managers can mitigate this behavior by developing a sentiment of belongingness to the network. Furthermore, by selecting only elite forum participants with ample experience, they can reduce the reluctance of key information providers to engage in information exchange. Our hypotheses are tested with PLS structural equations modeling using survey data from members of a French e-Forum dedicated to the exchange of business information about exporting.

Keywords: conation, e-Forum, information exchange, members participation

Procedia PDF Downloads 161
3413 Teaching Method in Situational Crisis Communication Theory: A Literature Review

Authors: Proud Arunrangsiwed

Abstract:

Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.

Keywords: situational crisis communication theory, crisis response strategies, media effect, unintentional effect

Procedia PDF Downloads 327
3412 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities

Authors: Margarida Franca

Abstract:

The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.

Keywords: geography of religion, sacred places, territoriality, Catholic Church

Procedia PDF Downloads 327
3411 A Review of Literature for Online Social Network Business Continuance Intention and the Hypotheses Thereof

Authors: Akwesi Assensoh-Kodua

Abstract:

Online Social Networks (OSN) has come and gone, yet the explosion of business activities on such platforms continuous to surge high, giving advantage to the bold entrepreneurs. It is therefore a practical requirement that practitioners and researchers understand the key determinants of costumers’ online social network business activities and continuance intention. An exploratory literature research to examine OSN continuous intention of business participants on OSN revealed that the practice of doing business on social network has come to stay and the following factors are the likely drivers for this new business model: perceived trust, perceived ease of use, confirmation, habit, social norm, perceived behavioural control, expected benefit, and satisfaction are the most probable factors that can lead to online social network (OSN) continuance intention.

Keywords: online social network, continuance intention, business continuance

Procedia PDF Downloads 496
3410 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 99
3409 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes

Authors: Haoming Ma, Guo Yu, Peiru Zhou

Abstract:

Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.

Keywords: diabetes, glycemic variability, predictors, severe disease

Procedia PDF Downloads 190
3408 Health-Related Problems of International Migrant Groups in Eskisehir, Turkey

Authors: Temmuz Gönç Şavran

Abstract:

Migration is a multidimensional and health-related concept that has important consequences for both migrants and the host society. Due to past conflicts and poor living conditions that lead to migration, the dangerous and difficult journey, and the problems they face upon arrival in the destination country, migrants are at higher risk for poor health. Health is a human right, and all societies and communities, including migrant groups, must receive adequate health care. In addition, the health of migrants must be improved to protect the health of the host society and ensure social integration. The main determinants of health are employment, income, education, good housing, and adequate nutrition. It can be said that migrants are among the most vulnerable groups in society in these respects, and migrant health is negatively affected by this situation. Rigid immigration policies or financial constraints in destination countries, the complexity and bureaucracy of health systems, the low health literacy of migrant groups, and the inadequate provision of translation services in health facilities are among the other main factors affecting migrant health. Migrants are also at risk of stigma, exclusion, detection, and deportation when seeking medical care. Based on data from a qualitative study with a descriptive case study design, this paper aims to highlight and sociologically assess the health-related problems of international migrants in Eskisehir, Turkey. The sample consists of 30 international migrants living in Eskisehir, two-thirds of whom are from Syria, Iraq, Afghanistan, and Pakistan. Those who are citizens of the Republic of Turkey are excluded from the study; otherwise, the legal status of the participants is not considered in the selection of the sample. This makes it possible to distinguish the different needs and problems of subgroups and to consider migrant health as a comprehensive concept. The research is supported by Anadolu University in Eskisehir, and data will be collected through semi-structured interviews between November 2022 and February 2023. With holistic sociology of health approach, this study considers migrant health as a comprehensive sociological concept. It aims to reveal the health-related resources and needs of the international migrant groups living in the center of Eskisehir, the problems they encounter in meeting these needs, and the strategies they use to solve these problems. The results are expected to show that the health of migrants is not only influenced by legislation but is shaped by many processes, from housing conditions to cultural habits. It is expected that the results will also raise awareness of discrimination, exclusion, marginalization, and hate speech in migrants’ access to health services.

Keywords: migrant health, sociology of health, sociology of migration, Turkey, refugees

Procedia PDF Downloads 81
3407 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 110
3406 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 142
3405 Scheduling in Cloud Networks Using Chakoos Algorithm

Authors: Masoumeh Ali Pouri, Hamid Haj Seyyed Javadi

Abstract:

Nowadays, cloud processing is one of the important issues in information technology. Since scheduling of tasks graph is an NP-hard problem, considering approaches based on undeterminisitic methods such as evolutionary processing, mostly genetic and cuckoo algorithms, will be effective. Therefore, an efficient algorithm has been proposed for scheduling of tasks graph to obtain an appropriate scheduling with minimum time. In this algorithm, the new approach is based on making the length of the critical path shorter and reducing the cost of communication. Finally, the results obtained from the implementation of the presented method show that this algorithm acts the same as other algorithms when it faces graphs without communication cost. It performs quicker and better than some algorithms like DSC and MCP algorithms when it faces the graphs involving communication cost.

Keywords: cloud computing, scheduling, tasks graph, chakoos algorithm

Procedia PDF Downloads 68
3404 Routing in IP/LEO Satellite Communication Systems: Past, Present and Future

Authors: Mohammed Hussein, Abualseoud Hanani

Abstract:

In Low Earth Orbit (LEO) satellite constellation system, routing data from the source all the way to the destination constitutes a daunting challenge because LEO satellite constellation resources are spare and the high speed movement of LEO satellites results in a highly dynamic network topology. This situation limits the applicability of traditional routing approaches that rely on exchanging topology information upon change or setup of a connection. Consequently, in recent years, many routing algorithms and implementation strategies for satellite constellation networks with Inter Satellite Links (ISLs) have been proposed. In this article, we summarize and classify some of the most representative solutions according to their objectives, and discuss their advantages and disadvantages. Finally, with a look into the future, we present some of the new challenges and opportunities for LEO satellite constellations in general and routing protocols in particular.

Keywords: LEO satellite constellations, dynamic topology, IP routing, inter-satellite-links

Procedia PDF Downloads 384
3403 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 440
3402 Human Resource Utilization Models for Graceful Ageing

Authors: Chuang-Chun Chiou

Abstract:

In this study, a systematic framework of graceful ageing has been used to explore the possible human resource utilization models for graceful ageing purpose. This framework is based on the Chinese culture. We call ‘Nine-old’ target. They are ageing gracefully with feeding, accomplishment, usefulness, learning, entertainment, care, protection, dignity, and termination. This study is focused on two areas: accomplishment and usefulness. We exam the current practices of initiatives and laws of promoting labor participation. That is to focus on how to increase Labor Force Participation Rate of the middle aged as well as the elderly and try to promote the elderly to achieve graceful ageing. Then we present the possible models that support graceful ageing.

Keywords: human resource utilization model, labor participation, graceful ageing, employment

Procedia PDF Downloads 392
3401 Pregnancy Outcome in Pregnancy with Low Pregnancy-Associated Plasma Protein A in First Trimester

Authors: Sumi Manjipparambil Surendran, Subrata Majumdar

Abstract:

Aim: The aim of the study is to find out if low PAPP-A (Pregnancy-Associated Plasma Protein A) levels in the first trimester are associated with adverse obstetric outcome. Methods: A retrospective study was carried out on 114 singleton pregnancies having undergone combined test screening. Results: There is statistically significant increased incidence of low birth weight infants in the low PAPP-A group. However, significant association was not found in the incidence of pre-eclampsia, miscarriage, and placental abruption. Conclusion: Low PAPP-A in the first trimester is associated with fetal growth restriction. Recommendation: Women with low PAPP-A levels in first trimester pregnancy screening require consultant-led care and serial growth scans.

Keywords: pregnancy, pregnancy-associated plasma protein A, PAPP-A, fetal growth restriction, trimester

Procedia PDF Downloads 147
3400 The Relations between Coping Strategies, Caregiver Bonding, and Dating Violence of Emerging Adults: Cross-Cultural Comparison between China and Turkiye

Authors: Zubaidan Yushan, Hudayar Cıhan

Abstract:

Turkiye and China are countries that have collective cultures, but they have different cultural backgrounds. They have different cultures, different religions, and different levels of economic development. The aim of this study is to test the moderation effect of caregiver bonding on the relationship between dating violence and coping strategies among unmarried emerging adults in China and Turkiye. Participants ages were 19 and 26 years (X=23.66, SD=3.66), unmarried emerging adults Turkish 171 participants (72.5% women, 24% men, 3.5% prefer not to say), Chinese 170 participants (71.8% women, 21.8% men, 6.5% prefer not to say). All participants had been in a relationship for more than six months. Participants completed The Conflict Tactics Scales—(CTS2), The Cope Inventory, and The Parental Bonding Instrument (PBI). Examining the dating violence and coping strategies of the participant's relationship through caregiver bonding moderation analysis was performed using the Jamovi. Significance was tested using the bootstrapping method with bias-corrected confidence estimates. The outcome variable for analysis was dating violence, and the predictor variable for the analysis was coping strategies. The moderator variable evaluated for the analysis was parent attachment. Before the analysis, the mean-centered scores of each variable and moderator were calculated. Furthermore, the moderation analysis was conducted separately for each outcome. The Moderation analysis results show that the sub-dimension of over-protection moderates psychological aggression perpetration and avoidance coping in China. The sub-dimension of care moderates injury victimization and avoidance management in Turkiye; also, over-protection moderates injury victimization and social support coping. Moreover, the sub-dimension of care moderates sexual coercion perpetration and avoidance coping. In the results, caregiver bonding moderates the relationship between coping strategies and dating violence, which may be explained by the fact that our ways of coping with problems are learned, and people are influenced by their parents when they face problems. Therefore, problem-solving is permanently fixed, and each person has his or her fixed solution, which leads to a habit of using solutions to problems. However, sometimes, these solutions become the justification for the injured or abusive person. The quality of the attachment between parents can regulate this state. The results are somewhat similar to and slightly different from those in the previous literature. These mixed results indicate the need for further exploration. Many other factors, such as alcohol, drug violence, and pathological problems, maybe the reasons for these differences. In addition, diverse factors such as the study environment and the applied measurement scales may also affect the results.

Keywords: caregiver bonding, coping strategies, dating violence, emerging adulthood, cross-cultural, comparison

Procedia PDF Downloads 60
3399 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics

Authors: Fares Alsewailem

Abstract:

Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.

Keywords: Recycling, PET, PS, HDPE, mechanical

Procedia PDF Downloads 285
3398 A Retrospective Study on Causes, Surgery Findings, Results and Follow up of 30 Horses with Colic in Tehran, Iran

Authors: Farajallah Adibhashemi

Abstract:

A retrospective study on causes, surgery findings, results and the follow up of 30 horses with colic in Tehran, Iran. Colic is the main problem horse industry.The causes of colic are related to management like food, sport and medical care. In this study that has been done between 2012-2015 for 30 horses referred to teaching hospital of veterinary medicine faculty of the University of Tehran. Seventy percent of causes was related to management of feeding and twenty percent was for malsporting. The rest of causes was from the anti parasite in bad root. The surgery findings were as follows: 60% displacement of dorsal right and left colon, 20% in impaction of pelvic flexure,10% impaction of the cecum, and 10% impaction of the stomach.

Keywords: horse, colic, Tehran, Iran

Procedia PDF Downloads 368
3397 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 355