Search results for: manufacturing company
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3421

Search results for: manufacturing company

391 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 184
390 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time

Procedia PDF Downloads 179
389 Using Real Truck Tours Feedback for Address Geocoding Correction

Authors: Dalicia Bouallouche, Jean-Baptiste Vioix, Stéphane Millot, Eric Busvelle

Abstract:

When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically.

Keywords: driver experience feedback, geocoding correction, real truck tours

Procedia PDF Downloads 675
388 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator

Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski

Abstract:

Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.

Keywords: human robot interaction, drones, gestures, robotics

Procedia PDF Downloads 161
387 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 204
386 Observing Sustainability: Case Studies of Chandigarh Boutiques and Their Textile Waste Reuse

Authors: Prabhdip Brar

Abstract:

Since the ancient times recycling, reusing and upcycling has been strongly practiced in India. However, previously reprocess was common due to lack of resources and availability of free time, especially with women who were homemakers. The upward strategy of design philosophy and drift of sustainability is sustainable fashion which is also termed eco fashion, the aspiration of which is to craft a classification which can be supported ad infinitum in terms of environmentalism and social responsibility. The viable approach of sustaining fashion is part of the larger trend of justifiable design where a product is generated and produced while considering its social impact to the environment. The purpose of this qualitative research paper is to find out if the apparel design boutiques in Chandigarh, (an educated fashion-conscious city) are contributing towards making conscious efforts with the re-use of environmentally responsive materials to rethink about eco-conscious traditional techniques and socially responsible approaches of the invention. Observation method and case studies of ten renowned boutiques of Chandigarh were conducted to find out about the creativity of their waste management and social contribution. Owners were interviewed with open-ended questions to find out their understanding of sustainability. This paper concludes that there are many sustainable ideas existing within India from olden times that can be incorporated into modern manufacturing techniques. The results showed all the designers are aware of sustainability as a concept. In all practical purposes, a patch of fabric is being used for bindings or one over the other as surface ornamentation techniques. Plain Fabrics and traditional prints and fabrics are valued more by the owners for using on other garments. Few of them sort their leftover pieces according to basic colors. Few boutique owners preferred donating it to Non-Government organizations. Still, they have enough waste which is not utilized because of lack of time and labor. This paper discusses how the Indian traditional techniques still derive influences though design and techniques, making India one of the contributing countries to the sustainability of fashion and textiles.

Keywords: eco-fashion textile, sustainable textiles, sustainability in india, waste management

Procedia PDF Downloads 107
385 Investigation on the Effect of Titanium (Ti) Plus Boron (B) Addition to the Mg-AZ31 Alloy in the as Cast and After Extrusion on Its Metallurgical and Mechanical Characteristics

Authors: Adnan I. O. Zaid, Raghad S. Hemeimat

Abstract:

Magnesium - aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength – to –weight -ratio. Against these preferable characteristics, magnesium is difficult to deform at room temperature therefore it is alloyed with other elements mainly Aluminum and Zinc to add some required properties particularly for their high strength - to -weight ratio. Mg and its alloys oxidize rapidly therefore care should be taken during melting or machining them; but they are not fire hazardous. Grain refinement is an important technology to improve the mechanical properties and the micro structure uniformity of the alloys. Grain refinement has been introduced in early fifties; when Cibula showed that the presence of Ti, and Ti+ B, produced a great refining effect in Al. since then it became an industrial practice to grain refine Al. Most of the published work on grain refinement was directed toward grain refining Al and Zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys has not been previously investigated. This forms the main objective of the research work; where, the effect of Ti addition on the grain size, mechanical behavior, ductility, and the extrusion force & energy consumed in forward extrusion of Mg-AZ31 alloy is investigated and discussed in two conditions, first in the as cast condition and the second after extrusion. It was found that addition of Ti to Mg- AZ31 alloy has resulted in reduction of its grain size by 14%; the reduction in grain size after extrusion was much higher. However the increase in Vicker’s hardness was 3% after the addition of Ti in the as cast condition, and higher values for Vicker’s hardness were achieved after extrusion. Furthermore, an increase in the strength coefficient by 36% was achieved with the addition of Ti to Mg-AZ31 alloy in the as cast condition. Similarly, the work hardening index was also increased indicating an enhancement of the ductility and formability. As for the extrusion process, it was found that the force and energy required for the extrusion were both reduced by 57% and 59% with the addition of Ti.

Keywords: cast condition, direct extrusion, ductility, MgAZ31 alloy, super - plasticity

Procedia PDF Downloads 454
384 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 181
383 Changing Patterns of Marriage and Sexual Relations among Young Single Female Workers in Garment Factories in Gazipur, Bangladesh

Authors: Runa Laila

Abstract:

In Bangladesh, migration and employment opportunities in the ready-made garment factories presented an alternative to early and arranged-marriage to many young women from the countryside. Although the positive impact of young women’s labour migration and employment in the garment industry on economic independence, increased negotiation power, and enhancement of self-esteem have been well documented, impact of employment on sexual norms and practices remained under-researched. This ethnographic study comprising of an in-depth interview of 21 single young women working in various garment factories in Gazipur, Dhaka, explores the implication of work on sexual norms and practices. This study found young single garment workers experience a range of consensual and coercive sexual relations. The mixed-sex work environment in the garment manufacturing industry and private housing arrangements provide young single women opportunities to develop romantic and sexual relationships in the transient urban space, which was more restricted in the rural areas. The use of mobile phones further aids lovers to meet in amusement parks, friends’ houses, or residential hotels beyond the gaze of colleagues and neighbors. Due to sexual double standard, men’s sexual advantage is seen as natural and accepted, while women are being blamed as immoral for being engaged in pre-marital sex. Although self-choice marriage and premarital relations reported to be common among garment workers, stigma related to premarital sex lead young single women to resort to secret abortion practices. Married men also use power position to lure women in a subordinate position in coerce sexual relations, putting their reproductive and psychological health at risk. To improve sexual and reproductive health and wellbeing of young female garment workers, it is important to understand these changing sexual practices which otherwise remain taboo in public health discourses.

Keywords: female migration, ready-made garment, reproductive health, sexual practice

Procedia PDF Downloads 187
382 Eco-Design of Construction Industrial Park in China with Selection of Candidate Tenants

Authors: Yang Zhou, Kaijian Li, Guiwen Liu

Abstract:

Offsite construction is an innovative alternative to conventional site-based construction, with wide-ranging benefits. It requires building components, elements or modules were prefabricated and pre-assembly before installed into their final locations. To improve efficiency and achieve synergies, in recent years, construction companies were clustered into construction industrial parks (CIPs) in China. A CIP is a community of construction manufacturing and service businesses located together on a common property. Companies involved in industrial clusters can obtain environment and economic benefits by sharing resources and information in a given region. Therefore, the concept of industrial symbiosis (IS) can be applied to the traditional CIP to achieve sustainable industrial development or redevelopment through the implementation of eco-industrial parks (EIP). However, before designing a symbiosis network between companies in a CIP, candidate support tenants need to be selected to complement the existing construction companies. In this study, an access indicator system and a linear programming model are established to select candidate tenants in a CIP while satisfying the degree of connectivity among the enterprises in the CIP, minimizing the environmental impact, and maximizing the annualized profit of the CIP. The access indicator system comprises three primary indicators and fifteen secondary indicators, is proposed from the perspective of park-based level. The fifteen indicators are classified as three primary indicators including industrial symbiosis, environment performance and economic benefit, according to the three dimensions of sustainability (environment, economic and social dimensions) and the three R's of the environment (reduce, reuse and recycle). The linear programming model is a method to assess the satisfactoriness of all the indicators and to make an optimal multi-objective selection among candidate tenants. This method provides a practical tool for planners of a CIP in evaluating which among the candidate tenants would best complement existing anchor construction tenants. The reasonability and validity of the indicator system and the method is worth further study in the future.

Keywords: construction industrial park, China, industrial symbiosis, offsite construction, selection of support tenants

Procedia PDF Downloads 275
381 Robotic Process Automation in Accounting and Finance Processes: An Impact Assessment of Benefits

Authors: Rafał Szmajser, Katarzyna Świetla, Mariusz Andrzejewski

Abstract:

Robotic process automation (RPA) is a technology of repeatable business processes performed using computer programs, robots that simulate the work of a human being. This approach assumes replacing an existing employee with the use of dedicated software (software robots) to support activities, primarily repeated and uncomplicated, characterized by a low number of exceptions. RPA application is widespread in modern business services, particularly in the areas of Finance, Accounting and Human Resources Management. By utilizing this technology, the effectiveness of operations increases while reducing workload, minimizing possible errors in the process, and as a result, bringing measurable decrease in the cost of providing services. Regardless of how the use of modern information technology is assessed, there are also some doubts as to whether we should replace human activities in the implementation of the automation in business processes. After the initial awe for the new technological concept, a reflection arises: to what extent does the implementation of RPA increase the efficiency of operations or is there a Business Case for implementing it? If the business case is beneficial, in which business processes is the greatest potential for RPA? A closer look at these issues was provided by in this research during which the respondents’ view of the perceived advantages resulting from the use of robotization and automation in financial and accounting processes was verified. As a result of an online survey addressed to over 500 respondents from international companies, 162 complete answers were returned from the most important types of organizations in the modern business services industry, i.e. Business or IT Process Outsourcing (BPO/ITO), Shared Service Centers (SSC), Consulting/Advisory and their customers. Answers were provided by representatives of the positions in their organizations: Members of the Board, Directors, Managers and Experts/Specialists. The structure of the survey allowed the respondents to supplement the survey with additional comments and observations. The results formed the basis for the creation of a business case calculating tangible benefits associated with the implementation of automation in the selected financial processes. The results of the statistical analyses carried out with regard to revenue growth confirmed the correctness of the hypothesis that there is a correlation between job position and the perception of the impact of RPA implementation on individual benefits. Second hypothesis (H2) that: There is a relationship between the kind of company in the business services industry and the reception of the impact of RPA on individual benefits was thus not confirmed. Based results of survey authors performed simulation of business case for implementation of RPA in selected Finance and Accounting Processes. Calculated payback period was diametrically different ranging from 2 months for the Account Payables process with 75% savings and in the extreme case for the process Taxes implementation and maintenance costs exceed the savings resulting from the use of the robot.

Keywords: automation, outsourcing, business process automation, process automation, robotic process automation, RPA, RPA business case, RPA benefits

Procedia PDF Downloads 138
380 Smart Help at the Workplace for Persons with Disabilities (SHW-PWD)

Authors: Ghassan Kbar, Shady Aly, Ibrahim Alsharawy, Akshay Bhatia, Nur Alhasan, Ronaldo Enriquez

Abstract:

The Smart Help for persons with disability (PWD) is a part of the project SMARTDISABLE which aims to develop relevant solution for PWD that target to provide an adequate workplace environment for them. It would support PWD needs smartly through smart help to allow them access to relevant information and communicate with other effectively and flexibly, and smart editor that assist them in their daily work. It will assist PWD in knowledge processing and creation as well as being able to be productive at the work place. The technical work of the project involves design of a technological scenario for the Ambient Intelligence (AmI) - based assistive technologies at the workplace consisting of an integrated universal smart solution that suits many different impairment conditions and will be designed to empower the Physically disabled persons (PDP) with the capability to access and effectively utilize the ICTs in order to execute knowledge rich working tasks with minimum efforts and with sufficient comfort level. The proposed technology solution for PWD will support voice recognition along with normal keyboard and mouse to control the smart help and smart editor with dynamic auto display interface that satisfies the requirements for different PWD group. In addition, a smart help will provide intelligent intervention based on the behavior of PWD to guide them and warn them about possible misbehavior. PWD can communicate with others using Voice over IP controlled by voice recognition. Moreover, Auto Emergency Help Response would be supported to assist PWD in case of emergency. This proposed technology solution intended to make PWD very effective at the work environment and flexible using voice to conduct their tasks at the work environment. The proposed solution aims to provide favorable outcomes that assist PWD at the work place, with the opportunity to participate in PWD assistive technology innovation market which is still small and rapidly growing as well as upgrading their quality of life to become similar to the normal people at the workplace. Finally, the proposed smart help solution is applicable in all workplace setting, including offices, manufacturing, hospital, etc.

Keywords: ambient intelligence, ICT, persons with disability PWD, smart application, SHW

Procedia PDF Downloads 423
379 Improving Cleanability by Changing Fish Processing Equipment Design

Authors: Lars A. L. Giske, Ola J. Mork, Emil Bjoerlykhaug

Abstract:

The design of fish processing equipment greatly impacts how easy the cleaning process for the equipment is. This is a critical issue in fish processing, as cleaning of fish processing equipment is a task that is both costly and time consuming, in addition to being very important with regards to product quality. Even more, poorly cleaned equipment could in the worst case lead to contaminated product from which consumers could get ill. This paper will elucidate how equipment design changes could improve the work for the cleaners and saving money for the fish processing facilities by looking at a case for product design improvements. The design of fish processing equipment largely determines how easy it is to clean. “Design for cleaning” is the new hype in the industry and equipment where the ease of cleaning is prioritized gets a competitive advantage over equipment in which design for cleaning has not been prioritized. Design for cleaning is an important research area for equipment manufacturers. SeaSide AS is doing continuously improvements in the design of their products in order to gain a competitive advantage. The focus in this paper will be conveyors for internal logistic and a product called the “electro stunner” will be studied with regards to “Design for cleaning”. Often together with SeaSide’s customers, ideas for new products or product improvements are sketched out, 3D-modelled, discussed, revised, built and delivered. Feedback from the customers is taken into consideration, and the product design is revised once again. This loop was repeated multiple times, and led to new product designs. The new designs sometimes also cause the manufacturing processes to change (as in going from bolted to welded connections). Customers report back that the concrete changes applied to products by SeaSide has resulted in overall more easily cleaned equipment. These changes include, but are not limited to; welded connections (opposed to bolted connections), gaps between contact faces, opening up structures to allow cleaning “inside” equipment, and generally avoiding areas in which humidity and water may gather and build up. This is important, as there will always be bacteria in the water which will grow if the area never dries up. The work of creating more cleanable design is still ongoing, and will “never” be finished as new designs and new equipment will have their own challenges.

Keywords: cleaning, design, equipment, fish processing, innovation

Procedia PDF Downloads 238
378 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process

Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı

Abstract:

Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.

Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter

Procedia PDF Downloads 432
377 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 99
376 Positioning of Lesbian and Gay Workers within the Corporate Sector in Sri Lanka: The Case of Residents in the Colombo District

Authors: Pramoda Karunarathna, Hemamalie Gunatilaka

Abstract:

This study is based on experiences of Sri Lankan lesbian and gay workers’ career in the corporate sector, which include both manufacturing and service sectors. The study has started with the intention of shedding light on a grey area to observe the negative effects on lesbian and gay workers and their experiences while they are employed in the Sri Lankan corporate sector. In order to understand the experiences of lesbian and gay workers while they are at work within the corporate sector, the study seeks to address four questions. First research question is about the challenges faced by lesbian and gay workers while they are at work, and the second research question looks at their career patterns. Third research question seeks to address the behavior at work, and the fourth research question looks at the influence of class, religion, and cultural aspects on the career of lesbian and gay workers. Methodologically, the research was based on semi-structured interviews with nine participants (five gay men and four lesbian women) having work experience in the corporate sector and residing in Colombo, the capital city of Sri Lanka. The research found that the participants have gone through the process of developing sexual identity; gay men possess more feminine characteristics, while lesbian women possess more masculine characteristics. Further, their identity gets revealed in different ways, such as through the curriculum vitae, at the interviews, through the attire and behavior, and with the use of social media. The study also found that lesbian and gay workers experience discrimination due to violation of hierarchical power difference by other employees and marginalization, verbal and nonverbal abuse by other men at work are common experiences. Another finding is that lesbian and gay workers adopt strategies for survival at work, and they prefer the NGO sector to the corporate sector. In contrast, even within the corporate sector, advertising is preferred by lesbian and gay workers. Some of the Sri Lankan corporate sector organizations, especially multinational organizations, have initiated diversity training, and it might lead to making these organisations lesbian and gay-friendly workplaces in the future. It is also found that nearly 44 percent of the participants do not have a religion, and it is due to the rejection of deviant behaviours by most of the religions. In conclusion, lesbian and gay workers experience discrimination at work in the Sri Lankan corporate sector with an exception to the companies relating to advertising and non-governmental organisations is the sector that these workers prefer the most.

Keywords: lesbian workers, gay workers, Sri Lankan corporate sector, discrimination

Procedia PDF Downloads 142
375 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field

Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.

Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli

Procedia PDF Downloads 157
374 Industry 4.0 Platforms as 'Cluster' ecosystems for small and medium enterprises (SMEs)

Authors: Vivek Anand, Rainer Naegele

Abstract:

Industry 4.0 is a global mega-trend revolutionizing the world of advanced manufacturing, but also bringing up challenges for SMEs. In response, many regional, as well as digital Industry 4.0 Platforms, have been set up to boost the competencies of established enterprises as well as SMEs. The concept of 'Clusters' is a policy tool that aims to be a starting point to establish sustainable and self-supporting structures in industries of a region by identifying competencies and supporting cluster actors with services that match their growth needs. This paper is motivated by the idea that Clusters have the potential to enable firms, particularly SMEs, to accelerate the innovation process and transition to digital technologies. In this research, the efficacy of Industry 4.0 platforms as Cluster ecosystems is evaluated, especially for SMEs. Focusing on the Baden Wurttemberg region in Germany, an action research method is employed to study how SMEs leverage other actors on Industry 4.0 Platforms to further their Industry 4.0 journeys. The aim is to evaluate how such Industry 4.0 platforms stimulate innovation, cooperation and competitiveness. Additionally, the barriers to these platforms fulfilling their promise to serve as capacity building cluster ecosystems for SMEs in a region will also be identified. The findings will be helpful for academicians and policymakers alike, who can leverage a ‘cluster policy’ to enable Industry 4.0 ecosystems in their regions. Furthermore, relevant management and policy implications stem from the analysis. This will also be of interest to the various players in a cluster ecosystem - like SMEs and service providers - who benefit from the cooperation and competition. The paper will improve the understanding of how a dialogue orientation, a bottom-up approach and active integration of all involved cluster actors enhance the potential of Industry 4.0 Platforms. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position Industry 4.0 Platforms at the forefront of the industrial renaissance. Motivated by this argument and based on the results of the qualitative research, a roadmap will be proposed to position Industry 4.0 Platforms as effective clusters ecosystems to support Industry 4.0 adoption in a region.

Keywords: cluster policy, digital transformation, industry 4.0, innovation clusters, innovation policy, SMEs and startups

Procedia PDF Downloads 224
373 Development of a Systematic Approach to Assess the Applicability of Silver Coated Conductive Yarn

Authors: Y. T. Chui, W. M. Au, L. Li

Abstract:

Recently, wearable electronic textiles have been emerging in today’s market and were developed rapidly since, beside the needs for the clothing uses for leisure, fashion wear and personal protection, there also exist a high demand for the clothing to be capable for function in this electronic age, such as interactive interfaces, sensual being and tangible touch, social fabric, material witness and so on. With the requirements of wearable electronic textiles to be more comfortable, adorable, and easy caring, conductive yarn becomes one of the most important fundamental elements within the wearable electronic textile for interconnection between different functional units or creating a functional unit. The properties of conductive yarns from different companies can vary to a large extent. There are vitally important criteria for selecting the conductive yarns, which may directly affect its optimization, prospect, applicability and performance of the final garment. However, according to the literature review, few researches on conductive yarns on shelf focus on the assessment methods of conductive yarns for the scientific selection of material by a systematic way under different conditions. Therefore, in this study, direction of selecting high-quality conductive yarns is given. It is to test the stability and reliability of the conductive yarns according the problems industrialists would experience with the yarns during the every manufacturing process, in which, this assessment system can be classified into four stage. That is 1) Yarn stage, 2) Fabric stage, 3) Apparel stage and 4) End user stage. Several tests with clear experiment procedures and parameters are suggested to be carried out in each stage. This assessment method suggested that the optimal conducting yarns should be stable in property and resistant to various corrosions at every production stage or during using them. It is expected that this demonstration of assessment method can serve as a pilot study that assesses the stability of Ag/nylon yarns systematically at various conditions, i.e. during mass production with textile industry procedures, and from the consumer perspective. It aims to assist industrialists to understand the qualities and properties of conductive yarns and suggesting a few important parameters that they should be reminded of for the case of higher level of suitability, precision and controllability.

Keywords: applicability, assessment method, conductive yarn, wearable electronics

Procedia PDF Downloads 536
372 Fuzzy Availability Analysis of a Battery Production System

Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz

Abstract:

In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.

Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)

Procedia PDF Downloads 225
371 [Keynote Talk]: Green Supply Chain Management Concepts Applied on Brazilian Animal Nutrition Industries

Authors: Laura G. Caixeta, Maico R. Severino

Abstract:

One of the biggest challenges that the industries find nowadays is to incorporate sustainability practices into its operations. The Green Supply Chain Management (GSCM) concept assists industries in such incorporation. For the full application of this concept is important that enterprises of a same supply chain have the GSCM practices coordinated among themselves. Note that this type of analyses occurs on the context of developed countries and sectors considered big impactors (as automotive, mineral, among others). The propose of this paper is to analyze as the GSCM concepts are applied on the Brazilian animal nutrition industries. The method used was the Case Study. For this, it was selected a supply chain relationship composed by animal nutrition products manufacturer (Enterprise A) and its supplier of animal waste, such as blood, viscera, among others (Enterprise B). First, a literature review was carried out to identify the main GSCM practices. Second, it was done an individual analysis of each one selected enterprise of the application of GSCM concept. For the observed practices, the coordination of each practice in this supply chain was studied. And, it was developed propose of GSCM applications for the practices no observed. The findings of this research were: a) the systematization of main GSCM practices, as: Internal Environment Management, Green Consumption, Green Design, Green Manufacturing, Green Marketing, Green Packaging, Green Procurement, Green Recycling, Life Cycle Analysis, Consultation Selection Method, Environmental Risk Sharing, Investment Recovery, and Reduced Transportation Time; b) the identification of GSCM practices on Enterprise A (7 full application, 3 partial application and 3 no application); c) the identification of GSCM practices on Enterprise B (2 full application, 2 partial application and 9 no application); d) the identification of how is the incentive and the coordination of the GSCM practices on this relationship by Enterprise A; e) proposals of application and coordination of the others GSCM practices on this supply chain relationship. Based on the study, it can be concluded that its possible apply GSCM on animal nutrition industries, and when occurs the motivation on the application of GSCM concepts by a supply chain echelon, these concepts are deployed for the others supply chain echelons by the coordination (orchestration) of the first echelon.

Keywords: animal nutrition industries, coordination, green supply chain management, supply chain management, sustainability

Procedia PDF Downloads 132
370 Effect of Compaction Method on the Mechanical and Anisotropic Properties of Asphalt Mixtures

Authors: Mai Sirhan, Arieh Sidess

Abstract:

Asphaltic mixture is a heterogeneous material composed of three main components: aggregates; bitumen and air voids. The professional experience and scientific literature categorize asphaltic mixture as a viscoelastic material, whose behavior is determined by temperature and loading rate. Properties characterization of the asphaltic mixture used under the service conditions is done by compacting and testing cylindric asphalt samples in the laboratory. These samples must resemble in a high degree internal structure of the mixture achieved in service, and the mechanical characteristics of the compacted asphalt layer in the pavement. The laboratory samples are usually compacted in temperatures between 140 and 160 degrees Celsius. In this temperature range, the asphalt has a low degree of strength. The laboratory samples are compacted using the dynamic or vibrational compaction methods. In the compaction process, the aggregates tend to align themselves in certain directions that lead to anisotropic behavior of the asphaltic mixture. This issue has been studied in the Strategic Highway Research Program (SHRP) research, that recommended using the gyratory compactor based on the assumption that this method is the best in mimicking the compaction in the service. In Israel, the Netivei Israel company is considering adopting the Gyratory Method as a replacement for the Marshall method used today. Therefore, the compatibility of the Gyratory Method for the use with Israeli asphaltic mixtures should be investigated. In this research, we aimed to examine the impact of the compaction method used on the mechanical characteristics of the asphaltic mixtures and to evaluate the degree of anisotropy in relation to the compaction method. In order to carry out this research, samples have been compacted in the vibratory and gyratory compactors. These samples were cylindrically cored both vertically (compaction wise) and horizontally (perpendicular to compaction direction). These models were tested under dynamic modulus and permanent deformation tests. The comparable results of the tests proved that: (1) specimens compacted by the vibratory compactor had higher dynamic modulus values than the specimens compacted by the gyratory compactor (2) both vibratory and gyratory compacted specimens had anisotropic behavior, especially in high temperatures. Also, the degree of anisotropy is higher in specimens compacted by the gyratory method. (3) Specimens compacted by the vibratory method that were cored vertically had the highest resistance to rutting. On the other hand, specimens compacted by the vibratory method that were cored horizontally had the lowest resistance to rutting. Additionally (4) these differences between the different types of specimens rise mainly due to the different internal arrangement of aggregates resulting from the compaction method. (5) Based on the initial prediction of the performance of the flexible pavement containing an asphalt layer having characteristics based on the results achieved in this research. It can be concluded that there is a significant impact of the compaction method and the degree of anisotropy on the strains that develop in the pavement, and the resistance of the pavement to fatigue and rutting defects.

Keywords: anisotropy, asphalt compaction, dynamic modulus, gyratory compactor, mechanical properties, permanent deformation, vibratory compactor

Procedia PDF Downloads 119
369 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator

Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani

Abstract:

During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).

Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA

Procedia PDF Downloads 186
368 Optimising Post-Process Heat Treatments of Selective Laser Melting-Produced Ti-6Al-4V Parts to Achieve Superior Mechanical Properties

Authors: Gerrit Ter Haar, Thorsten Becker, Deborah Blaine

Abstract:

The Additive Manufacturing (AM) process of Selective Laser Melting (SLM) has seen an exponential growth in sales and development in the past fifteen years. Whereas the capability of SLM was initially limited to rapid prototyping, progress in research and development (R&D) has allowed SLM to be capable of fully functional parts. This technology is still at a primitive stage and technical knowledge of the vast number of variables influencing final part quality is limited. Ongoing research and development of the sensitive printing process and post processes is of utmost importance in order to qualify SLM parts to meet international standards. Quality concerns in Ti-6Al-4V manufactured through SLM has been identified, which include: high residual stresses, part porosity, low ductility and anisotropic mechanical properties. Whereas significant quality improvements have been made through optimising printing parameters, research indicates as-produced part ductility to be a major limiting factor when compared to its wrought counterpart. This study aims at achieving an in-depth understanding of the underlining links between SLM produced Ti-6Al-4V microstructure and its mechanical properties. Knowledge of microstructural transformation kinetics of Ti-6Al-4V allows for the optimisation of post-process heat treatments thereby achieving the required process route to manufacture high quality SLM produced Ti-6Al-4V parts. Experimental methods used to evaluate the kinematics of microstructural transformation of SLM Ti-6Al-4V are: optical microscopy and electron backscatter diffraction. Results show that a low-temperature heat treatment is capable of transforming the as-produced, martensitic microstructure into a duel-phase microstructure exhibiting both a high strength and improved ductility. Furthermore, isotropy of mechanical properties can be achieved through certain annealing routes. Mechanical properties identical to that of wrought Ti-6Al-4V can, therefore, be achieved through an optimised process route.

Keywords: EBSD analysis, heat treatments, microstructural characterisation, selective laser melting, tensile behaviour, Ti-6Al-4V

Procedia PDF Downloads 424
367 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 209
366 The Spatial Pattern of Economic Rents of an Airport Development Area: Lessons Learned from the Suvarnabhumi International Airport, Thailand

Authors: C. Bejrananda, Y. Lee, T. Khamkaew

Abstract:

With the rise of the importance of air transportation in the 21st century, the role of economics in airport planning and decision-making has become more important to the urban structure and land value around it. Therefore, this research aims to examine the relationship between an airport and its impacts on the distribution of urban land uses and land values by applying the Alonso’s bid rent model. The New Bangkok International Airport (Suvarnabhumi International Airport) was taken as a case study. The analysis was made over three different time periods of airport development (after the airport site was proposed, during airport construction, and after the opening of the airport). The statistical results confirm that Alonso’s model can be used to explain the impacts of the new airport only for the northeast quadrant of the airport, while proximity to the airport showed the inverse relationship with the land value of all six types of land use activities through three periods of time. It indicates that the land value for commercial land use is the most sensitive to the location of the airport or has the strongest requirement for accessibility to the airport compared to the residential and manufacturing land use. Also, the bid-rent gradients of the six types of land use activities have declined dramatically through the three time periods because of the Asian Financial Crisis in 1997. Therefore, the lesson learned from this research concerns about the reliability of the data used. The major concern involves the use of different areal units for assessing land value for different time periods between zone block (1995) and grid block (2002, 2009). As a result, this affect the investigation of the overall trends of land value assessment, which are not readily apparent. In addition, the next concern is the availability of the historical data. With the lack of collecting historical data for land value assessment by the government, some of data of land values and aerial photos are not available to cover the entire study area. Finally, the different formats of using aerial photos between hard-copy (1995) and digital photo (2002, 2009) made difficult for measuring distances. Therefore, these problems also affect the accuracy of the results of the statistical analyses.

Keywords: airport development area, economic rents, spatial pattern, suvarnabhumi international airport

Procedia PDF Downloads 274
365 Assessment of Implementation of the Health and Safety Contents of the Nigerian Factories Act by Small and Medium Scale Industries in Anambra State, Nigeria

Authors: Vivian Uchechi Okpala

Abstract:

Background: Millions of workers die every year as a result of occupational hazards, accidents and injuries, which are as a result of non- compliance to the laws or legislations guiding the health, safety and welfare of workers in the industries. This and many more lead to the assessment of implementation of the health and safety contents of the Nigerian Factories Act (NFA) by small and medium scale industries in Anambra State. Objectives: The study is aimed at achieving the following specific objectives; to assess the extent of implementation of Part-II Health and Part -III Safety (General Provisions), implementation of Part II Health and Part -III Safety (General Provisions Nigerian Factories Acts based on the age of the industries, locations of the industries and level of education of the workers of the small and medium scale industries Methods: the research design that was used for this study was descriptive survey research design, Area of this study was Anambra state, The population for this study comprised 180 chairmen/presidents of union workers of manufacturing industries in Anambra State, The instrument used for this study was structured questionnaire titled ‘assessment of implementation of NFA health and safety contents by small and medium scale industries, results: From the analysis, the following findings were made: Results: The medium scale industries implemented the Part-II Health and Part III Safety (General provisions) better than the small scale industries in Anambra state, the age of the industries, location of the industries and the level of education of the workers in the industries significantly influenced the implementation of the Part III Safety (General Provisions) of NFA, the location of the industries significantly influenced the implementation of the Part II-Health (General Provisions) of NFA. Conclusion: there was generally a certain level of implementation of the factories Act, there is need for more improvement, strict inspection by the regulatory agencies. Implications of the study were highlighted and several suggestions for further studies were made. Based on the findings, several recommendations were made including that the Ministry of Labour and Productivity and the Ministry of Health should strengthen planned information, strict policies to sanction the offenders. Keywords: Occupational Health and Safety, Nigerian Factories Act

Keywords: occupational health and safety, Nigerian factories act, workers, welfare

Procedia PDF Downloads 141
364 Phenolic Rich Dry Extracts and Their Antioxidant Activity

Authors: R. Raudonis, L. Raudonė, V. Janulis, P. Viškelis

Abstract:

Pharmacological and clinical studies demonstrated that phenolic compounds particularly flavonoids and phenolic acids are responsible for a wide spectrum of therapeutic activities. Flavonoids and phenolic acids are regarded as natural antioxidants that play an important role in protecting cells from oxidative stress. Qualitatively prepared dry extracts possess high stability and concentration of bio active compounds, facility of standardization and quality control. The aim of this work was to determine the phenolic and antioxidant profiles of Hippophaë rhamnoides L., Betula pendula Roth., Tilia cordata Mill., Sorbus aucuparia L. leaves dry extracts and to identify markers of antioxidant activity. Extracts were analyzed using high-performance liquid chromatography (HPLC) with FRAP post-column assay. Dry extracts are versatile forms possessing wide area of applications, final product ensure consistent phytochemical and functional properties. Seven flavonoids: rutin, hyperoside, isorhamnetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin, kaempferol, isorhamnetin were identified in dry extract of Hippophaë rhamnoides L. leaves. Predominant compounds were flavonol glycosides which were chosen as markers for quantitative control of dry extracts. Chlorogenic acid, hyperoside, rutin, quercetin, isorhamnetin were prevailing compounds in Betula pendula Roth. leaves extract, whereas strongest ferric reducing activity was determined for chlorogenic acid and hyperoside. Notable amounts of protocatechuic acid and flavonol glycosides, rutin, hyperoside, quercitrin, isoquercitrin were identified in the chromatographic profile of Tilia cordata Mill. Neochlorogenic and chlorogenic acids were significantly dominant compounds in antioxidant profile in dry extract of Sorbus aucuparia L. leaves. Predominant compounds of antioxidant profiles could be proposed as functional markers of quality of phenolic rich raw materials. Dry extracts could be further used for manufacturing of pharmaceutical and nutraceuticals.

Keywords: dry extract, FRAP, antioxidant activity, phenolic

Procedia PDF Downloads 509
363 Clinical Response of Nuberol Forte® (Paracetamol 650 MG+Orphenadrine 50 MG) For Pain Management with Musculoskeletal Conditions in Routine Pakistani Practice (NFORTE-EFFECT)

Authors: Shahid Noor, Kazim Najjad, Muhammad Nasir, Irshad Bhutto, Abdul Samad Memon, Khurram Anwar, Tehseen Riaz, Mian Muhammad Hanif, Nauman A. Mallik, Saeed Ahmed, Israr Ahmed, Ali Yasir

Abstract:

Background: Musculoskeletal pain is the most common complaint presented to the health practitioner. It is well known that untreated or under-treated pain can have a significant negative impact on an individual’s quality of life (QoL). Objectives: This study was conducted across 10 sites in six (6) major cities of Pakistan to evaluate the tolerability, safety, and the clinical response of Nuberol Forte® (Paracetamol 650 mg + Orphenadrine 50 mg) to musculoskeletal pain in routine Pakistani practice and its impact on improving the patient’s QoL. Design & Methods: This NFORT-EFFECT observational, prospective multicenter study was conducted in compliance with Good Clinical Practice guidelines and local regulatory requirements. The study sponsor was "The Searle Company Limited, Pakistan. To maintain the GCP compliances, the sponsor assigned the CRO for the site and data management. Ethical approval was obtained from an independent ethics committee. The IEC reviewed the progress of the study. Written informed consent was obtained from the study participants, and their confidentiality was maintained throughout the study. A total of 399 patients with known prescreened musculoskeletal conditions and pain who attended the study sites were recruited, as per the inclusion/exclusion criteria (clinicaltrials.gov ID# NCT04765787). The recruited patients were then prescribed Paracetamol (650 mg) and Orphenadrine (50 mg) combination (Nuberol Forte®) for 7 to 14 days as per the investigator's discretion based on the pain intensity. After the initial screening (visit 1), a follow-up visit was conducted after 1-2 weeks of the treatment (visit 2). Study Endpoints: The primary objective was to assess the pain management response of Nuberol Forte treatment and the overall safety of the drug. The Visual Analogue Scale (VAS) scale was used to measure pain severity. Secondary to pain, the patients' health-related quality of life (HRQoL) was also assessed using the Muscle, Joint Measure (MJM) scale. The safety was monitored on the first dose by the patients. These assessments were done on each study visit. Results: Out of 399 enrolled patients, 49.4% were males, and 50.6% were females with a mean age of 47.24 ± 14.20 years. Most patients were presented with Knee Osteoarthritis (OA), i.e., 148(38%), followed by backache 70(18.2%). A significant reduction in the mean pain score was observed after the treatment with the combination of Paracetamol and Orphenadrine (p<0.05). Furthermore, an overall improvement in the patient’s QoL was also observed. During the study, only ten patients reported mild adverse events (AEs). Conclusion: The combination of Paracetamol and Orphenadrine (Nuberol Forte®) exhibited effective pain management among patients with musculoskeletal conditions and also improved their QoL.

Keywords: musculoskeletal pain, orphenadrine/paracetamol combination, pain management, quality of life, Pakistani population

Procedia PDF Downloads 170
362 The Harmonious Blend of Digitalization and 3D Printing: Advancing Aerospace Jet Pump Development

Authors: Subrata Sarkar

Abstract:

The aerospace industry is experiencing a profound product development transformation driven by the powerful integration of digitalization and 3D printing technologies. This paper delves into the significant impact of this convergence on aerospace innovation, specifically focusing on developing jet pumps for fuel systems. This case study is a compelling example of the immense potential of these technologies. In response to the industry's increasing demand for lighter, more efficient, and customized components, the combined capabilities of digitalization and 3D printing are reshaping how we envision, design, and manufacture critical aircraft parts, offering a distinct paradigm in aerospace engineering. Consider the development of a jet pump for a fuel system, a task that presents unique and complex challenges. Despite its seemingly simple design, the jet pump's development is hindered by many demanding operating conditions. The qualification process for these pumps involves many analyses and tests, leading to substantial delays and increased costs in fuel system development. However, by harnessing the power of automated simulations and integrating legacy design, manufacturing, and test data through digitalization, we can optimize the jet pump's design and performance, thereby revolutionizing product development. Furthermore, 3D printing's ability to create intricate structures using various materials, from lightweight polymers to high-strength alloys, holds the promise of highly efficient and durable jet pumps. The combined impact of digitalization and 3D printing extends beyond design, as it also reduces material waste and advances sustainability goals, aligning with the industry's increasing commitment to environmental responsibility. In conclusion, the convergence of digitalization and 3D printing is not just a technological advancement but a gateway to a new era in aerospace product development, particularly in the design of jet pumps. This revolution promises to redefine how we create aerospace components, making them safer, more efficient, and environmentally responsible. As we stand at the forefront of this technological revolution, aerospace companies must embrace these technologies as a choice and a strategic imperative for those striving to lead in innovation and sustainability in the 21st century.

Keywords: jet pump, digitalization, 3D printing, aircraft fuel system.

Procedia PDF Downloads 56