Search results for: learning assessment
9264 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 1699263 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia
Procedia PDF Downloads 3789262 Environmental Risk Assessment of Mechanization Waste Collection Scheme in Tehran
Authors: Amin Padash, Javad Kazem Zadeh Khoiy, Hossein Vahidi
Abstract:
Purpose: The mechanization system for the urban services was implemented in Tehran City in the year 2004 to promote the collection of domestic wastes; in 2010, in order to achieve the objectives of the project of urban services mechanization and qualitative promotion and improve the urban living environment, sustainable development and optimization of the recyclable solid wastes collection systems as well as other dry and non-organic wastes and conformity of the same to the modern urban management methods regarding integration of the mechanized urban services contractors and recycling contractors and in order to better and more correct fulfillment of the waste separation and considering the success of the mechanization plan of the dry wastes in most of the modern countries. The aim of this research is analyzing of Environmental Risk Assessment of the mechanization waste collection scheme in Tehran. Case Study: Tehran, the capital of Iran, with the population of 8.2 million people, occupies 730 km land expanse, which is 4% of total area of country. Tehran generated 2,788,912 ton (7,641 ton/day) of waste in year 2008. Hospital waste generation rate in Tehran reaches 83 ton/day. Almost 87% of total waste was disposed of by placing in a landfill located in Kahrizak region. This large amount of waste causes a significant challenge for the city. Methodology: To conduct the study, the methodology proposed in the standard Mil-St-88213 is used. This method is an efficient method to examine the position in opposition to the various processes and the action is effective. The method is based on the method of Military Standard and Specialized in the military to investigate and evaluate options to locate and identify the strengths and weaknesses of powers to decide on the best determining strategy has been used. Finding and Conclusion: In this study, the current status of mechanization systems to collect waste and identify its possible effects on the environment through a survey and assessment methodology Mil-St-88213, and then the best plan for action and mitigation of environmental risk has been proposed as Environmental Management Plan (EMP).Keywords: environmental risk assessment, mechanization waste collection scheme, Mil-St-88213
Procedia PDF Downloads 4429261 A Mixed Methods Study: Evaluation of Experiential Learning Techniques throughout a Nursing Curriculum to Promote Empathy
Authors: Joan Esper Kuhnly, Jess Holden, Lynn Shelley, Nicole Kuhnly
Abstract:
Empathy serves as a foundational nursing principle inherent in the nurse’s ability to form those relationships from which to care for patients. Evidence supports, including empathy in nursing and healthcare education, but there is limited data on what methods are effective to do so. Building evidence supports experiential and interactive learning methods to be effective for students to gain insight and perspective from a personalized experience. The purpose of this project is to evaluate learning activities designed to promote the attainment of empathic behaviors across 5 levels of the nursing curriculum. Quantitative analysis will be conducted on data from pre and post-learning activities using the Toronto Empathy Questionnaire. The main hypothesis, that simulation learning activities will increase empathy, will be examined using a repeated measures Analysis of Variance (ANOVA) on Pre and Post Toronto Empathy Questionnaire scores for three simulation activities (Stroke, Poverty, Dementia). Pearson product-moment correlations will be conducted to examine the relationships between continuous demographic variables, such as age, credits earned, and years practicing, with the dependent variable of interest, Post Test Toronto Empathy Scores. Krippendorff’s method of content analysis will be conducted to identify the quantitative incidence of empathic responses. The researchers will use Colaizzi’s descriptive phenomenological method to describe the students’ simulation experience and understand its impact on caring and empathy behaviors employing bracketing to maintain objectivity. The results will be presented, answering multiple research questions. The discussion will be relevant to results and educational pedagogy in the nursing curriculum as they relate to the attainment of empathic behaviors.Keywords: curriculum, empathy, nursing, simulation
Procedia PDF Downloads 1149260 Assessment of Work Postures and Prevalence of Musculoskeletal Disorders among Diamond Polishers in Botswana: A Case Study
Authors: Oanthata Jester Sealetsa, Richie Moalosi
Abstract:
Musculoskeletal Disorders (MSDs) are reported to be amongst the leading contributing factors of low productivity in many industries across the world, and the most affected being New Emerging Economies (NEC) such as Botswana. This is due to lack of expertise and resources to deal with existing ergonomics challenges. This study was aimed to evaluate occupational postures and the prevalence of musculoskeletal disorders among diamond polishers in a diamond company in Botswana. A case study was conducted with about 106 diamond polishers in Gaborone, Botswana. A case study was chosen because it can investigate and explore an issue thoroughly and deeply, and record behaviour over time so changes in behaviour can be identified. The Corlett and Bishop Body Map was used to determine frequency of MSDs symptoms in different body parts of the workers. This was then followed by the use of the Rapid Entire Body Assessment (REBA) to evaluate the occupational postural risks of MSDs. Descriptive statistics, chi square, and logistic regression were used for data analysis. The results of the study reveal that workers experienced pain in the upper back, lower back, shoulders, neck, and wrists with the most pain reported in the upper back (44.6%) and lower back (44.2%). However, the mean REBA score of 6.07 suggests that sawing, bruiting and polishing were the most dangerous processes in diamond polishing. The study recommends that a redesign of the diamond polishing workstations is necessary to accommodate the anthropometry characteristic of Batswana (people from Botswana) to prevent the development of MSDs.Keywords: assessment, Botswana, diamond polishing, ergonomics, musculoskeletal disorders, occupational postural risks
Procedia PDF Downloads 1859259 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study
Authors: John Zanetich
Abstract:
Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.Keywords: constructivism, knowledge management, tacit knowledge, social media
Procedia PDF Downloads 2169258 Contribution of Word Decoding and Reading Fluency on Reading Comprehension in Young Typical Readers of Kannada Language
Authors: Vangmayee V. Subban, Suzan Deelan. Pinto, Somashekara Haralakatta Shivananjappa, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: During early years of schooling, the instruction in the schools mainly focus on children’s word decoding abilities. However, the skilled readers should master all the components of reading such as word decoding, reading fluency and comprehension. Nevertheless, the relationship between each component during the process of learning to read is less clear. The studies conducted in alphabetical languages have mixed opinion on relative contribution of word decoding and reading fluency on reading comprehension. However, the scenarios in alphasyllabary languages are unexplored. Aim and Objectives: The aim of the study was to explore the role of word decoding, reading fluency on reading comprehension abilities in children learning to read Kannada between the age ranges of 5.6 to 8.6 years. Method: In this cross sectional study, a total of 60 typically developing children, 20 each from Grade I, Grade II, Grade III maintaining equal gender ratio between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. The reading fluency and reading comprehension abilities of the children were assessed using Grade level passages selected from the Kannada text book of children core curriculum. All the passages consist of five questions to assess reading comprehension. The pseudoword decoding skills were assessed using 40 pseudowords with varying syllable length and their Akshara composition. Pseudowords are formed by interchanging the syllables within the meaningful word while maintaining the phonotactic constraints of Kannada language. The assessment material was subjected to content validation and reliability measures before collecting the data on the study samples. The data were collected individually, and reading fluency was assessed for words correctly read per minute. Pseudoword decoding was scored for the accuracy of reading. Results: The descriptive statistics indicated that the mean pseudoword reading, reading comprehension, words accurately read per minute increased with the Grades. The performance of Grade III children found to be higher, Grade I lower and Grade II remained intermediate of Grade III and Grade I. The trend indicated that reading skills gradually improve with the Grades. Pearson’s correlation co-efficient showed moderate and highly significant (p=0.00) positive co-relation between the variables, indicating the interdependency of all the three components required for reading. The hierarchical regression analysis revealed 37% variance in reading comprehension was explained by pseudoword decoding and was highly significant. Subsequent entry of reading fluency measure, there was no significant change in R-square and was only change 3%. Therefore, pseudoword-decoding evolved as a single most significant predictor of reading comprehension during early Grades of reading acquisition. Conclusion: The present study concludes that the pseudoword decoding skills contribute significantly to reading comprehension than reading fluency during initial years of schooling in children learning to read Kannada language.Keywords: alphasyllabary, pseudo-word decoding, reading comprehension, reading fluency
Procedia PDF Downloads 2649257 Developing Digital Competencies in Aboriginal Students through University-College Partnerships
Authors: W. S. Barber, S. L. King
Abstract:
This paper reports on a pilot project to develop a collaborative partnership between a community college in rural northern Ontario, Canada, and an urban university in the greater Toronto area in Oshawa, Canada. Partner institutions will collaborate to address learning needs of university applicants whose goals are to attain an undergraduate university BA in Educational Studies and Digital Technology degree, but who may not live in a geographical location that would facilitate this pathways process. The UOIT BA degree is attained through a 2+2 program, where students with a 2 year college diploma or equivalent can attain a four year undergraduate degree. The goals reported on the project are as: 1. Our aim is to expand the BA program to include an additional stream which includes serious educational games, simulations and virtual environments, 2. Develop fully (using both synchronous and asynchronous technologies) online learning modules for use by university applicants who otherwise are not geographically located close to a physical university site, 3. Assess the digital competencies of all students, including members of local, distance and Indigenous communities using a validated tool developed and tested by UOIT across numerous populations. This tool, the General Technical Competency Use and Scale (GTCU) will provide the collaborating institutions with data that will allow for analyzing how well students are prepared to succeed in fully online learning communities. Philosophically, the UOIT BA program is based on a fully online learning communities model (FOLC) that can be accessed from anywhere in the world through digital learning environments via audio video conferencing tools such as Adobe Connect. It also follows models of adult learning and mobile learning, and makes a university degree accessible to the increasing demographic of adult learners who may use mobile devices to learn anywhere anytime. The program is based on key principles of Problem Based Learning, allowing students to build their own understandings through the co-design of the learning environment in collaboration with the instructors and their peers. In this way, this degree allows students to personalize and individualize the learning based on their own culture, background and professional/personal experiences. Using modified flipped classroom strategies, students are able to interrogate video modules on their own time in preparation for one hour discussions occurring in video conferencing sessions. As a consequence of the program flexibility, students may continue to work full or part time. All of the partner institutions will co-develop four new modules, administer the GTCU and share data, while creating a new stream of the UOIT BA degree. This will increase accessibility for students to bridge from community colleges to university through a fully digital environment. We aim to work collaboratively with Indigenous elders, community members and distance education instructors to increase opportunities for more students to attain a university education.Keywords: aboriginal, college, competencies, digital, universities
Procedia PDF Downloads 2179256 Strategies for Incorporating Intercultural Intelligence into Higher Education
Authors: Hyoshin Kim
Abstract:
Most post-secondary educational institutions have offered a wide variety of professional development programs and resources in order to advance the quality of education. Such programs are designed to support faculty members by focusing on topics such as course design, behavioral learning objectives, class discussion, and evaluation methods. These are based on good intentions and might help both new and experienced educators. However, the fundamental flaw is that these ‘effective methods’ are assumed to work regardless of what we teach and whom we teach. This paper is focused on intercultural intelligence and its application to education. It presents a comprehensive literature review on context and cultural diversity in terms of beliefs, values and worldviews. What has worked well with a group of homogeneous local students may not work well with more diverse and international students. It is because students hold different notions of what is means to learn or know something. It is necessary for educators to move away from certain sets of generic teaching skills, which are based on a limited, particular view of teaching and learning. The main objective of the research is to expand our teaching strategies by incorporating what students bring to the course. There have been a growing number of resources and texts on teaching international students. Unfortunately, they tend to be based on the deficiency model, which treats diversity not as strengths, but as problems to be solved. This view is evidenced by the heavy emphasis on assimilationist approaches. For example, cultural difference is negatively evaluated, either implicitly or explicitly. Therefore the pressure is on culturally diverse students. The following questions reflect the underlying assumption of deficiencies: - How can we make them learn better? - How can we bring them into the mainstream academic culture?; and - How can they adapt to Western educational systems? Even though these questions may be well-intended, there seems to be something fundamentally wrong as the assumption of cultural superiority is embedded in this kind of thinking. This paper examines how educators can incorporate intercultural intelligence into the course design by utilizing a variety of tools such as pre-course activities, peer learning and reflective learning journals. The main goal is to explore ways to engage diverse learners in all aspects of learning. This can be achieved by activities designed to understand their prior knowledge, life experiences, and relevant cultural identities. It is crucial to link course material to students’ diverse interests thereby enhancing the relevance of course content and making learning more inclusive. Internationalization of higher education can be successful only when cultural differences are respected and celebrated as essential and positive aspects of teaching and learning.Keywords: intercultural competence, intercultural intelligence, teaching and learning, post-secondary education
Procedia PDF Downloads 2139255 Culture Sensitization: Understanding German Culture by Learning German
Authors: Lakshmi Shenoy
Abstract:
In today’s era of Globalization, arises the need that students and professionals relocate temporarily or permanently to another country in order to pursue their respective academic and career goals. This involves not only learning the local language of the country but also integrating oneself into the native culture. This paper explains the method of understanding a nation’s culture through the study of its language. The method uses language not as a series of rules that connect words together but as a social practice in which one can actively participate. It emphasizes on how culture provides an environment in which languages can flourish and how culture dictates the interpretation of the language especially in case of German. This paper introduces language and culture as inseparable entities, as two sides of the same coin.Keywords: language and culture, sociolinguistics, Ronald Wardhaugh, German
Procedia PDF Downloads 3069254 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 969253 Practice Educators' Perspective: Placement Challenges in Social Work Education in England
Authors: Yuet Wah Echo Yeung
Abstract:
Practice learning is an important component of social work education. Practice educators are charged with the responsibility to support and enable learning while students are on placement. They also play a key role in teaching students to integrate theory and practice, as well as assessing their performance. Current literature highlights the structural factors that make it difficult for practice educators to create a positive learning environment for students. Practice educators find it difficult to give sufficient attention to their students because of the lack of workload relief, the increasing emphasis on managerialism and bureaucratisation, and a range of competing organisational and professional demands. This paper reports the challenges practice educators face and how they manage these challenges in this context. Semi-structured face-to-face interviews were conducted with thirteen practice educators who support students in statutory and voluntary social care settings in the Northwest of England. Interviews were conducted between April and July 2017 and each interview lasted about 40 minutes. All interviews were recorded and transcribed. All practice educators are experienced social work practitioners with practice experience ranging from 6 to 42 years. On average they have acted as practice educators for 13 years and all together have supported 386 students. Our findings reveal that apart from the structural factors that impact how practice educators perform their roles, they also faced other challenges when supporting students on placement. They include difficulty in engaging resistant students, complexity in managing power dynamics in the context of practice learning, and managing the dilemmas of fostering a positive relationship with students whilst giving critical feedback. Suggestions to enhance the practice educators’ role include support from organisations and social work teams; effective communication with university tutors, and a forum for practice educators to share good practice and discuss placement issues.Keywords: social work education, placement challenges, practice educator, practice learning
Procedia PDF Downloads 1929252 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry
Procedia PDF Downloads 249251 Strategic Cyber Sentinel: A Paradigm Shift in Enhancing Cybersecurity Resilience
Authors: Ayomide Oyedele
Abstract:
In the dynamic landscape of cybersecurity, "Strategic Cyber Sentinel" emerges as a revolutionary framework, transcending traditional approaches. This paper pioneers a holistic strategy, weaving together threat intelligence, machine learning, and adaptive defenses. Through meticulous real-world simulations, we demonstrate the unprecedented resilience of our framework against evolving cyber threats. "Strategic Cyber Sentinel" redefines proactive threat mitigation, offering a robust defense architecture poised for the challenges of tomorrow.Keywords: cybersecurity, resilience, threat intelligence, machine learning, adaptive defenses
Procedia PDF Downloads 859250 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 619249 Three Memorizing Strategies Reflective of Individual Students' Learning Modalities Applied to Piano Education
Authors: Olga Guseynova
Abstract:
Being an individual activity, the memorizing process is affected to a greater degree by the individual variables; therefore, one of the decisive factors influencing the memorization is students’ individual characteristics. Based on an extensive literature study in the domains of piano education, psychology, and neuroscience, this comprehensive research was designed in order to develop three memorizing strategies that are reflective of individual students’ learning modalities (visual, kinesthetic and auditory) applied to the piano education. The design of the study required an interdisciplinary approach which incorporated the outcome of neuropsychological and pedagogic experiments. The objectives were to determine the interaction between the process of perception and the process of memorizing music; to systematize the methods of memorizing piano sheet music in accordance with the specifics of perception types; to develop Piano Memorization Inventory (PMI) and the Three Memorizing Strategies (TMS). The following research methods were applied: a method of interdisciplinary analysis and synthesis, a method of non-participant observation. As a result of literature analysis, the following conclusions were made: the majority of piano teachers and piano students participated in the surveys, had not used and usually had not known any memorizing strategy regarding learning styles. As a result, they had used drilling as the main strategy of memorizing. The Piano Memorization Inventory and Three Memorizing Strategies developed by the author of the research were based on the observation and findings of the previous researches and considered the experience of pedagogical and neuropsychological studies.Keywords: interdisciplinary approach, memorizing strategies, perceptual learning styles, piano memorization inventory
Procedia PDF Downloads 3069248 Cursive Handwriting in an Internet Age
Authors: Karen Armstrong
Abstract:
Recent concerns about the value of teaching cursive handwriting in the classroom are based on the belief that cursive handwriting or penmanship is an outdated and unnecessary skill in today’s online world. The discussion of this issue begins with a description of current initiatives to eliminate handwriting instruction in schools. This is followed by a brief history of cursive writing through the ages. Next considered is a description of its benefits as a preliminary process for younger children as compared with immediate instruction in keyboarding, particularly in the areas of vision, cognition, motor skills and automatic fluency. Also considered, is cursive’s companion, paper itself, and the impact of a paperless, “screen and keyboard” environment. The discussion concludes with a consideration of the unique contributions of cursive and keyboarding as written forms of communication, along with their respective surfaces, paper and screen. Finally, an assessment of the practical utility of each skill is followed by an informal assessment of what is lost and what remains as we move from a predominantly paper and pen world of handwriting to texting and keyboarding in an environment of screens.Keywords: asemic writing, cursive, handwriting, keyboarding, paper
Procedia PDF Downloads 2719247 Benefits of Collegial Teaming to Improve Knowledge-Worker Productivity
Authors: Prakash Singh, Piet Maphodisa Kgohlo
Abstract:
Knowledge-worker productivity is one of the biggest leadership challenges facing all organizations in the twenty-first century. It cannot be denied that knowledge-worker productivity affects all organizations. The work and the workforce are both undergoing greater changes currently than at any time, since the beginning of the industrial revolution two centuries ago. Employees welcome collegial teaming (CT) as an innovative way to develop their work-integrated learning competencies. Human resource development policies must evoke the symbiotic relationship between CT and work-integrated learning, seeing that employees need to be endowed with the competence to move from one skill to another, as each one becomes obsolete, and to simultaneously develop their cognitive and emotional intelligence. The outcome of this relationship must culminate in the development of highly productive knowledge-workers. While this study focuses on teachers, the conceptual framework and the findings of this research can be beneficial for any organization, public or private sector, business or non-business. Therefore, in this quantitative study, the benefits of CT are considered in developing human resources to sustain knowledge-worker productivity. The ANOVA p-values reveal that the majority of teachers agree that CT can empower them to overcome the challenges of managing curriculum change. CT can equip them with continuous and sustained learning, growth and improvement, necessary for knowledge-worker productivity. This study, therefore, confirms that CT benefits all workers, immaterial of their age, gender or experience. Hence, this exploratory research provides a new perspective of CT in addressing knowledge-worker productivity when organizational change alters the vision of the organization.Keywords: collegial teaming, human resource development, knowledge-worker productivity, work-integrated learning
Procedia PDF Downloads 2809246 Sustainability Assessment of Municipal Wastewater Treatment
Authors: Yousra Zakaria Ahmed, Ahmed El Gendy, Salah El Haggar
Abstract:
In this paper, our methodology to assess sustainability of wastewater treatment technologies in Egypt is presented. The preliminary list of factors to be considered, as well as their ranking listed. The factors include, but are not limited to pollutants removal efficiency and energy consumption under the environmental dimension, construction cost, operation and maintenance costs and required land area cost under the economic dimension and public acceptance, noise and generating job opportunities for local residents. This methodology is intended to be a user-friendly screening tool to support the decision making process when investigating different wastewater treatment technologies in Egypt. Based on the research work results presented in this paper, it can be generally concluded that the categorization of some of the social and environmental aspects of sustainability is subjective and highly dependent on the local conditions and researchers’ background.Keywords: sustainability, wastewater treatment, sustainability assessment, Egypt
Procedia PDF Downloads 5119245 Driven Force of Integrated Reporting in Thailand
Authors: Nuttha Kirdsinsap, Watchaneeporn Setthasakko
Abstract:
This paper aims to gain opinions and perspectives of Certified Public Accountants (CPA) in Thailand regarding the driven force of Integrated Reporting. It employs in-depth interviews with CPA from different big 4 audits firms in Thailand, including PWC, Ernst and Young, Deloitte, and KPMG. It is found that the driven force of Integrated Reporting made CPA in Thailand awaken to the big change that is coming in the future, and it is said to be another big learning and integrating period between certified public accountants and other professionals (for example, engineers, environmentalists and lawyers), which, certified public accountants in Thailand will have to push themselves so hard to catch up.Keywords: integrated reporting, learning, knowledge, certified public accountants, Thailand
Procedia PDF Downloads 2729244 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology
Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan
Abstract:
The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology
Procedia PDF Downloads 3509243 English Learning Speech Assistant Speak Application in Artificial Intelligence
Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri
Abstract:
Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation
Procedia PDF Downloads 1079242 Using Environmental Life Cycle Assessment to Design Sustainable Packaging
Authors: Timothy Francis Grant
Abstract:
There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency.Keywords: Climate change, Life Cycle Assessment, Marine litter, Packaging sustainability
Procedia PDF Downloads 1349241 Leading, Teaching and Learning “in the Middle”: Experiences, Beliefs, and Values of Instructional Leaders, Teachers, and Students in Finland, Germany, and Canada
Authors: Brandy Yee, Dianne Yee
Abstract:
Through the exploration of the lived experiences, beliefs and values of instructional leaders, teachers and students in Finland, Germany and Canada, we investigated the factors which contribute to developmentally responsive, intellectually engaging middle-level learning environments for early adolescents. Student-centred leadership dimensions, effective instructional practices and student agency were examined through the lens of current policy and research on middle-level learning environments emerging from the Canadian province of Manitoba. Consideration of these three research perspectives in the context of early adolescent learning, placed against an international backdrop, provided a previously undocumented perspective on leading, teaching and learning in the middle years. Aligning with a social constructivist, qualitative research paradigm, the study incorporated collective case study methodology, along with constructivist grounded theory methods of data analysis. Data were collected through semi-structured individual and focus group interviews and document review, as well as direct and participant observation. Three case study narratives were developed to share the rich stories of study participants, who had been selected using maximum variation and intensity sampling techniques. Interview transcript data were coded using processes from constructivist grounded theory. A cross-case analysis yielded a conceptual framework highlighting key factors that were found to be significant in the establishment of developmentally responsive, intellectually engaging middle-level learning environments. Seven core categories emerged from the cross-case analysis as common to all three countries. Within the visual conceptual framework (which depicts the interconnected nature of leading, teaching and learning in middle-level learning environments), these seven core categories were grouped into Essential Factors (student agency, voice and choice), Contextual Factors (instructional practices; school culture; engaging families and the community), Synergistic Factors (instructional leadership) and Cornerstone Factors (education as a fundamental cultural value; preservice, in-service and ongoing teacher development). In addition, sub-factors emerged from recurring codes in the data and identified specific characteristics and actions found in developmentally responsive, intellectually engaging middle-level learning environments. Although this study focused on 12 schools in Finland, Germany and Canada, it informs the practice of educators working with early adolescent learners in middle-level learning environments internationally. The authentic voices of early adolescent learners are the most important resource educators have to gauge if they are creating effective learning environments for their students. Ongoing professional dialogue and learning is essential to ensure teachers are supported in their work and develop the pedagogical practices needed to meet the needs of early adolescent learners. It is critical to balance consistency, coherence and dependability in the school environment with the necessary flexibility in order to support the unique learning needs of early adolescents. Educators must intentionally create a school culture that unites teachers, students and their families in support of a common purpose, as well as nurture positive relationships between the school and its community. A large, urban school district in Canada has implemented a school cohort-based model to begin to bring developmentally responsive, intellectually engaging middle-level learning environments to scale.Keywords: developmentally responsive learning environments, early adolescents, middle level learning, middle years, instructional leadership, instructional practices, intellectually engaging learning environments, leadership dimensions, student agency
Procedia PDF Downloads 3059240 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 1149239 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1979238 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1599237 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 749236 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 2589235 The Impact of Acoustic Performance on Neurodiverse Students in K-12 Learning Spaces
Authors: Michael Lekan-Kehinde, Abimbola Asojo, Bonnie Sanborn
Abstract:
Good acoustic performance has been identified as one of the critical Indoor Environmental Quality (IEQ) factors for student learning and development by the National Research Council. Childhood presents the opportunity for children to develop lifelong skills that will support them throughout their adult lives. Acoustic performance of a space has been identified as a factor that can impact language acquisition, concentration, information retention, and general comfort within the environment. Increasingly, students learn by communication between both teachers and fellow students, making speaking and listening crucial. Neurodiversity - while initially coined to describe individuals with autism spectrum disorder (ASD) - widely describes anyone with a different brain process. As the understanding from cognitive and neurosciences increases, the number of people identified as neurodiversity is nearly 30% of the population. This research looks at guidelines and standard for spaces with good acoustical quality and relates it with the experiences of students with autism spectrum disorder (ASD), their parents, teachers, and educators through a mixed methods approach, including selected case studies interviews, and mixed surveys. The information obtained from these sources is used to determine if selected materials, especially properties relating to sound absorption and reverberation reduction, are equally useful in small, medium sized, and large learning spaces and methodologically approaching. The results describe the potential impact of acoustics on Neurodiverse students, considering factors that determine the complexity of sound in relation to the auditory processing capabilities of ASD students. In conclusion, this research extends the knowledge of how materials selection influences the better development of acoustical environments for autism students.Keywords: acoustics, autism spectrum disorder (ASD), children, education, learning, learning spaces, materials, neurodiversity, sound
Procedia PDF Downloads 108