Search results for: school dropout prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5474

Search results for: school dropout prediction

5204 A Study on Classic Literature Education in Primary School Using Out-of-School Literature Appreciation Program: An Practice Study Applied to Primary School in Korea

Authors: Hyo Jung Lee

Abstract:

The purpose of this study is to develop a literature appreciation education program for classic literatures and apply them to the field, and to derive the achievements and improvement points. Classic literature is a work of value recognized in the context of literature history and culture history, and learners can develop interest in literature and inherit tradition through appreciation of classic literature. However, in Korean educational environment, classic literature is a means for college entrance examination, and many learners analyze contents and language in textbooks and concentrate on memorizing the whole plot. This study is one of the reasons that classic literature appreciation education is not done properly and it is not able to give an opportunity to appreciate the whole work in the early learning stage. In Korean primary education, classic literature is used as a means to achieve the goals of reading, writing, speaking and listening, rather than being used as a material for its own appreciation. It is problematic to make the piece appreciation experience fragmentary. This study proposes a program to experience classic literatures by linking school education and school library with primary school students in grades 4-6. We work with local primary schools (siheung-si, gyeonggi-do, Korea) to provide appropriate activities and rewards to learners, observe their participation, and introduce student learning outcomes. Through this, we are able to systematically improve the learner 's ability to appreciate the literature and to diversify primary education.

Keywords: classic literature education, primary education, out-of-school program, learning by appreciation experience

Procedia PDF Downloads 146
5203 Market Index Trend Prediction using Deep Learning and Risk Analysis

Authors: Shervin Alaei, Reza Moradi

Abstract:

Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.

Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks

Procedia PDF Downloads 156
5202 School Emergency Drills Evaluation through E-PreS Monitoring System

Authors: A. Kourou, A. Ioakeimidou, V. Avramea

Abstract:

Planning for natural disasters and emergencies is something every school or educational institution must consider, regardless of its size or location. Preparedness is the key to save lives if a disaster strikes. School disaster management mirrors individual and family disaster prevention, and wider community disaster prevention efforts. This paper presents the usage of E-PreS System as a helpful, managerial tool during the school earthquake drill, in order to support schools in developing effective disaster and emergency plans specific to their local needs. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The main outcomes of E-PreS project are the development of E-PreS web platform that host the needed data of school emergency planning; the development of E-PreS System; the implementation of disaster drills using E-PreS System in educational premises and local schools; and the evaluation of E-PreS System. Taking into consideration that every disaster drill aims to test and valid school plan and procedures; clarify and train personnel in roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement, E-PreS Project was submitted and approved by the European Commission (EC).

Keywords: disaster drills, earthquake preparedness, E-PreS System, school emergency plans

Procedia PDF Downloads 228
5201 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 558
5200 The Role of Digital Text in School and Vernacular Literacies: Students Digital Practices at Cybercafés in Mexico

Authors: Guadalupe López-Bonilla

Abstract:

Students of all educational levels participate in literacy practices that may involve print or digital media. Scholars from the New Literacy Studies distinguish practices that fulfill institutional purposes such as those established at schools from literate practices aimed at doing other kinds of activities, such as reading instructions in order to play a video game; the first are known as institutional practices while the latter are considered vernacular literacies. When students perform these kinds of activities they engage with print and digital media according to the demands of the task. In this paper, it is aimed to discuss the results of a research project focusing on literacy practices of high school students at 10 urban cybercafés in Mexico. The main objective was to analyze the literacy practices of students performing both school tasks and vernacular literacies. The methodology included a focused ethnography with online and face to face observations of 10 high school students (5 male and 5 female) and interviews after performing each task. In the results, it is presented how students treat texts as open, dynamic and relational artifacts when engaging in vernacular literacies; while texts are conceived as closed, authoritarian and fixed documents when performing school activities. Samples of each type of activity are shown followed by a discussion of the pedagogical implications for improving school literacy.

Keywords: digital literacy, text, school literacy, vernacular practices

Procedia PDF Downloads 272
5199 A Study of Mental Health of Higher Secondary School Going Children in Rural Area

Authors: Tanmay L. Joshi

Abstract:

The Mental health allows children and young people to develop the resilience to cope with whatever life throws at them and grow into well-rounded, healthy adults. In urban area, many health professionals are working for the well being for younger population. There is so much of potential in rural area. However, the rural population is somehow neglected. Apart from lack of availability of basic needs like transport, electricity, telecommunication etc; the Psychological health is also overlooked in such area. There are no mental health professionals like Psychologists, counselors etc. So the researcher tries to throw some light on the mental health of Higher Secondary School going children in rural area. The current research tries to study the Mental Health (Confidence, Sociability and Neurotic Tendency) of Higher Secondary School going children. Researchers have used the tool Vyaktitva Shodhika (a personality inventory) by Dr. U. Khire (JPIP,Pune). The Sample size is 45 (N= 40, 24 boys/21 girls). The present study may provide a good support to inculcate emotional-management programs for higher secondary school going children in rural areas.

Keywords: mental health, neurotic tendency, rural area, school going children

Procedia PDF Downloads 591
5198 Indoor Air Assessment and Health Risk of Volatile Organic Compounds in Secondary School Classrooms in Benin City, Edo State, Nigeria

Authors: Osayomwanbor E. Oghama, John O. Olomukoro

Abstract:

The school environment, apart from home, is probably the most important indoor environment for children. Children spend as much as 80-90% of their indoor time either at school or at home; an average of 35 - 40 hours per week in schools, hence are at the risk of indoor air pollutants such as volatile organic compounds (VOCs). Concentrations of VOCs vary widely but are generally higher indoors than outdoors. This research was, therefore, carried out to evaluate the levels of VOCs in secondary school classrooms in Benin City, Edo State. Samples were obtained from a total of 18 classrooms in 6 secondary schools. Samples were collected 3 times from each school and from 3 different classrooms in each school using Draeger ORSA 5 tubes. Samplers were left to stay for a school-week (5 days). The VOCs detected and analyzed were benzene, ethlybenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene, m-xylene, p-xylene, o-xylene, styrene, chlorobenzene, chloroform, 1,2-dichloropropane, 2,2-dichloropropane, tetrachloroethane, tetrahydrofuran, isopropyl acetate, α-pinene, and camphene. The results showed that chloroform, o-xylene, and styrene were the most abundant while α-pinene and camphene were the least abundant. The health risk assessment was done in terms of carcinogenic (CRI) and non-carcinogenic risks (THR). The CRI values of the schools ranged from 1.03 × 10-5 to 1.36 × 10-5 μg/m³ (a mean of 1.16 × 10-5 μg/m³) with School 6 and School 3 having the highest and lowest values respectively. The THR values of the study schools ranged from 0.071-0.086 μg/m³ (a mean of 0.078 μg/m³) with School 3 and School 2 having the highest and lowest values respectively. The results show that all the schools pose a potential carcinogenic risks having CRI values greater than the recommended limit of 1 × 10-6 µg/m³ and no non-carcinogenic risk having THR values less than the USEPA hazard quotient of 1 µg/m³. It is recommended that school authorities should ensure adequate ventilation in their schools, supplementing natural ventilation with mechanical sources, where necessary. In addition, indoor air quality should be taken into consideration in the design and construction of classrooms.

Keywords: carcinogenic risk indicator, health risk, indoor air, non-carcinogenic risk indicator, secondary schools, volatile organic compounds

Procedia PDF Downloads 191
5197 Evidence-Based Approaches and Effective Practices for Preventing Bullying

Authors: Nato Asatiani

Abstract:

The research underscores the critical role of a positive school climate in combating bullying. The results can be generalized and assumed that bullying behavior occurs when there is a victim, and the environment allows the realization of aggression; school culture is a strong predictor of bullying behavior; the probability of becoming a victim (victimhood) is high among those teenagers who experience high levels of stress in the environment; when a teenager experiences a sense of threat, such physical, psychological, or social symptoms are developed that makes teenagers vulnerable to bullying; the school culture that is oriented to adherence to the rules of communication and mutual respect in the group reduces the likelihood of a teenager to become a victim; consequently, when a teenager has a sense of wellness even in combination with aggression, this sense reduces the likelihood of a teenager to become a victim.

Keywords: bullying, adolescence, aggression, school climate

Procedia PDF Downloads 30
5196 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery

Authors: Mohammadreza Mohebbi, Masoumeh Sanagou

Abstract:

The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.

Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics

Procedia PDF Downloads 297
5195 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market

Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro

Abstract:

Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.

Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model

Procedia PDF Downloads 243
5194 School Based Assessment Issues in Selected Malaysian Primary Schools

Authors: Nur Amalina Dayana Abd Aziz

Abstract:

Assessment is an integral part of teaching and learning in any syllabus in the world. Recently, a new assessment system, School-Based Assessment (SBA) was introduced and implemented in the Malaysian education system to promote a more holistic, integrated and balanced assessment system. This effort is part of the reformation made in the Government Transformation Plan (GTP) to produce a world-class human capital as we are reaching and achieving the Vision 2020 in the near future. However, this new change has raised awareness and concerns from teachers, students, parents and non-profit organizations on how the new assessment is to be implemented and how it is affecting the students and teachers particularly. Therefore, this paper aims to investigate the issues that teachers face in implementing SBA in primary schools, the measures taken to address the issues and to propose ways of managing school-based assessment. Five national primary schools focusing in the urban areas in the Selangor state are chosen for this study to carry out. Data for the study will be gathered from interviews with teachers from each school, surveys and classrooms observation will be conducted in each school, and relevant documents are collected from the selected schools. The findings of this study will present the current issues that teachers from various types of national primary schools are facing and what actions they took to overcome the problems in carrying out SBA. Suggestions on how to better manage school-based assessment for teachers are also provided in this paper.

Keywords: community of practice, curriculum, managing change, school-based assessment

Procedia PDF Downloads 426
5193 Micropolitical Leadership in a Taiwanese Primary School

Authors: Hsin-Jen Chen

Abstract:

Primary schooling in Taiwan is in a process of radical restructuring during the decade. At the center of these restructuring is the position of the principal and questions to do with how principals, as school leaders, respond to radical change. Adopting a case-study approach, the study chose a middle Taiwanese primary school to investigate how the principal learned to be political. Using micropolitical leadership, the principal at the researched site successfully coped with internal change and external demands. On the whole, judging from the principal’s leadership style on the mediation between parents and teachers, as well as school-based curriculum development, it could be argued that the principal was on the stance of being a leader of the cultural transformation instead of cultural reproduction. In doing so, the qualitative evidence has indicated that the principal seemed to be successful in coping with the demands of rapid change. Continuing learning for leadership is the core of working as a principal.

Keywords: micropolitics, leadership, micropolitical leadership, learning for leadership

Procedia PDF Downloads 232
5192 Impact of Mid-Day Meal on Nutritional Status of Primary School Children in Haryana, India

Authors: Vinti Davar

Abstract:

India is one among the many countries where child malnutrition is severe and also a major underlying cause of child mortality. The Mid Day Meal (MDM) program was launched to improve the nutritional status of children, attendance, and retention in schools. It was based on one meal provided to the children, who are attending elementary school (primary school). The objective of present study was to evaluate the impact of mid-day meal on the nutritional status of primary school children in Haryana, India. The present work was carried out on 1200 children between 6-11years of age, studying in primary schools in Haryana, India. Out of these 960 students as, the experimental group was selected from schools where mid-day meal is supplied by the government, and 240 students as control group where mid-day meal is not supplied. The mean height, weight, and BMI of children of both the groups were found to be significantly low as compared to NCHS standards. Stunting was found in 56.40% MDMB (Mid-day meal beneficiaries) and 62.50 % NMDMC (non- mid-day meal children).The weight of almost all subjects were low according to age indicating thinness. Anemia was more prevalent in MDMB as compared to NMDMC may be because school meals did not include vegetables. The consumption of energy, proteins, fat, calcium, iron, vitamins was significantly low (P ≤ .01) in both groups especially in girls of NMDM. The consumption of various food groups except vegetables was better in MDMB compared to NMDMC. It is concluded that with certain improvements, mid-meal can be beneficial in meeting everyday requirements of school going children.

Keywords: foods, meals, nutritional status, school going children

Procedia PDF Downloads 306
5191 Exploration of Perceived Value of a Special Education Laws and Ethics’ Course Impact on Administrator Capacity

Authors: Megan Chaney

Abstract:

In the United States, research continues to show school administrators do not view themselves as adequately prepared in the area of special education. Often, special education is an omitted topic of study for school administrator preparation programs. The majority of special education teachers do not view their principals as well-prepared to support them in the educational context. Administrator preparation in the area of special education may begin at the foundational levels of understanding but is fundamentally an equity issue when serving individuals from marginalized populations with an urgent need to increase inclusionary practices. Special education and building-level administrators have a direct impact on teacher quality, instructional practices, inclusion, and equity with the opportunity to shape positive school culture. The current study was situated within an innovative IHE/LEA partnership pathway implemented with current K-12 administrators earning a Mild/Moderate Education Specialist Credential or coursework equivalent. Specifically, the study examined administrator’s perception of the Special Education Laws and Ethics’ course value and impact on the capacity to serve children with exceptionalities within the comprehensive school site context.

Keywords: special education laws and ethics, school adminstrator perspectives, school administrator training, inclusive practices

Procedia PDF Downloads 109
5190 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 177
5189 A Critical-Quantitative Approach to Examine the Effects of Systemic Factors on Education Outcomes

Authors: Sireen Irsheid

Abstract:

Despite concerted efforts to improve education attainment with progress in recent years, student achievement and attainment remain among the most significant challenges for school districts across the United States. Many scholars have argued that students who do not complete high school do not drop out of school voluntarily but are ‘pushed out’ of schools through multiple mechanisms related to structural and socioeconomic barriers, behavioral health challenges, pedagogical practices, and administrative procedures. Extant literature has shown that living in historically disadvantaged neighborhoods or attending under-resourced schools exacerbates student-level risk factors for grade retention and school pushout. Most efforts to respond to the school pushout phenomenon have focused on individual characteristics of students, with relatively little attention to addressing these multiple system-level characteristics related to perpetuating inequities. This study is built on a growing body of social justice-oriented research concerned with the systemic influences that shape the experiences and mental health challenges of young people. Specifically, this study examined how young people who have been experiencing education inequities make meaning and navigate the structural factors related to neighborhood and school disinvestment and access to resources and supports, and their risk for school pushout. Furthermore, schools as political, cultural, and ideologically reproductive spaces often serve as sites of resistance and can support students who are impacted by educational inequity. Study findings provide education, neighborhood, school psychology, social work practice, and policy considerations.

Keywords: education policy, mental health, school prison nexus, school pushout, structural trauma

Procedia PDF Downloads 62
5188 Perception of Inclusion in Higher Education

Authors: Hoi Nga Ng, Kam Weng Boey, Chi Wai Kwan

Abstract:

Supporters of Inclusive education proclaim that all students, regardless of disabilities or special educational needs (SEN), have the right to study in the normal school setting. It is asserted that students with SEN would benefit in academic performance and psychosocial adjustment via participation in common learning activities within the ordinary school system. When more and more students of SEN completed their early schooling, institute of higher education become the setting where students of SEN continue their learning. This study aimed to investigate the school well-being, social relationship, and academic self-concept of students of SEN in higher education. The Perception of Inclusion Questionnaire (PIQ) was used as the measuring instruments. PIQ was validated and incorporated in a questionnaire designed for online survey. Participation was voluntary and anonymous. A total of 90 students with SEN and 457 students without SEN responded to the online survey. Results showed no significant differences in school well-being and social relationship between students with and without SEN, but students with SEN, particularly those with learning and development impairment and those with mental illness and emotional problems, were significantly poorer in academic self-concept. Implications of the findings were discussed.

Keywords: ccademic self-concept, school well-being, social relationship, special educational needs

Procedia PDF Downloads 184
5187 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 498
5186 Experimental Study on the Effectiveness of Extracurricular Football Training for Improving Primary Students Physical Fitness

Authors: Yizhi Zhang, Xiaozan Wang, Mingming Guo, Pengpeng Li

Abstract:

Introduction: The purpose of this study is to examine the effectiveness of after-school football training in improving the physical fitness of primary school students, so as to provide corresponding suggestions for carrying out after-school football training in primary schools. Methods: A total of 72 students from the experimental primary school of Mouping district, Yantai city, Shandong province, participated in this experiment. The experiment was conducted for two semesters. During the experiment period, the experimental group conducted one-hour football training after school from Monday to Thursday afternoon every week, and two hours of football training on Saturday morning every week. The control group conducted sports teaching and extracurricular activities as usual without other intervention. Before and after the experiment, both the experimental group and the control group underwent physical fitness tests according to the physical fitness test standards of Chinese students, including lung capacity, 50-meter run, one-minute skipping rope, sitting forward flexor, and one-minute sit-ups. The test results were all converted to the 100-point system according to the scoring standards. Results: (1) Before the experiment, there was no significant difference between the experimental group and the control group in various physical fitness indicators (p > 0.05). (2) After the experiment, the lung capacity score (T = 3.108, p < 0.05), the 50-meter run score (T = 6.593, p < 0.05), the skipping score (T = 9.227, p < 0.05), the sitting forward flexor score (T = 3.742, p < 0.05), and the sit-up score (T = 5.210, p < 0.05) of the experimental group were significantly higher than that of the control group. Conclusion: This study shows that the physical fitness of primary school students can be improved by football training in their spare time. It is suggested to carry out after-school football training activities in primary schools so as to effectively improve the physical fitness of pupils.

Keywords: after-school football training, physical fitness, primary school students, school sports

Procedia PDF Downloads 137
5185 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 419
5184 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 109
5183 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 127
5182 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 231
5181 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 105
5180 Information and Communication Technology Learning between Parents and High School Students

Authors: Yu-Mei Tseng, Chih-Chun Wu

Abstract:

As information and communication technology (ICT) has become a part of people’s lives, most teenagers born after the 1980s and grew up in internet generation are called digital natives. Meanwhile, those teenagers’ parents are called digital immigrants. They need to keep learning new skills of ICT. This study investigated that high school students helped their parents set up social network services (SNS) and taught them how to use ICT. This study applied paper and pencil anonymous questionnaires that asked the ICT learning and ICT products using in high school students’ parents. The sample size was 2,621 high school students, including 1,360 (51.9%) males and 1,261 (48.1%) females. The sample was from 12 high school and vocational high school in central Taiwan. Results from paired sample t-tests demonstrated regardless genders, both male and female high school students help mothers set up Facebook and LINE more often than fathers. In addition, both male and female high school students taught mothers to use ICT more often than fathers. Meanwhile, both male and female high school students teach mothers to use SNS more often than fathers. The results showed that intergenerational ICT teaching occurred more often between mothers and her children than fathers. It could imply that mothers play a more important role in family ICT learning than fathers, or it could be that mothers need more help regarding ICT than fathers. As for gender differences, results from the independent t-tests showed that female high school students were more likely than male ones to help their parents setup Facebook and LINE. In addition, compared to male high school students, female ones were more likely to teach their parents to use smartphone, Facebook and LINE. However, no gender differences were detected in teaching mothers. The gender differences results suggested that female teenagers offer more helps to their parents regarding ICT learning than their male counterparts. As for area differences, results from the independent t-tests showed that the high school in remote area students were more likely than metropolitan ones to teach parents to use computer, search engine and download files of audio and video. The area differences results might indicate that remote area students were more likely to teach their parents how to use ICT. The results from this study encourage children to help and teach their parents with ICT products.

Keywords: adult ICT learning, family ICT learning, ICT learning, urban-rural gap

Procedia PDF Downloads 177
5179 Mentoring Relationships as Social Capital in the Career Advancement of Women of Color

Authors: Ligia Alberto

Abstract:

This study examined the underrepresentation of women of color in school leadership roles. Using social capital as the theoretical framework, this study explored the role of mentoring relationships in the career advancement and promotion of Latina school leaders. This study showed that informal mentoring relationships are essential to the promotion of women of color. Most of the mentoring relationships were established through close work with their immediate supervisors. This study suggests having informal mentors facilitated Latina women's aspirations to become school leaders and counteract the pattern of underrepresentation of Latinas in such roles.

Keywords: women of color, school leadership, social capital, mentoring

Procedia PDF Downloads 94
5178 The Cardiac Diagnostic Prediction Applied to a Designed Holter

Authors: Leonardo Juan Ramírez López, Javier Oswaldo Rodriguez Velasquez

Abstract:

We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.

Keywords: attractor , cardiac, entropy, holter, mathematical , prediction

Procedia PDF Downloads 169
5177 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
5176 5iD Viewer: Observation of Fish School Behaviour in Labyrinths and Use of Semantic and Syntactic Entropy for School Structure Definition

Authors: Dalibor Štys, Kryštof M. Stys, Maryia Chkalova, Petr Kouba, Aliaxandr Pautsina, Dalibor Štys Jr., Jana Pečenková, Denis Durniev, Tomáš Náhlík, Petr Císař

Abstract:

In this article, a construction and some properties of the 5iD viewer, the system recording simultaneously five views of a given experimental object is reported. Properties of the system are demonstrated on the analysis of fish schooling behavior. It is demonstrated the method of instrument calibration which allows inclusion of image distortion and it is proposed and partly tested also the method of distance assessment in the case that only two opposite cameras are available. Finally, we demonstrate how the state trajectory of the behavior of the fish school may be constructed from the entropy of the system.

Keywords: 3D positioning, school behavior, distance calibration, space vision, space distortion

Procedia PDF Downloads 390
5175 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425