Search results for: root angle
2285 Effect of Muscle Energy Technique on Anterior Pelvic Tilt in Lumbar Spondylosis Patients
Authors: Enas El Sayed Abutaleb, Mohamed Taher Eldesoky, Shahenda Abd El Rasol
Abstract:
Background: Muscle energy techniques (MET) have been widely used by manual therapists over the past years, but still limited research validated its use and there was limited evidence to substantiate the theories used to explain its effects. Objective: To investigate the effect of muscle energy technique (MET) on anterior pelvic tilt in patients with lumbar spondylosis. Design: Randomized controlled trial. Subjects: Thirty patients with anterior pelvic tilt from both sexes were involved, aged between 35 to 50 years old and they were divided into MET and control groups with 15 patients in each. Methods: All patients received 3 sessions/week for 4 weeks where the study group received MET, Ultrasound and Infrared, and the control group received U.S and I.R only. Pelvic angle was measured by palpation meter, pain severity by the visual analogue scale and functional disabilities by the Oswestry disability index. Results: Both groups showed significant improvement in all measured variables. The MET group was significantly better than the control group in pelvic angle, pain severity, and functional disability as p-value were (0.001, 0.0001, 0.0001) respectively. Conclusion and implication: The study group fulfilled greater improvement in all measured variables than the control group which implies that application of MET in combination with U.S and I.R were more effective in improving pelvic tilting angle, pain severity and functional disabilities than using electrotherapy only.Keywords: anterior pelvic tilt, lumbar spondylosis, muscle energy technique exercise, pelvic tilting angle
Procedia PDF Downloads 3952284 Non-Universality in Barkhausen Noise Signatures of Thin Iron Films
Authors: Arnab Roy, P. S. Anil Kumar
Abstract:
We discuss angle dependent changes to the Barkhausen noise signatures of thin epitaxial Fe films upon altering the angle of the applied field. We observe a sub-critical to critical phase transition in the hysteresis loop of the sample upon increasing the out-of-plane component of the applied field. The observations are discussed in the light of simulations of a 2D Gaussian Random Field Ising Model with references to a reducible form of the Random Anisotropy Ising Model.Keywords: Barkhausen noise, Planar Hall effect, Random Field Ising Model, Random Anisotropy Ising Model
Procedia PDF Downloads 3882283 Endophytic Fungi Recovered from Lycium arabicum as an Eco-Friendly Alternative for Fusarium Crown and Root Rot Disease Control and Tomato Growth Enhancement
Authors: Ahlem Nefzi, Rania Aydi Ben Abdallah, Hayfa Jabnoun-Khiareddine, Ammar Nawaim, Rabiaa Haouala, Mejda Daami-Remadi
Abstract:
Seven endophytic fungi were isolated from the wild Solanaceous species Lycium arabicum growing in the Tunisian Centre-East and were assessed for their ability to suppress Fusarium Crown and Root Rot disease caused by Fusarium oxysporum f. sp. radicis lycopersici (FORL) and to enhance plant growth. Fungal isolates were shown able to colonize tomato cv. Rio Grande roots, crowns, and stems. A significant promotion in all studied growth parameters (root length, shoot height, and roots and shoots fresh weight) was recorded in tomato plants treated with fungal conidial suspensions or their cell-free culture filtrates compared to FORL-inoculated or pathogen-free controls. I15 and I18 isolates were shown to be the most effective leading to 85.7-87.5 and 93.6-98.4% decrease in leaf and root damage index and the vascular discoloration extent, respectively, over FORL-inoculated and untreated control. These two bioactive and growth-promoting isolates (I15 and I18) were morphologically characterized and identified using rDNA sequencing gene as being Alternaria alternata (MF693801) and Fusarium fujikuroi (MF693802). These fungi significantly suppressed FORL mycelial growth and showed chitinolytic, proteolytic and amylase activities whereas only F. fujikuroi displayed a lipolytic activity. This study clearly demonstrated the potential use of fungi naturally associated with L. arabicum as biocontrol and bio-fertilizing agents.Keywords: biocontrol, endophytic fungi, Fusarium oxysporum f. sp. radicis-lycopersici, tomato promotion, Lycium arabicum
Procedia PDF Downloads 1732282 Production of Alcohol from Sweet Potato
Authors: Abhishek S. Shete
Abstract:
There is nothing new in the use of alcohol made from root crops as a motor fuel. Alcohol is an excellent alternative motor fuel for petrol engines. The reason alcohol fuel has not been fully exploited is that, up until now; gasoline has been cheap, available, and easy to produce. However, nowadays, crude oil is getting scarce, and the historic price difference between alcohol and gasoline is getting narrower. Alcohol fuel can be an important part of the solution for Rwanda because there is tremendous scope to use bulk production of sweet potato into alcohol. The total sweet potato production in both seasons is found to be 1.607.296 tones/year. The average productivity of sweet potato in the country irrespective of seasons is found to be 8.9 tones/ha. If all of the available agricultural surplus were converted to ethanol, alcohol would supply less than 5% of motor fuel needs.Keywords: root crops, sweet potato, surplus, alcohol
Procedia PDF Downloads 4232281 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants
Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin
Abstract:
Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants
Procedia PDF Downloads 2882280 Nonstationarity Modeling of Economic and Financial Time Series
Authors: C. Slim
Abstract:
Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.Keywords: stationarity, unit root tests, economic time series, ADF tests
Procedia PDF Downloads 4222279 BROTHERS: World-class Ergonomic Sofa Development
Authors: Aminur Rahman
Abstract:
The Unique feature of BROTHERS Furniture sofa stands in ergonomic Design, skilled hand work and art work. Present world market is passing through a contentious competitive situation that is rapidly and dramatic. Competitive strategy concerns how to create competitive advantage in upholstery businesses. In order to competitive advantage in upholstery sofa market, Design and develop a sofa that have to ergonomic features. Design an ergonomic upholstery sofa knowing and understanding the appropriate seat depth, seat height, angle between Seat & back, back height which is concurrent market demand, world class sofa has to incorporate ergonomic factors. The study the relationships between human, seat and context variables comfort and discomfort. We must have conduct market survey among users whose are need and use sofa. Health & safety factors should be examined from a variety of angle. An attractive design and meet customer requirements, ergonomically fit should be considered for sofa development. This paper will explain how to design & develop sofa’s as per standard specifications which have ergonomic features for users all over the world.Keywords: ergonomics, angle between seat & back, standard dimension, seat comfort
Procedia PDF Downloads 1382278 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks
Authors: Andrew N. Saylor, James R. Peters
Abstract:
Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging
Procedia PDF Downloads 1292277 Cryptolepis sanguinolenta - A Medicinal Plant Used in the Treatment of Malaria, Cultivate It or Lose It
Authors: J. Naalamle Amissah, Dorcas Osei‐Safo, C. M. Asare, Benjamin Missah‐Assihene, Eric. Y. Danquah, Ivan Addae‐Mensah
Abstract:
Medicinal plants serve as a reservoir of active ingredients for the treatment of common ailments such as cancer, malaria and diabetes. With the recent wave of health consciousness and reliance on plant based medicines, the demand for medicinal plants has increased considerably. This surge in medicinal plant use has raised great concern amongst key players (herbalist, collectors, conservationist and researchers) along the value chain about the sustainability of the raw material. The over reliance on wild crafting as a means to obtain the raw material spells doom for several of Africa’s native medicinal plant species. In this study domestication protocols for the cultivation of Cryptolepis sanguinolenta (CS), a medicinal plant used in the treatment of malaria were developed. Initial surveys were conducted, using questionnaires comprising of open and close ended questions, to gather information that would inform the domestication and cultivation of the species. A field study was then conducted to determine the plant’s cropping cycle and the effect of staking and plant age on the active ingredient (cryptolepine) concentration in its roots. Results of the survey confirmed the demand for the raw material and threw more light on the harvesting methods and intensity of CS collection from the wild. Cryptolepine concentration was found to be highest (~1.84 mg/100 mg of root material) at 289 days after planting (DAP) which coincided with the peak of root dry weight (52.8 g), signifying the best time for root harvest. Staking was found to be important for seed production. The first 105 DAP were characterized by low yields of root dry weight (13.5 g), followed by a period of rapid growth in which the root dry weight increased almost linearly until 289 DAP. Although dry matter partitioned to the vines increased towards the end of the experimental period (60%), dry matter partitioned to the roots remained fairly constant (30%) throughout the experimental period. Cryptolepine was found to increase as the plant aged and the practice of staking CS promoted pod formation. A suitable cropping cycle for the cultivation of CS was also developed.Keywords: domestication, staking, conservation, wild harvesting
Procedia PDF Downloads 3852276 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer
Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang
Abstract:
The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer
Procedia PDF Downloads 1122275 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma
Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar
Abstract:
Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene
Procedia PDF Downloads 1842274 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat
Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar
Abstract:
One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency
Procedia PDF Downloads 2482273 Design and Evaluation of Corrective Orthosis Knee for Hyperextension
Authors: Valentina Narvaez Gaitan, Paula K. Rodriguez Ramirez, Derian D. Espinosa
Abstract:
Corrective orthosis has great importance in orthopedic treatments providing assistance in improving mobility and stability in order to improve the quality of life for a different patient. The corrective orthosis studied in this article can correct deformities, reduce pain, and improve the ability to perform daily activities. This work describes the design and evaluation of a corrective orthosis for knee hyperextension. This orthosis is capable of generating a progressive and variable alignment of the joint, limiting the range of motion according to medical criteria. The main objective was to design a corrective knee orthosis capable of correcting knee hyperextension progressively to return to its natural angle with greater economic affordability and adjustable size. The limiting mechanism is based on a goniometer to determine the desired angles. The orthosis was made of acrylic to reduce costs and maintenance; neoprene is also used to make comfortable contact; additionally, Velcro was used in order to adjust the orthosis for various sizes. Simulations of static and fatigue analysis of the mechanism were performed to verify its resistance and durability under normal conditions. A biomechanical gait study of gait was carried out on 10 healthy subjects without the orthosis and limiting their knee extension capacity in a normal gait cycle with the orthosis to observe the efficiency of the proposed system. In the results obtained, the knee angle curves show that the maximum extension angle was the established angle by the orthosis. Showing the efficiency of the proposed design for different leg sizes.Keywords: biomechanical study, corrective orthosis, efficiency, goniometer, knee hyperextension.
Procedia PDF Downloads 812272 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass
Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym
Abstract:
Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.Keywords: contact angle, plasma, superhydrophobic, surface free energy
Procedia PDF Downloads 4812271 DOA Estimation Using Golden Section Search
Authors: Niharika Verma, Sandeep Santosh
Abstract:
DOA technique is a localization technique used in the communication field. Various algorithms have been developed for direction of arrival estimation like MUSIC, ROOT MUSIC, etc. These algorithms depend on various parameters like antenna array elements, number of snapshots and various others. Basically the MUSIC spectrum is evaluated and peaks obtained are considered as the angle of arrivals. The angles evaluated using this process depends on the scanning interval chosen. The accuracy of the results obtained depends on the coarseness of the interval chosen. In this paper, golden section search is applied to the MUSIC algorithm and therefore, more accurate results are achieved. Initially the coarse DOA estimations is done using the MUSIC algorithm in the range -90 to 90 degree at the interval of 10 degree. After the peaks obtained then fine DOA estimation is done using golden section search. Also, the partitioning method is applied to estimate the number of signals incident on the antenna array. Dependency of the algorithm on the number of snapshots is also being explained. Hence, the accurate results are being determined using this algorithm.Keywords: Direction of Arrival (DOA), golden section search, MUSIC, number of snapshots
Procedia PDF Downloads 4462270 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs
Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen
Abstract:
This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity
Procedia PDF Downloads 3562269 Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake
Authors: Amir B. Khoshnevis, Morteza Mirhosseini
Abstract:
The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform.Keywords: angle of attack, Reynolds number, velocity deficit, separation
Procedia PDF Downloads 3772268 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson
Authors: R. O. Anyasi, H. I. Atagana
Abstract:
In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor
Procedia PDF Downloads 3802267 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations
Authors: Karthikeyan Kalirajan, Ashok Joshi
Abstract:
An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection
Procedia PDF Downloads 4272266 Investigating the Effect of Plant Root Exudates and of Saponin on Polycyclic Aromatic Hydrocarbons Solubilization in Brownfield Contaminated Soils
Authors: Marie Davin, Marie-Laure Fauconnier, Gilles Colinet
Abstract:
In Wallonia, there are 6,000 estimated brownfields (rising to over 3.5 million in Europe) that require remediation. Polycyclic Aromatic Hydrocarbons (PAHs) are a class of recalcitrant carcinogenic/mutagenic organic compounds of major concern as they accumulate in the environment and represent 17% of all encountered pollutants. As an alternative to environmentally aggressive, expensive and often disruptive soil remediation strategies, a lot of research has been directed to developing techniques targeting organic pollutants. The following experiment, based on the observation that PAHs soil content decreases in the presence of plants, aimed at improving our understanding of the underlying mechanisms involved in phytoremediation. It focusses on plant root exudates and whether they improve PAHs solubilization, which would make them more available for bioremediation by soil microorganisms. The effect of saponin, a natural surfactant found in some plant roots such as members of the Fabaceae family, on PAHs solubilization was also investigated as part of the implementation of the experimental protocol. The experiments were conducted on soil collected from a brownfield in Saint-Ghislain (Belgium) and presenting weathered PAHs contamination. Samples of soil were extracted with different solutions containing either plant root exudates or commercial saponin. Extracted PAHs were determined in the different aqueous solutions using High-Performance Liquid Chromatography and Fluorimetric Detection (HPLC-FLD). Both root exudates of alfalfa (Medicago sativa L.) or red clover (Trifolium pratense L.) and commercial saponin were tested in different concentrations. Distilled water was used as a control. First of all, results show that PAHs are more extracted using saponin solutions than distilled water and that the amounts generally rise with the saponin concentration. However, the amount of each extracted compound diminishes as its molecular weight rises. Also, it appears that passed a certain surfactant concentration, PAHs are less extracted. This suggests that saponin might be investigated as a washing agent in polluted soil remediation techniques, either for ex-situ or in-situ treatments, as an alternative to synthetic surfactants. On the other hand, preliminary results on experiments using plant root exudates also show differences in PAHs solubilization compared to the control solution. Further results will allow discussion as to whether or not there are differences according to the exudates provenance and concentrations.Keywords: brownfield, Medicago sativa, phytoremediation, polycyclic aromatic hydrocarbons, root exudates, saponin, solubilization, Trifolium pratense
Procedia PDF Downloads 2532265 Evaluation of Existing Wheat Genotypes of Bangladesh in Response to Salinity
Authors: Jahangir Alam, Ayman El Sabagh, Kamrul Hasan, Shafiqul Islam Sikdar, Celaleddin Barutçular, Sohidul Islam
Abstract:
The experiment (Germination test and seedling growth) was carried out at the laboratory of Agronomy Department, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh during January 2014. Germination and seedling growth of 22 existing wheat genotypes in Bangladesh viz. Kheri, Kalyansona, Sonora, Sonalika, Pavon, Kanchan, Akbar, Barkat, Aghrani, Prativa, Sourab, Gourab, Shatabdi, Sufi, Bijoy, Prodip, BARI Gom 25, BARI Gom 26, BARI Gom 27, BARI Gom 28, Durum and Triticale were tested with three salinity levels (0, 100 and 200 mM NaCl) for 10 days in sand culture in small plastic pot. Speed of germination as expressed by germination percentage (GP), rate of germination (GR), germination coefficient (GC) and germination vigor index (GVI) of all wheat genotypes was delayed and germination percentage was reduced due to salinization compared to control. The lower reduction of GP, GR, GC and VI due to salinity was observed in BARI Gom 25, BARI Gom 27, Shatabdi, Sonora, and Akbbar and higher reduction was recorded in BARI Gom 26, Duram, Triticale, Sufi and Kheri. Shoot and root lengths, fresh and dry weights were found to be affected due to salinization and shoot was more affected than root. Under saline conditions, longer shoot and root length were recorded in BARI Gom 25, BARI Gom 27, Akbar, and Shatabdi, i.e. less reduction of shoot and root lengths was observed while, BARI Gom 26, Duram, Prodip and Triticale produced shorted shoot and root lengths. In this study, genotypes BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed better performance in terms shoot and root growth (fresh and dry weights) and proved to be tolerant genotypes to salinity. On the other hand, Duram, BARI Gom 26, Triticale, Kheri and Prodip affected seriously in terms of fresh and dry weights by the saline environment. BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed more salt tolerance index (STI) based on shoot dry weight while, BARI Gom 26, Triticale, Durum, Sufi, Prodip and Kalyanson demonstrate lower STI value under saline conditions. Based on the most salt tolerance and susceptible trait, genotypes under 100 and 200 mM NaCl stresses can be arranged as salt tolerance genotypes: BARI Gom 25> BARI Gom 27> Shatabdi> Sonora, and salt susceptible genotypes: BARI Gom 26> Durum> Triticale> Prodip> Sufi> Kheri. Considering the experiment, it can be concluded that the BARI Gom 25 may be treated as the most salt tolerant and BARI Gom 26 as the most salt sensitive genotypes in Bangladesh.Keywords: genotypes, germination, salinity, wheat
Procedia PDF Downloads 3062264 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness
Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem
Abstract:
Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow
Procedia PDF Downloads 5412263 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 1992262 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis
Authors: Fahad Qureshi
Abstract:
This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.Keywords: exhaust side bearing, Gas turbine, rubbing, vibration
Procedia PDF Downloads 1862261 Chronic and Sub-Acute Lumbosacral Radiculopathies Behave Differently to Repeated Back Extension Exercises
Authors: Sami Alabdulwahab
Abstract:
Background: Repeated back extension exercises (RBEEs) are among the management options for symptoms associated with lumbosacral radiculopathy (LSR). RBEEs have been reported to cause changes in the distribution and intensity of radicular symptoms caused by possible compression/decompression of the compromised nerve root. Purpose: The purpose of this study was to investigate the effects of the RBEEs on the neurophysiology of the compromised nerve root and on standing mobility and pain intensity in patients with sub-acute and chronic LSR. Methods: A total of 40 patients with unilateral sub-acute/chronic lumbosacral radiculopathy voluntarily participated in the study; the patients performed 3 sets of 10 RBEEs in the prone position with 1 min of rest between the sets. The soleus H-reflex, standing mobility and pain intensity were recorded before and after the RBEEs. Results: The results of the study showed that the RBEEs significantly improved the H-reflex, standing mobility and pain intensity in patients with sub-acute LSR (p<0.01); there was not a significant improvement in the patients with chronic LSR (p<0.61). Conclusion: RBEEs in prone position is recommended for improving the neurophysiological function of the compromised nerve root and standing mobility in patients with sub-acute LSR. Implication: Sub-acute and chronic LSR responded differently to RBEEs. Sub-acute LSR appear to have flexible and movable disc structures, which could be managed with RBEEs.Keywords: h-reflex, back extension, lumbosacral radiculopathy, pain
Procedia PDF Downloads 4782260 Salinity Response of Some Chickpea (Cicer arietinum L.) Genotypes in Germination and Seedling Growth of Periods
Authors: Onder Aldemir, Ercan Ceyhan
Abstract:
The research was conducted to determine effects of salt concentrations on emergence and seedling development of chickpea genotypes. Trials were performed during the year of 2013 on the laboratory and greenhouse of Agricultural Faculty, Selcuk University. Emergency trial was set up according to ‘Randomized Plots Design’ by two factors and four replications; greenhouse trial was also set up according to ‘Randomized Plots Design’ by two factors with three replications. The chickpea genotypes; CA119, CA132, CA149, CA150, CA215, CA222, CA235, CA261, Bozkır and Gokce were used as material for both of the trials. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility, length of shoot and root, fresh weight of shoot and root, dry weight of shoot and root, index of salt tolerance were evaluated. Responses of the chickpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the chickpea genotypes showed significant reduction by depending on the increasing salt level. According to the effects of salt application, the chickpea genotypes Gokce, CA215 and CA222 were the most tolerant in respect to plant dry weights while the chickpea genotypes CA149 and CA150 were the most sensitive.Keywords: chickpea, emergence, salt tolerant, seedling development
Procedia PDF Downloads 2342259 Safety Assessment of Tuberous Roots of Boerhaavia diffusa Root Extract: Acute and Sub-Acute Toxicity Studies
Authors: Surender Singh, Yogendra Kumar Gupta
Abstract:
Boerhaavia diffusa (BD) Linn. belonging to family Nyctaginaceae is a herbaceous plant and known as ‘punarnava’ in Hindi, used as herbal medicine for pain relief and various ailments. It is widely used as a green leafy vegetable in many Asian and African countries. The objective of present study was to investigate potential adverse effects, if any, of standardized root extract of Boerhaavia diffusa in rats following subchronic administration. In acute toxicity study, no mortality was found at a dose of 2000mg/kg which indicates that oral LD50 of Boerhaavia diffusa root extract is more than 2000mg/kg. The chronic administration of Boerhaavia diffusa for 28 days at a dose of 1000mg/kg body weight did not produce any significant changes in hematological (RBC, WBC, platelets, hemoglobin, bleeding time, clotting time) and biochemical (triglycerides, blood glucose, high density lipoprotein, serum creatinine, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase) parameters of male and female rats as compared to normal control group. All the animals survived until the scheduled necropsy, and their physical and behavioral examinations did not reveal any treatment-related adverse effects. No pathological changes were observed in histological section of heart, kidney, liver, testis, ovaries and brain of Boerhaavia diffusa treated male and female rats as compared to normal control animals.These observations from oral acute toxicitystudy suggest that the extract is practically non-toxic. Thus, it can be inferred that the Boerhaavia diffusa root extract at levels up to 1000 mg/kg/day was found to be safe and does not cause adverse effects in rats. So, the no-observed effect level (NOAEL) of the extract was found to be 1000mg/kg/day.Keywords: Boerhaavia diffusa, histology, toxicity, sub-acute
Procedia PDF Downloads 2712258 Interaction of Local, Flexural-Torsional, and Flexural Buckling in Cold-Formed Steel Lipped-Angle Compression Members
Authors: K. C. Kalam Aswathy, M. V. Anil Kumar
Abstract:
The possible failure modes of cold-formed steel (CFS) lipped angle (LA) compression members are yielding, local, flexural-torsional, or flexural buckling, and any possible interaction between these buckling modes. In general, the strength estimated by current design guidelines is conservative for these members when flexural-torsional buckling (FTB) is the first global buckling mode, as the post-buckling strength of this mode is not accounted for in the global buckling strength equations. The initial part of this paper reports the results of an experimental and numerical study of CFS-LA members undergoing independent FTB. The modifications are suggested to global buckling strength equations based on these results. Subsequently, the reduction in the ultimate strength from strength corresponding to independent buckling modes for LA members undergoing interaction between buckling modes such as local-flexural torsional, flexural-flexural torsional, local-flexural, and local-flexural torsional-flexural are studied systematically using finite element analysis results. A simple and more accurate interaction equation that accounts for the above interactions between buckling modes in CFS-LA compression members is proposed.Keywords: buckling interactions, cold-formed steel, flexural-torsional buckling, lipped angle
Procedia PDF Downloads 872257 Numerical Study of a Nanofluid in a Truncated Cone
Authors: B. Mahfoud, A. Bendjaghlouli
Abstract:
Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.Keywords: heat source, truncated cone, nanofluid, natural convection
Procedia PDF Downloads 3082256 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity
Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro
Abstract:
The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet
Procedia PDF Downloads 410