Search results for: no load test
11040 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino
Abstract:
In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators
Procedia PDF Downloads 43311039 The Shape Memory Recovery Properties under Load of a Polymer Composite
Authors: Abdul Basit, Gildas Lhostis, Bernard Durand
Abstract:
Shape memory polymers (SMPs) are replacing shape memory alloys (SMAs) in many applications as SMPs have certain superior properties than SMAs. However, SMAs possess some properties like recovery under stress that SMPs lack. SMPs cannot give complete recovery even under a small load. SMPs are initially heated close to their transition temperature (glass transition temperature or the melting temperature). Then force is applied to deform the heated SMP to a specific position. Subsequently, SMP is allowed to cool keeping it deformed. After cooling, SMP gets the temporary shape. This temporary shape can be recovered by heating it again at the same temperature that was given it while heating it initially. As a result, it will recover its original position. SMP can perform unconstrained recovery and constrained recovery, however; under the load, it only recovers partially. In this work, the recovery under the load of an asymmetrical shape memory composite called as CBCM-SMPC has been investigated. It is found that it has the ability to recover under different loads. Under different loads, it shows powerful complete recovery in reference to initial position. This property can be utilized in many applications.Keywords: shape memory, polymer composite, thermo-mechanical testing, recovery under load
Procedia PDF Downloads 43811038 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass
Authors: Martin Botz, Michael Kraus, Geralt Siebert
Abstract:
The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity
Procedia PDF Downloads 12111037 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams
Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar
Abstract:
An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.Keywords: basalt fiber, steel fiber, reinforced concrete beams, flexural behavior
Procedia PDF Downloads 15211036 A Study on Design for Parallel Test Based on Embedded System
Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun
Abstract:
With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)
Procedia PDF Downloads 30511035 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR
Authors: J. R. Wang, H. C. Chang, A. L. Ho, J. H. Yang, S. W. Chen, C. Shih
Abstract:
The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.Keywords: ABWR, TRACE, PARCS, SNAP
Procedia PDF Downloads 19711034 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore
Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski
Abstract:
Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.Keywords: solar insulation film, building energy efficiency, tropics, cooling load
Procedia PDF Downloads 19311033 Assessment of Solar Hydrogen Production in Energetic Hybrid PV-PEMFC System
Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui
Abstract:
This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.Keywords: electrolyzer, hydrogen, hydrogen fueled cell, photovoltaic
Procedia PDF Downloads 49211032 The Acute Effects of Higher Versus Lower Load Duration and Intensity on Morphological and Mechanical Properties of the Healthy Achilles Tendon: A Randomized Crossover Trial
Authors: Eman Merza, Stephen Pearson, Glen Lichtwark, Peter Malliaras
Abstract:
The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared to interventions involving a lower level of load duration and intensity. Sixteen healthy participants (12 males, 4 females; age= 24.4 ± 9.4 years; body mass= 70.9 ± 16.1 kg; height= 1.7 ± 0.1 m) performed three isometric interventions of varying levels of load duration (2 s and 8 s) and intensity (35% and 75% maximal voluntary isometric contraction) over a 3 week period. Freehand 3D ultrasound was used to measure free AT volume (at rest) and length (at 35%, 55%, and 75% of maximum plantarflexion force) pre- and post-interventions. The slope of the force-elongation curve over these force levels represented individual stiffness (N/mm). Large reductions in free AT volume and stiffness resulted in response to long-duration high-intensity loading whilst less reduction was produced with a lower load intensity. In contrast, no change in free AT volume and a small increase in AT stiffness occurred with lower load duration. These findings suggest that the applied load on the AT must be heavy and sustained for a long duration to maximize immediate volume reduction, which might be an acute response that enables optimal long-term tendon adaptation via mechanotransduction pathways.Keywords: Achilles tendon, volume, stiffness, free tendon, 3d ultrasound
Procedia PDF Downloads 9911031 Factors Affecting Test Automation Stability and Their Solutions
Authors: Nagmani Lnu
Abstract:
Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of Flaky Tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for UI behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort.Keywords: automation stability, test stability, Flaky Test, test quality, test automation quality
Procedia PDF Downloads 8411030 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 44911029 Effect the Use of Steel Fibers (Dramix) on Reinforced Concrete Slab
Authors: Faisal Ananda, Junaidi Al-Husein, Oni Febriani, Juli Ardita, N. Indra, Syaari Al-Husein, A. Bukri
Abstract:
Currently, concrete technology continues to grow and continue to innovate one of them using fibers. Fiber concrete has advantages over non-fiber concrete, among others, strong against the effect of shrinkage, ability to reduce crack, fire resistance, etc. In this study, concrete mix design using the procedures listed on SNI 03-2834-2000. The sample used is a cylinder with a height of 30 cm and a width of 15cm in diameter, which is used for compression and tensile testing, while the slab is 400cm x 100cm x 15cm. The fiber used is steel fiber (dramix), with the addition of 2/3 of the thickness of the slabs. The charging is done using a two-point loading. From the result of the research, it is found that the loading of non-fiber slab (0%) of the initial crack is the maximum crack that has passed the maximum crack allowed with a crack width of 1.3 mm with a loading of 1160 kg. The initial crack with the largest load is found on the 1% fiber mixed slab, with the initial crack also being a maximum crack of 0.5mm which also has exceeded the required maximum crack. In the 4% slab the initial crack of 0.1 mm is a minimal initial crack with a load greater than the load of a non-fiber (0%) slab by load1200 kg. While the maximum load on the maximum crack according to the applicable maximum crack conditions, on the 5% fiber mixed slab with a crack width of 0.32mm by loading 1250 kg.Keywords: crack, dramix, fiber, load, slab
Procedia PDF Downloads 51411028 Material Characterization and Numerical Simulation of a Rubber Bumper
Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model
Procedia PDF Downloads 50911027 Effects of Different Load on Physiological, Hematological, Biochemical, Cytokines Indices of Zanskar Ponies at High Altitude
Authors: Prince Vivek, Vijay Kumar Bharti, Deepak Kumar, Rohit Kumar, Kapil Nehra, Dhananjay Singh, Om Prakash Chaurasia, Bhuvnesh Kumar
Abstract:
High altitude native people still rely heavily on animal transport for logistic support at eastern and northern Himalayas regions. The prevalent mountainous terrains and rugged region are not suitable for the motorized vehicle to use in logistic transport. Therefore, people required high endurance pack animals for load carrying and riding. So far to the best of our knowledge, no studies have been taken to evaluate the effect of loads on the physiology of ponies in high altitude region. So, in this view, we evaluated variation in physiological, hematological, biochemical, and cytokines indices of Zanskar ponies during load carrying at high altitude. Total twelve (12) of Zanskar ponies, mare, age 4-6 years selected for this study, Feed was offered at 2% of body weight, and water ad libitum. Ponies were divided into three groups; group-A (without load), group-B (60 kg), and group-C (80 kg) of backpack loads. The track was very narrow and slippery with gravel, uneven with a rocky surface and has a steep gradient of 4 km uphill at altitude 3291 to 3500m. When we evaluate these parameters, it is understood that the heart rate, pulse rate, and respiration rate was significantly increased in 80 kg group among the three groups. The hematology parameters viz. hemoglobin significantly increased in 80 kg group on 1st day after load carrying among the three groups which was followed by control and 60 kg whereas, PCV, lymphocytes, monocytes percentage significantly increased however, ESR and eosinophil % significantly decreased in 80 kg group after load carrying on 7th day after load carrying among the three groups which were followed by control and 60 kg group. In biochemical parameters viz. LA, LDH, TP, hexokinase (HK), cortisol (CORT), T3, GPx, FRAP and IL-6 significantly increased in 80 kg group on the 7th day after load carrying among the three groups which were followed by control and 60 kg group. The ALT, ALB, GLB, UR, and UA significantly increased in 80 kg group on the 7th day before and after load carrying among the three groups which were followed by control and 60 kg group. The CRT, AST, and CK-MB were significantly increased in 80 kg group on the 1st and 7th day after load carrying among the three groups which were followed by control and 60 kg group. It has been concluded that, heart rate, respiration rate, hematological indices like PCV, lymphocytes, monocytes, Hb and ESR, biochemical indices like lactic acid, LDH, TP, HK, CORT, T3, ALT, AST and CRT, ALB, GLB, UR, UA, GPx, FRAP and IL-6 are important biomarkers to assess effect of load on animal physiology and endurance. Further, this result has revealed the strong correlation of change in biomarkers level with performance in ponies during load carry. Hence, these parameters might be used for the performance of endurance of Zanskar ponies in the high mountain region.Keywords: biochemical, endurance, high altitude, load, ponies
Procedia PDF Downloads 28311026 Numerical Study of Modulus of Subgrade Reaction in Eccentrically Loaded Circular Footing Resting
Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade
Abstract:
This article is an attempt to present a numerically study of the behaviour of an eccentrically loaded circular footing resting on sand to determine its ultimate bearing capacity. A surface circular footing of diameter 12 cm (D) was used as shallow foundation. For this purpose, three dimensional models consist of foundation, and medium sandy soil was modelled by ABAQUS software. Bearing capacity of footing was evaluated and the effects of the load eccentricity on bearing capacity, its settlement, and modulus of subgrade reaction were studied. Three different values of load eccentricity with equal space from inside the core on the core boundary and outside the core boundary, which were respectively e=0.75, 1.5, and 2.25 cm, were considered. The results show that by increasing the load eccentricity, the ultimate load and the modulus of subgrade reaction decreased.Keywords: circular foundation, sand, eccentric loading, modulus of subgrade reaction
Procedia PDF Downloads 34611025 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges
Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini
Abstract:
Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity
Procedia PDF Downloads 34011024 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform
Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry
Abstract:
The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems
Procedia PDF Downloads 49011023 Digital Image Correlation: Metrological Characterization in Mechanical Analysis
Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano
Abstract:
The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.Keywords: accuracy, deformation, image correlation, mechanical analysis
Procedia PDF Downloads 31111022 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis
Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar
Abstract:
Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.Keywords: fatigue, journal bearing, sound signals, vibration signals, wear
Procedia PDF Downloads 8111021 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy
Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun
Abstract:
This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.Keywords: magnesium alloy, titanium, SEM, wear
Procedia PDF Downloads 33411020 Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost
Authors: Antônio P. de Araújo Neto, Ruy D. A. da Silva Neto, Juliana R. de Souza, Salete K. P. de Medeiros, João T. N. de Medeiros
Abstract:
The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient of friction and wear resistance of the specimens. The parameters known to performing the test were 300 rpm rotation, normal load of 16N and duration of 33.5 minutes. The composite with 10% mineral filler performed better, considering that the wear resistance was good when compared to the other compositions and an average low coefficient of friction, in the order of μ ≤ 0.15.Keywords: microcomposites, microparticles tailings of scheelite, PTFE, tribology
Procedia PDF Downloads 36911019 Analyzing of Arch Steel Beams with Pre-Stressed Cables
Authors: Erkan Polat, Barlas Ozden Caglayan
Abstract:
By day-to-day developed techniques, it is possible to pass through larger openings by using smaller beam-column sections. Parallel to this trend, it is aimed to produce not only smaller but also economical and architecturally more attractive beams. This study aims to explain the structural behavior of arch steel beam reinforced by using post-tension cable. Due to the effect of post-stressed cable, the arch beam load carrying capacity increases and an optimized section in a smaller size can be obtained with a better architectural view. It also allows better mechanical and applicational solutions for buildings. For better understanding the behavior of the reinforced beam, steel beam and arch steel beam with post-tensioned cable are all modeled and analyzed by using SAP2000 Finite element computer program and compared with each other. Also, full scale test specimens were prepared to test for figuring out the structural behavior and compare the results with the computer model results. Test results are very promising. The similarity of the results between the test and computer analysis shows us that there are no extra knowledge and effort of engineer is needed to calculate such beams. The predicted (and proved by tests) beam carrying capacity is 35% higher than the unreinforced beam carrying capacity. Even just three full scale tests were completed, it is seen that the ratio (%35) may be increased ahead by adjusting the cable post-tension force of beams in much smaller sizes.Keywords: arch steel beams, pre-stressed cables, finite element, specimen Test
Procedia PDF Downloads 16511018 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study
Authors: M. Ali, K. Alam, E. Ohioma
Abstract:
This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.Keywords: thermal, mechanical, composites, square tubes
Procedia PDF Downloads 38611017 Review on Wear Behavior of Magnesium Matrix Composites
Authors: Amandeep Singh, Niraj Bala
Abstract:
In the last decades, light-weight materials such as magnesium matrix composites have become hot topic for material research due to their excellent mechanical and physical properties. However, relatively very less work has been done related to the wear behavior of these composites. Magnesium matrix composites have wide applications in automobile and aerospace sector. In this review, attempt has been done to collect the literature related to wear behavior of magnesium matrix composites fabricated through various processing techniques such as stir casting, powder metallurgy, friction stir processing etc. Effect of different reinforcements, reinforcement content, reinforcement size, wear load, sliding speed and time have been studied by different researchers in detail. Wear mechanism under different experimental condition has been reviewed in detail. The wear resistance of magnesium and its alloys can be enhanced with the addition of different reinforcements. Wear resistance can further be enhanced by increasing the percentage of added reinforcements. Increase in applied load during wear test leads to increase in wear rate of magnesium composites.Keywords: hardness, magnesium matrix composites, reinforcement, wear
Procedia PDF Downloads 33211016 Study of the Stability of Underground Mines by Numerical Method: The Mine Chaabet El Hamra, Algeria
Authors: Nakache Radouane, M. Boukelloul, M. Fredj
Abstract:
Method room and pillar sizes are key factors for safe mining and their recovery in open-stop mining. This method is advantageous due to its simplicity and requirement of little information to be used. It is probably the most representative method among the total load approach methods although it also remains a safe design method. Using a finite element software (PLAXIS 3D), analyses were carried out with an elasto-plastic model and comparisons were made with methods based on the total load approach. The results were presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.Keywords: room and pillar, mining, total load approach, elasto-plastic
Procedia PDF Downloads 33011015 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns
Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar
Abstract:
Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.Keywords: concrete damaged plasticity, ground improvement, load-bearing capacity, pervious concrete pile
Procedia PDF Downloads 22911014 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Authors: Yang Zheng, Wei Sun
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: bending, creep, thin plate, materials engineering
Procedia PDF Downloads 47411013 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates
Authors: Malleshappa Japagal, Srinivas Chitragar
Abstract:
The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio
Procedia PDF Downloads 30611012 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history
Procedia PDF Downloads 18511011 The Influence of Cognitive Load in the Acquisition of Words through Sentence or Essay Writing
Authors: Breno Barrreto Silva, Agnieszka Otwinowska, Katarzyna Kutylowska
Abstract:
Research comparing lexical learning following the writing of sentences and longer texts with keywords is limited and contradictory. One possibility is that the recursivity of writing may enhance processing and increase lexical learning; another possibility is that the higher cognitive load of complex-text writing (e.g., essays), at least when timed, may hinder the learning of words. In our study, we selected 2 sets of 10 academic keywords matched for part of speech, length (number of characters), frequency (SUBTLEXus), and concreteness, and we asked 90 L1-Polish advanced-level English majors to use the keywords when writing sentences, timed (60 minutes) or untimed essays. First, all participants wrote a timed Control essay (60 minutes) without keywords. Then different groups produced Timed essays (60 minutes; n=33), Untimed essays (n=24), or Sentences (n=33) using the two sets of glossed keywords (counterbalanced). The comparability of the participants in the three groups was ensured by matching them for proficiency in English (LexTALE), and for few measures derived from the control essay: VocD (assessing productive lexical diversity), normed errors (assessing productive accuracy), words per minute (assessing productive written fluency), and holistic scores (assessing overall quality of production). We measured lexical learning (depth and breadth) via an adapted Vocabulary Knowledge Scale (VKS) and a free association test. Cognitive load was measured in the three essays (Control, Timed, Untimed) using normed number of errors and holistic scores (TOEFL criteria). The number of errors and essay scores were obtained from two raters (interrater reliability Pearson’s r=.78-91). Generalized linear mixed models showed no difference in the breadth and depth of keyword knowledge after writing Sentences, Timed essays, and Untimed essays. The task-based measurements found that Control and Timed essays had similar holistic scores, but that Untimed essay had better quality than Timed essay. Also, Untimed essay was the most accurate, and Timed essay the most error prone. Concluding, using keywords in Timed, but not Untimed, essays increased cognitive load, leading to more errors and lower quality. Still, writing sentences and essays yielded similar lexical learning, and differences in the cognitive load between Timed and Untimed essays did not affect lexical acquisition.Keywords: learning academic words, writing essays, cognitive load, english as an L2
Procedia PDF Downloads 73