Search results for: lift curve slope
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1844

Search results for: lift curve slope

1574 Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation

Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis

Abstract:

Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest.

Keywords: pseudo-PEA, resuscitation, capnography, hypoxic pseudo-PEA

Procedia PDF Downloads 194
1573 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales

Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng

Abstract:

Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.

Keywords: landslides, modelling, rainfall, suction

Procedia PDF Downloads 179
1572 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 260
1571 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis

Authors: Younes Abed

Abstract:

The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.

Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure

Procedia PDF Downloads 292
1570 Experimental Investigation of Compressed Natural Gas Injector for Direct Injection System

Authors: Rafal Sochaczewski, Grzegorz Baranski, Adam Majczak

Abstract:

This paper presents the bench research results on a CNG injector at steady state. The quantities measured included voltage and current in a solenoid, pressure of gas behind an injector and injector’s flow rate. Accordingly, injector’s operation parameters were determined according to needle’s lift and injection pressure. The discrepancies between the theoretical (electric) and actual time of injection were defined to specify injector’s opening and closing lag times and the uniqueness of these values in successive cycles of gas injection. It has been demonstrated that needle’s lift has got a stronger impact on injector’s operating parameters than injection pressure. With increasing injection pressure, the force increases and closes an injection valve, which adversely affects uniqueness of injector’s operation. The paper also describes the concept of an injector dedicated to direct CNG injection into a combustion chamber in a dual-fuel engine. The injector’s design enables us to replace 80% of diesel fuel in a dual-fuel engine with a maximum power of 85 kW. Minimum injection pressure is 1,4 MPa then. Simultaneously, injector’s characteristics for varied needle’s lifts and injector’s nonlinear operating points were developed. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS1/A6/4/2012.

Keywords: CNG injector, diesel engine, direct injection, dual fuel

Procedia PDF Downloads 276
1569 Control Flow around NACA 4415 Airfoil Using Slot and Injection

Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine

Abstract:

One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient

Keywords: CFD, control flow, lift, slot

Procedia PDF Downloads 197
1568 Fabrication of Nanostructured Arrays Using Si-Containing Block Copolymer and Dually Responsive Photoresist

Authors: Kyoungok Jung, Chang Hong Bak, Gyeong Cheon Jo, Jin-Baek Kim

Abstract:

Nanostructured arrays have drawn extensive attention because of their unique properties resulting from nanoscale features. However, it is difficult to achieve uniform and freestanding 1D nanostrcutures over a large area. Here, a simple and novel method was developed for fabrication of universal nanoporous templates for high-density nanostructure arrays, by combining self-assembly of a Si-containing block copolymer with a bilayer lithography system. We introduced a dually responsive photoresist bottom layer into which the nanopatterns of block copolymer are transferred by oxygen reactive ion etching. Because the dually responsive layer becomes cross-linked by heating, it can be used as a hard template during the etching process. It becomes soluble again by chain scission upon exposure to light. Therefore, it can be easily removed by the lift-off process. The template was applicable to the various conducting substrates due to the compatibility of the photoresist with a wide range of substrates and was used in electrodeposition for well-aligned and high-density inorganic and organic nanoarrays. We successfully obtained vertically aligned and highly ordered gold nanorods and polypyrrole dots on the substrate without aggregation, and these arrays did not collapse after removing the dually responsive templates by the simple lift-off process.

Keywords: block copolymer, dually responsive, nanostructure, photoresist

Procedia PDF Downloads 257
1567 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils

Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev

Abstract:

The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.

Keywords: slope, channel, landslide, collapse, swell, soil, structure

Procedia PDF Downloads 86
1566 Experimental Investigation of the Effect of Material Composition on Landslides

Authors: Mengqi Wu, Haiping Zhu, Chin J. Leo

Abstract:

In this study, six experimental cases with different components (dry and wet soils and rocks) were considered to elucidate the influence of material composition on landslide profiles. The results show that the accumulation zone for all cases considered has a quadrilateral shape with two different bottom angles. The asymmetry of the accumulation zone can be attributed to the fact that soils in different parts of the landslide sliding can produce different speeds and suffer different resistances. The higher soil moisture can generate stronger cohesion between soils to reduce the volume of the sliding body during the landslide. The rock content can increase the accumulation angles to improve slope stability. The interaction between the irregular shapes of rocks and soils provides more resistance than that between spherical rocks and soils, which causes the slope with irregular rocks and soils to have higher stability.

Keywords: landslide, soil moisture, rock content, experimental simulation

Procedia PDF Downloads 105
1565 Circular Approximation by Trigonometric Bézier Curves

Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa

Abstract:

We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.

Keywords: control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions

Procedia PDF Downloads 475
1564 Dialect and Gender Variations in the Place and Manner of Articulation of the Korean Fricatives

Authors: Kyung-Im Han

Abstract:

This study examines dialect and gender variations in the place and manner of articulation between the two Korean fricatives, /s/ and /s’/, as produced by speakers of the Daegu and Jeju dialects. The acoustic parameters of center of gravity and skewness for the place of articulation, and the rise time and the amplitude rise slope for the manner of articulation were measured. The study results revealed a gender effect, but no dialect effect, for the center of gravity and the skewness. No main effect for either the gender or dialect was found for the rise time and the amplitude rise slope. These findings indicated that, with regard to the place of articulation, Korean fricative sound differences are a gender distinction, not a dialectal one.

Keywords: dialect, gender, Korean fricative, manner of articulation, place of articulation, spectral moments

Procedia PDF Downloads 236
1563 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames

Authors: R. Gary Black, Abolhassan Astaneh-Asl

Abstract:

The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries.

Keywords: eccentrically braced frame, lift slab construction, seismic retrofit, shear link, steel design

Procedia PDF Downloads 468
1562 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia

Abstract:

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.

Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic

Procedia PDF Downloads 299
1561 Overview of Adaptive Spline interpolation

Authors: Rongli Gai, Zhiyuan Chang

Abstract:

At this stage, in view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random Period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation

Procedia PDF Downloads 205
1560 Study of the Toughening by Crack Bridging in Mullite Alumina Zirconia Ceramics

Authors: F. Gheldane, S. Bouras

Abstract:

Crack propagation behaviour of alumina mullite zirconia ceramic is investigated under monotonic and cyclic loading by means SENB bending method. This material show R-curve effects, i.e. an increase in crack growth resistance with increasing crack depth. The morphological study showed that the resistance of the crack propagation is mainly connected to the crack bridging. The value of bridging stress is in good agreement with the literature. Furthermore, cyclic-loading fatigue is caused by a decrease in the stress-shielding effect, due to degradation of bridging sites under cyclic loading.

Keywords: alumina mullite zirconia, R-curve, bridging, toughening, crack

Procedia PDF Downloads 524
1559 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses

Authors: Neil Bar, Andrew Heweston

Abstract:

Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.

Keywords: probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability

Procedia PDF Downloads 208
1558 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh

Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin

Abstract:

In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.

Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model

Procedia PDF Downloads 150
1557 Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm

Authors: Mitat Uysal

Abstract:

A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.

Keywords: algorithms, Bezier curves, heuristic optimization, migrating birds optimization

Procedia PDF Downloads 337
1556 Characterisation of the Physical Properties of Debris and Residual Soils Implications for the Possible Landslides Occurrence on Cililin West Java

Authors: Ikah Ning Prasetiowati Permanasari, Gunawan Handayani, Lilik Hendrajaya

Abstract:

Landslide occurence at Mukapayung, Cililin West Java with material movement downward slope as far as 500m and hit residential areas of the village Nagrog cause eighteen people died and ten homes were destroyed and twenty-three heads of families evacuated. In order to test the hypothesis that soil at the landslides area is prone to landslides, we do drilling and the following tests were taken: particle size distribution, atterberg limits, shear strength, density, shringkage limits and triaxial unconsolidated and consolidated undrained test. Factor of safety was calculated to find out the possibility of subsequent landslides. The value of FOS of three layers is 1,05 which means that the soil in a critical condition and would be imminent to slide if there is disruption from the outside.

Keywords: atterberg limits, particle size distribution, shear strength parameters, slope geometry, factor of safety

Procedia PDF Downloads 149
1555 Seismic Fragility Curves Methodologies for Bridges: A Review

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

As a part of the transportation network, bridges are one of the most vulnerable structures. In order to investigate the vulnerability and seismic evaluation of bridges performance, identifying of bridge associated with various state of damage is important. Fragility curves provide important data about damage states and performance of bridges against earthquakes. The development of vulnerability information in the form of fragility curves is a widely practiced approach when the information is to be developed accounting for a multitude of uncertain source involved. This paper presents the fragility curve methodologies for bridges and investigates the practice and applications relating to the seismic fragility assessment of bridges.

Keywords: fragility curve, bridge, uncertainty, NLTHA, IDA

Procedia PDF Downloads 282
1554 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 132
1553 Stability in Slopes Related to Expansive Soils

Authors: Ivelise M. Strozberg, Lucas O. Vale, Maria V. V. Morais

Abstract:

Expansive soils are characterized by their significant volumetric variations, tending to suffer an increase of this volume when added water in their voids and a decrease of volume when this water is removed. The parameters of resistance (especially the angle of friction, cohesion and specific weight) of expansive or non-expansive soils of the same field present differences, as found in laboratory tests. What is expected is that, through this research, demonstrate that this variation directly affects the results of the calculation of factors of safety for slope stability. The expansibility due to specific clay minerals such as montmorillonites and vermiculites is the most common form of expansion of soils or rocks, causing expansion pressures. These pressures can become an aggravating problem in regions across the globe that, when not previously studied, may present high risks to the enterprise, such as cracks, fissures, movements in structures, breaking of retaining walls, drilling of wells, among others. The study provides results based on analyzes carried out in the Slide 2018 software belonging to the Rocsience group, where the software is a two-dimensional equilibrium slope stability program that calculates the factor of safety or probability of failure of certain surfaces composed of soils or rocks (or both, depending on the situation), - through the methods of: Bishop simplified, Fellenius and Janbu corrected. This research compares the factors of safety of a homogeneous earthfill dam geometry, analysed for operation and end-of-construction situations, having a height of approximately 35 meters, with a slope of 1.5: 1 in the slope downstream and 2: 1 on the upstream slope. As the water level is 32.73m high and the water table is drawn automatically by the Slide program using the finite element method for the operating situation, considering two hypotheses for the use of materials - the first with soils with characteristics of expansion and the second with soils without expansibility. For this purpose, soil samples were collected from the region of São Bento do Una - Pernambuco, Brazil and taken to the soil mechanics laboratory to characterize and determine the percentage of expansibility. There were found 2 types of soils in that area: 1 site of expansive soils (8%) and another with non- expansive ones. Based on the results found, the analysis of the values of factors of safety indicated, both upstream and downstream slopes, the highest values were obtained in the case where there is no presence of materials with expansibility resulting, for one of the situations, values of 1.353 (Fellenius), 1,295 (Janbu corrected) and 1,409 (Bishop simplified). There is a considerable drop in safety factors in cases where soils are potentially expansive, resulting in values for the same situation of 0.859 (Fellenius), 0.809 (Janbu corrected) and 0.842 (Bishop simplified), in the case of higher expansibility (8 %). This shows that the expansibility is a determinant factor in the fall of resistance of soil, determined by the factors of cohesion and angle of friction.

Keywords: dam. slope. software. swelling soil

Procedia PDF Downloads 122
1552 Economic Growth and Transport Carbon Dioxide Emissions in New Zealand: A Co-Integration Analysis of the Environmental Kuznets Curve

Authors: Mingyue Sheng, Basil Sharp

Abstract:

Greenhouse gas (GHG) emissions from national transport account for the largest share of emissions from energy use in New Zealand. Whether the environmental Kuznets curve (EKC) relationship exists between environmental degradation indicators from the transport sector and economic growth in New Zealand remains unclear. This paper aims at exploring the causality relationship between CO₂ emissions from the transport sector, fossil fuel consumption, and the Gross Domestic Product (GDP) per capita in New Zealand, using annual data for the period 1977 to 2013. First, conventional unit root tests (Augmented Dickey–Fuller and Phillips–Perron tests), and a unit root test with the breakpoint (Zivot-Andrews test) are employed to examine the stationarity of the variables. Second, the autoregressive distributed lag (ARDL) bounds test for co-integration, followed by Granger causality investigated causality among the variables. Empirical results of the study reveal that, in the short run, there is a unidirectional causality between economic growth and transport CO₂ emissions with direction from economic growth to transport CO₂ emissions, as well as a bidirectional causality from transport CO₂ emissions to road energy consumption.

Keywords: economic growth, transport carbon dioxide emissions, environmental Kuznets curve, causality

Procedia PDF Downloads 300
1551 Study of the Stability of the Slope Open-Pit Mines: Case of the Mine of Phosphates – Tebessa, Algeria

Authors: Mohamed Fredj, Abdallah Hafsaoui, Radouane Nakache

Abstract:

The study of the stability of the mining works in rock masses fractured is the major concern of the operating engineer. For geotechnical works in mines and quarries, it there is not today's general methodology for analysis and the quantification of the risks relating to the dangers inherent in these concrete types (falling boulders, landslides, etc.). The reasons for this are uncertainty, which weighs on available data or lack of knowledge of the values of the parameters required for this analysis type. Stability calculations must be based on reliable knowledge of the distribution of discontinuities that dissect the Rocky massif and the resistance to shear of the intact rock and discontinuities. This study is aimed to study the stability of slope of mine (Kef Sennoun - Tebessa, Algeria). The problem is analyzed using a numerical model based on the finite elements (software Plaxis 3D).

Keywords: stability, discontinuities, finite elements, rock mass, open-pit mine

Procedia PDF Downloads 321
1550 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking

Authors: Mansour Eslami, Fereshte Habibi

Abstract:

Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.

Keywords: kinematic, leg length discrepancy, shoe insole, walking

Procedia PDF Downloads 119
1549 Medial Axis Analysis of Valles Marineris

Authors: Dan James

Abstract:

The Medial Axis of the Main Canyon of Valles Marineris is determined geometrically with maximally inscribed discs aligned with the boundaries or rims of the Main Canyon. Inscribed discs are placed at evenly spaced longitude intervals and, using the radius function, the locus of the centre of all discs is determined, together with disc centre co-ordinates. These centre co-ordinates result in arrays of x, y co-ordinates which are curve fitted to a Sinusoidal function and residuals appropriate for nonlinear regression are evaluated using the R-squared value (R2) and the Root Mean Squared Error (RMSE). This evaluation demonstrates that a Sinusoidal Curve closely fits to the co-ordinate data

Keywords: medial axis, MAT, valles marineris, sinusoidal

Procedia PDF Downloads 100
1548 Liquid Unloading of Wells with Scaled Perforation via Batch Foamers

Authors: Erwin Chan, Aravind Subramaniyan, Siti Abdullah Fatehah, Steve Lian Kuling

Abstract:

Foam assisted lift technology is proven across the industry to provide efficient deliquification in gas wells. Such deliquification is typically achieved by delivering the foamer chemical downhole via capillary strings. In highly liquid loaded wells where capillary strings are not readily available, foamer can be delivered via batch injection or bull-heading. The latter techniques differ from the former in that cap strings allow for liquid to be unloaded continuously, whereas foamer batches require that periodic batching be conducted for the liquid to be unloaded. Although batch injection allows for liquid to be unloaded in wells with suitable water to gas (WGR) ratio and condensate to gas (CGR) ratio without well intervention for capillary string installation, this technique comes with its own set of challenges - for foamer to de-liquify liquids, the chemical needs to reach perforation locations where gas bubbling is observed. In highly scaled perforation zones in certain wells, foamer delivered in batches is unable to reach the gas bubbling zone, thus achieving poor lift efficiency. This paper aims to discuss the techniques and challenges for unloading liquid via batch injection in scaled perforation wells X and Y, whose WGR is 6bbl/MMscf, whose scale build-up is observed at the bottom of perforation interval, whose water column is 400 feet, and whose ‘bubbling zone’ is less than 100 feet. Variables such as foamer Z dosage, batching technique, and well flow control valve opening times are manipulated during the duration of the trial to achieve maximum liquid unloading and gas rates. During the field trial, the team has found optimal values between the three aforementioned parameters for best unloading results, in which each cycle’s gas and liquid rates are compared with baselines with similar flowing tubing head pressures (FTHP). It is discovered that amongst other factors, a good agitation technique is a primary determinant for efficient liquid unloading. An average increment of 2MMscf/d against an average production of 4MMscf/d at stable FTHP is recorded during the trial.

Keywords: foam, foamer, gas lift, liquid unloading, scale, batch injection

Procedia PDF Downloads 184
1547 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey

Authors: N. Arslanoglu

Abstract:

This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0 to 90 in steps of 1was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0 (June) and 59 (December) throughout the year. In winter (December, January, and February) the tilt should be 55, in spring (March, April, and May) 19.6, in summer (June, July, and August) 5.6, and in autumn (September, October, and November) 44.3. The yearly average of this value was obtained to be 31.1 and this would be the optimum fixed slope throughout the year.

Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface

Procedia PDF Downloads 260
1546 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion

Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent

Abstract:

The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.

Keywords: landslide, second order work, precipitation, inclinometers

Procedia PDF Downloads 178
1545 Historical Geotechnical Study and Evaluation of Project Progress for the Tafila City Center Development Project

Authors: Mohmd Sarireh

Abstract:

The geotechnical study can be employed successfully to assess and follow the expected development or delay in the project construction. The development project of city center or downtown was taken as a case study for the investigation of the project conditions that might support progress or cause delay. The project was proposed to build 7447 m2 by reinforced concrete mainly to serve and support the services provided to people in Tafila. The project construction had faced challenges and obstacles such as soil collapse because of excavation of the weak soil that found in the project site. In addition, the topography of the project area showed a high slope from South-West to North. The slope through the project footprint reached to 83.3% which is considered very high slope. One year and a half proposed to finish the project construction since the 1st of March 2013 and it was planned to be finished by the 31th of August 2014, but the project needs more than one year and a half as extension according to the consultant engineer. The collecting of data was conducted through the interviews with the engineers and officials, and by analyzing the soil reports and samples taken during design and excavation. The major findings came out to weak and fractured soil and construction waste that were found at project site. Also, soil was considered very fine according to the plasticity index (PI) values, in addition to the high depths required for foundation that contribute to the collapse of soil and the increase of project cost. The current project aims to present how the unseen conditions can delay the project construction and increase the cost of the project that rises to JD8.305 Million.

Keywords: geotechnical, management, progress, risk, soil unseen conditions management

Procedia PDF Downloads 224