Search results for: flexible manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3002

Search results for: flexible manufacturing

2732 Conducting Quality Planning, Assurance and Control According to GMP (Good Manufacturing Practices) Standards and Benchmarking Data for Kuwait Food Industries

Authors: Alaa Alateeqi, Sara Aldhulaiee, Sara Alibraheem, Noura Alsaleh

Abstract:

For the past few decades or so, Kuwait's local food industry has grown remarkably due to increase in demand for processed or semi processed food products in the market. It is important that the ever increasing food manufacturing/processing units maintain the required quality standards as per regional and to some extent international quality requirements. It has been realized that all Kuwait food manufacturing units should understand and follow the international standard practices, and moreover a set of guidelines must be set for quality assurance such that any new business in this area is aware of the minimum requirements. The current study has been undertaken to identify the gaps in Kuwait food industries in following the Good Manufacturing Practices (GMP) in terms of quality planning, control and quality assurance. GMP refers to Good Manufacturing Practices, which are a set of rules, laws or regulations that certify producing products within quality standards and ensuring that it is safe, pure and effective. The present study therefore reports about a ‘case study’ in a reputed food manufacturing unit in Kuwait; starting from assessment of the current practices followed by diagnosis, report of the diagnosis and road map and corrective measures for GMP implementation in the unit. The case study has also been able to identify the best practices and establish a benchmarking data for other companies to follow, through measuring the selected company's quality, policies, products and strategies and compare it with the established benchmarking data. A set of questionnaires and assessment mechanism has been established for companies to identify their ‘benchmarking score’ in relation to the number of non-conformities and conformities with the GMP standard requirements.

Keywords: good manufacturing practices, GMP, benchmarking, Kuwait Food Industries, food quality

Procedia PDF Downloads 466
2731 Design of a Universal Wireless Battery Charger

Authors: Ahmad B. Musamih, Ahmad A. Albloushi, Ahmed H. Alshemeili, Abdulaziz Y. Alfili, Ala A. Hussien

Abstract:

This paper proposes a universal wireless battery charger design for portable electronic devices. As the number of portable electronics devices increases, the demand for more flexible and reliable charging techniques is becoming more urgent. A wireless battery charger differs from a traditional charger in the way the power transferred to the battery. In the latter, the power is transferred through electrical wires that connect the charger terminals to the battery terminals, while in the former; the power is transferred by induction without electrical connections. With a detection algorithm that detects the battery size and chemistry, the proposed charger will be able to accommodate a wide range of applications, and will allow a more flexible and reliable option to most of today’s portable electronics.

Keywords: efficiency, magnetically-coupled resonators, resonance frequency, wireless power transfer

Procedia PDF Downloads 453
2730 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 123
2729 The Impact of Artificial Intelligence on Digital Factory

Authors: Mona Awad Wanis Gad

Abstract:

The method of factory making plans has changed loads, in particular, whilst it's miles approximately making plans the factory building itself. Factory making plans have the venture of designing merchandise, plants, tactics, organization, regions, and the construction of a factory. Ordinary restructuring is turning into greater essential for you to preserve the competitiveness of a manufacturing unit. Regulations in new regions, shorter lifestyle cycles of product and manufacturing era, in addition to a VUCA global (Volatility, Uncertainty, Complexity and Ambiguity) cause extra common restructuring measures inside a factory. A digital factory model is the planning foundation for rebuilding measures and turns into a critical device. Furthermore, digital building fashions are increasingly being utilized in factories to help facility management and manufacturing processes. First, exclusive styles of digital manufacturing unit fashions are investigated, and their residences and usabilities to be used instances are analyzed. Within the scope of research are point cloud fashions, building statistics fashions, photogrammetry fashions, and those enriched with sensor information are tested. It investigated which digital fashions permit a simple integration of sensor facts and in which the variations are. In the end, viable application areas of virtual manufacturing unit models are determined by a survey, and the respective digital manufacturing facility fashions are assigned to the application areas. Ultimately, an application case from upkeep is selected and implemented with the assistance of the best virtual factory version. It is shown how a completely digitalized preservation process can be supported by a digital manufacturing facility version by offering facts. Among different functions, the virtual manufacturing facility version is used for indoor navigation, facts provision, and display of sensor statistics. In summary, the paper suggests a structuring of virtual factory fashions that concentrates on the geometric representation of a manufacturing facility building and its technical facilities. A practical application case is proven and implemented. For that reason, the systematic selection of virtual manufacturing facility models with the corresponding utility cases is evaluated.

Keywords: augmented reality, digital factory model, factory planning, restructuring digital factory model, photogrammetry, factory planning, restructuring building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 37
2728 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications

Authors: Syed Kamran Sami, Saqib Siddiqui

Abstract:

In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.

Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor

Procedia PDF Downloads 281
2727 Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics

Authors: Pratik Pankaj Pawar

Abstract:

Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics.

Keywords: light weight building, carbyne, aerographite, geopolymer reinforced wood particles aggregate

Procedia PDF Downloads 58
2726 A Step Towards Automating the Synthesis of a Scene Script

Authors: Americo Pereira, Ricardo Carvalho, Pedro Carvalho, Luis Corte-Real

Abstract:

Generating 3D content is a task mostly done by hand. It requires specific knowledge not only on how to use the tools for the task but also on the fundamentals of a 3D environment. In this work, we show that automatic generation of content can be achieved, from a scene script, by leveraging existing tools so that non-experts can easily engage in a 3D content generation without requiring vast amounts of time in exploring and learning how to use specific tools. This proposal carries several benefits, including flexible scene synthesis with different levels of detail. Our preliminary results show that the automatically generated content is comparable to the content generated by users with low experience in 3D modeling while vastly reducing the amount of time required for the generation and adds support to implement flexible scenarios for visual scene visualization.

Keywords: 3D virtualization, multimedia, scene script, synthesis

Procedia PDF Downloads 266
2725 Exchange Rate Fluctuations and Economic Performance of Manufacturing Sector: Evidence from Nigeria

Authors: Ifeoma Patricia Osamor, Ayotunde Qudus Saka, Godwin Omoregbee, Hikmat Oreoluwalomo Omolaja

Abstract:

Persistent fall in the value of Nigeria's currency compared to other foreign currencies, constant fluctuations in the exchange rate, and an increase in the price of goods and services necessitated the examination of the effects of exchange rate fluctuations on the economic performance of the manufacturing sector in Nigeria. An ex-post facto research design was adopted. Manufacturing gross domestic product (MGDP) was proxied for performance; Naira/Dollar exchange rate (NDE), Naira/Pounds exchange rate (NPE), Foreign exchange supply (FES) were used for exchange rate fluctuations; and inflation rate (INF) was a control variable. Data were collected from CBN Statistical Bulletin (2020) also World Development Indicators of the World Bank, while data collected were analysed using descriptive analysis, unit root, bounds cointegration test, and ARDL. Findings showed that changes in Naira/Dollar exchange rate (NDE) and Naira/Pound Sterling exchange rate negatively but significantly impact the economic performance of the manufacturing sector, while foreign exchange supply leads to an insignificant positive effect on the economic performance of the manufacturing. The study concludes that exchange rate fluctuations negatively impact the performance of the manufacturing sector in Nigeria and, therefore, recommends that government should encourage export diversification through agriculture, agro-investment, and agro-allied industries that would boost export in order to improve the value of the Naira, thereby stabilizing the exchange rate.

Keywords: exchange rate, economic performance, gross domestic product, inflation rate, foreign exchange supply

Procedia PDF Downloads 193
2724 The Effect on Lead Times When Normalizing a Supply Chain Process

Authors: Bassam Istanbouli

Abstract:

Organizations are living in a very competitive and dynamic environment which is constantly changing. In order to achieve a high level of service, the products and processes of these organizations need to be flexible and evolvable. If the supply chains are not modular and well designed, changes can bring combinatorial effects to most areas of a company from its management, financial, documentation, logistics and its information structure. Applying the normalized system’s concept to segments of the supply chain may help in reducing those ripple effects, but it may also increase lead times. Lead times are important and can become a decisive element in gaining customers. Industries are always under the pressure in providing good quality products, at competitive prices, when and how the customer wants them. Most of the time, the customers want their orders now, if not yesterday. The above concept will be proven by examining lead times in a manufacturing example before and after applying normalized systems concept to that segment of the chain. We will then show that although we can minimize the combinatorial effects when changes occur, the lead times will be increased.

Keywords: supply chain, lead time, normalization, modular

Procedia PDF Downloads 125
2723 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 51
2722 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting

Procedia PDF Downloads 286
2721 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction

Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey

Abstract:

In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.

Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization

Procedia PDF Downloads 344
2720 A New Approach towards the Development of Next Generation CNC

Authors: Yusri Yusof, Kamran Latif

Abstract:

Computer Numeric Control (CNC) machine has been widely used in the industries since its inception. Currently, in CNC technology has been used for various operations like milling, drilling, packing and welding etc. with the rapid growth in the manufacturing world the demand of flexibility in the CNC machines has rapidly increased. Previously, the commercial CNC failed to provide flexibility because its structure was of closed nature that does not provide access to the inner features of CNC. Also CNC’s operating ISO data interface model was found to be limited. Therefore, to overcome that problem, Open Architecture Control (OAC) technology and STEP-NC data interface model are introduced. At present the Personal Computer (PC) has been the best platform for the development of open-CNC systems. In this paper, both ISO data interface model interpretation, its verification and execution has been highlighted with the introduction of the new techniques. The proposed is composed of ISO data interpretation, 3D simulation and machine motion control modules. The system is tested on an old 3 axis CNC milling machine. The results are found to be satisfactory in performance. This implementation has successfully enabled sustainable manufacturing environment.

Keywords: CNC, ISO 6983, ISO 14649, LabVIEW, open architecture control, reconfigurable manufacturing systems, sustainable manufacturing, Soft-CNC

Procedia PDF Downloads 516
2719 Sub-Saharan Africa: Role of Global Fashion System in Turbo-Charging Growth of Apparel Industry

Authors: Rajkishore Nayak, Tarun Panwar, Majo George

Abstract:

The study focuses on investigating the factors that influence the growth of fashion and textile manufacturing in the Sub-Saharan Africa (SSA) countries. This paper endeavours to identify, analyse and evaluate the critical factors associated with the growth of fashion and textile manufacturing in SSA countries. This research has done a Strength, Weakness, Opportunity, and Threat (SWOT) analysis based on the available literature and the knowledge of authors in garment manufacturing and export. It was found that the SSA countries have shown little growth in fashion and textile manufacturing and export from the starting of the year 2000. Unlike the developing countries such as Vietnam and Bangladesh, the total export to the US, the EU and other parts of the world has declined. On the other hand, the total supply of fashion and textiles to the domestic market has been in rise. However, the local communities still need to rely on other countries to meet their demand. Availability of cheaper imported clothes from other countries such as Bangladesh, China and Vietnam have made it difficult for the local manufacturers to produce at a cheaper price.

Keywords: Sub-Saharan Africa, developing countries, apparel industry, fashion and textile, sustainable fashion

Procedia PDF Downloads 118
2718 Anlaytical Studies on Subgrade Soil Using Jute Geotextile

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 442
2717 Total Quality Management in Algerian Manufacturing

Authors: Nadia Fatima Zahra Malki

Abstract:

The aim of the study is to show the role of total Quality Management on firm performance, research relied on the views of a sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis's main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was that there is a relationship between the Principles of TQM and Firm Performance.

Keywords: total quality management, competitive advantage, companies, objectives

Procedia PDF Downloads 63
2716 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 116
2715 An Intelligent Steerable Drill System for Orthopedic Surgery

Authors: Wei Yao

Abstract:

A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.

Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking

Procedia PDF Downloads 166
2714 The Mediating Effect of SMEs Export Performance between Technological Advancement Capabilities and Business Performance

Authors: Fawad Hussain, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa

Abstract:

The aim of this study is to empirically investigate the mediating impact of export performance (EP) between technological advancement capabilities (TAC) and business performance (BP) of Malaysian manufacturing MSME’s. Firm’s technological advancement resources are hypothesized as a platform to enhance both exports and business performance of manufacturing MSMEs in Malaysia. This study is twofold, primary it has investigated that technological advancement capabilities helps to appreciates main performance measures noted in terms of export performance and Secondly it investigates that how efficiently and effectively technological advancement capabilities can contributes in overall Malaysian MSME’s business performance. Smart PLS-3 statistical software is used to know the association between technological advancement capabilities, MSME’s export performance and business performance. In this study the data was composed from Malaysian manufacturing MSME’s in east coast industrial zones known as manufacturing hub of MSMEs. Seven Hundred and Fifty (750) questionnaires were distributed but only 148 usable questionnaires are returned. The finding of this study indicated that technological advancement capabilities helps to strengthen the export in term of time and cost efficient and it plays a significant role in appreciating their business performance. This study is helpful for small and medium enterprises owners who intent to expand their business overseas and though smart technological advancement resources they can achieve their business competitiveness and excellence both at local and international markets.

Keywords: technological advancement capabilities, export performance, business performance, small and medium manufacturing enterprises, malaysia

Procedia PDF Downloads 431
2713 Addressing Rural Health Challenges: A Flexible Modular Approach for Resilient Healthcare Services

Authors: Pariya Sheykhmaleki, Debajyoti Pati

Abstract:

Rural areas in the United States face numerous challenges in providing quality and assessable primary healthcare services, especially during emergencies such as natural disasters or pandemics. This study showcases a cutting-edge flexible module that aims to overcome these challenges by offering adaptable healthcare facilities capable of providing comprehensive health services in remote and disaster-prone regions. According to the Health Resources and Services Administration (HRSA), approximately 62 million Americans, or 1 in 5 individuals, live in areas designated as Health Professional Shortage Areas (HPSAs) for primary care. These areas are characterized by limited access to healthcare facilities, shortage of healthcare professionals, transportation barriers, inadequate healthcare infrastructure, higher rates of chronic diseases, mental health disparities, and limited availability of specialized care, including urgent circumstances like pandemics that can exacerbate this issue. To address these challenges, the literature study began by examining primary health solutions in very remote areas, e.g., spaceships, to identify the state-of-the-art technologies and the methods used to facilitate primary care needs. The literature study on flexibility in architecture and interior design was also adapted to develop a conceptual design for rural areas. The designed flexible module provides an innovative solution. This module can be prefabricated as all parts are standardized. The flexibility of the module allows the structure to be modified based on local and geographical requirements as well as the ability to expand as required. It has been designed to stand either by itself or work in tandem with public buildings. By utilizing sustainable approaches and flexible spatial configurations, the module optimizes the utilization of limited resources while ensuring efficient and effective healthcare delivery. Furthermore, the poster highlights the key features of this flexible module, including its ability to support telemedicine and telehealth services for all five levels of urgent care conditions, i.e., from facilitating fast tracks to supporting emergency room services, in two divided zones. The module's versatility enables its deployment in rural areas located far from urban centers and disaster-stricken regions, ensuring access to critical healthcare services in times of need. This module is also capable of responding in urban areas when the need for primary health becomes vastly urgent, e.g., during a pandemic. It emphasizes the module's potential to bridge the healthcare gap between rural and urban areas and mitigate the impact of rural health challenges.

Keywords: rural health, healthcare challenges, flexible modular design, telemedicine, telehealth

Procedia PDF Downloads 77
2712 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 428
2711 A Prioritisation Guide for More Sustainable Manufacturing Processes

Authors: Cansu Kandemir, Marco Franchino

Abstract:

To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations.

Keywords: decision making, sustainability, carbon emissions, manufacturing

Procedia PDF Downloads 61
2710 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments

Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro

Abstract:

Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.

Keywords: lean manufacturing, DOE, value stream mapping, textiles

Procedia PDF Downloads 455
2709 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 185
2708 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 61
2707 Engineers’ Ability to Lead Effectively the Transformation to Sustainable Manufacturing: A Case Study of Saudi Arabia

Authors: Mohammed Alharbi, Clare Wood, Vasileios Samaras

Abstract:

Sustainability leadership is a controversial topic, particularly in the engineering context. The theoretical and practical technical focus of the engineering profession impacts our lives. Technologically, engineers significantly contribute to our modern civilization. Industrial revolutions are among the top engineering accomplishments that have contributed to the flourishing of our life. However, engineers have not always received the credit they deserve; instead, they have been blamed for the advent of various global issues, among them the global warming phenomena that are believed to be a result of the industrial revolutions. Global challenges demand engineers demonstrate more than their technical skills for effective contribution to a sustainable future. As a result, engineering leadership has emerged as a new research field. Sustainable manufacturing is a cornerstone for sustainable development. Investigating the change to more sustainable manufacturing practices is a significant issue for all, and even more in the field of engineering leadership. Engineers dominate the manufacturing industry; however, one of the main criticism of engineers is the lack of leadership skills. The literature on engineering leadership has not highlighted enough the engineers' leadership ability in leading sustainable manufacturing. Since we are at the cusp of a new industrial revolution -Industry 4.0, it is vital to investigate the ability of engineers to lead the industry towards a sustainable future. The primary purpose of this paper is to evaluate engineers' sustainability leadership competencies utilizing The Cambridge University Behavioral Competency Model. However, the practical application of the Cambridge model is limited due to the absence of a reliable measurement tool. Therefore, this study developed a valid and reliable survey instrument tool compatible with the Cambridge model as a secondary objective. More than 300 Saudi engineers from the manufacturing industry responded to an online questionnaire collected through the Qualtrics platform and analyzed using SPSS software. The findings provide a contemporary understanding of engineers' mindset related to sustainability leadership. The output of this research study could be valuable in designing effective engineering leadership programs in academia or industry, particularly for enhancing a sustainable manufacturing environment.

Keywords: engineer, leadership, manufacturing, sustainability

Procedia PDF Downloads 158
2706 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes

Procedia PDF Downloads 377
2705 Total Quality Management in Companies Manufacturing

Authors: Malki Nadia Fatima Zahra, Kellal Cheimaa, Brahimi Houria

Abstract:

Aim of the study is to show the role of total Quality Management on firm performance; the research relied on the views of sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was there is a relationship between the Principles of TQM and Firm Performance.

Keywords: total quality management, TQM dimension, firm performance, strategies

Procedia PDF Downloads 67
2704 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 33
2703 Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors

Authors: Chukwumeka Daniel Ezeliora

Abstract:

The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole.

Keywords: lean six sigma, manufacturing, risk mitigation, sustainability, operational efficiency

Procedia PDF Downloads 207