Search results for: throughput
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 349

Search results for: throughput

349 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: absorption, data throughput, depolarization, optical fiber

Procedia PDF Downloads 285
348 APPLE: Providing Absolute and Proportional Throughput Guarantees in Wireless LANs

Authors: Zhijie Ma, Qinglin Zhao, Hongning Dai, Huan Zhang

Abstract:

This paper proposes an APPLE scheme that aims at providing absolute and proportional throughput guarantees, and maximizing system throughput simultaneously for wireless LANs with homogeneous and heterogenous traffic. We formulate our objectives as an optimization problem, present its exact and approximate solutions, and prove the existence and uniqueness of the approximate solution. Simulations validate that APPLE scheme is accurate, and the approximate solution can well achieve the desired objectives already.

Keywords: IEEE 802.11e, throughput guarantee, priority, WLANs

Procedia PDF Downloads 362
347 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?

Authors: Gu Pang, Bartosz Gebka

Abstract:

We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.

Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput

Procedia PDF Downloads 504
346 Econometric Analysis of West African Countries’ Container Terminal Throughput and Gross Domestic Products

Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi

Abstract:

The west African ports have been experiencing large inflow and outflow of containerized cargo in the last decades, and this has created a quest amongst the countries to attain the status of hub port for the sub-region. This study analyzed the relationship between the container throughput and Gross Domestic Products (GDP) of nine west African countries, using Simple Linear Regression (SLR), Polynomial Regression Model (PRM) and Support Vector Machines (SVM) with a time series of 20 years. The results showed that there exists a high correlation between the GDP and container throughput. The model also predicted the container throughput in west Africa for the next 20 years. The findings and recommendations presented in this research will guide policy makers and help improve the management of container ports and terminals in west Africa, thereby boosting the economy.

Keywords: container, ports, terminals, throughput

Procedia PDF Downloads 214
345 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective

Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli

Abstract:

In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.

Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks

Procedia PDF Downloads 81
344 An Improved Cooperative Communication Scheme for IoT System

Authors: Eui-Hak Lee, Jae-Hyun Ro, Hyoung-Kyu Song

Abstract:

In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. And a decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.

Keywords: cooperative communication, IoT, STBC, transmission rate

Procedia PDF Downloads 396
343 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: drive test, LTE, machine learning, uplink throughput prediction

Procedia PDF Downloads 155
342 Case Study: Throughput Analysis over PLC Infrastructure as Last Mile Residential Solution in Colombia

Authors: Edward P. Guillen, A. Karina Martinez Barliza

Abstract:

Powerline Communications (PLC) as last mile solution to provide communication services, has the advantage of transmitting over channels already used for electrical distribution. However these channels have been not designed with this purpose, for that reason telecommunication companies in Colombia want to know how good would be using PLC in costs and network performance in comparison to cable modem or DSL. This paper analyzes PLC throughput for residential complex scenarios using a PLC network scenarios and some statistical results are shown.

Keywords: home network, power line communication, throughput analysis, power factor, cost, last mile solution

Procedia PDF Downloads 266
341 Enhancing Throughput for Wireless Multihop Networks

Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis

Abstract:

Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.

Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network

Procedia PDF Downloads 518
340 A Petri Net Model to Obtain the Throughput of Unreliable Production Lines in the Buffer Allocation Problem

Authors: Joselito Medina-Marin, Alexandr Karelin, Ana Tarasenko, Juan Carlos Seck-Tuoh-Mora, Norberto Hernandez-Romero, Eva Selene Hernandez-Gress

Abstract:

A production line designer faces with several challenges in manufacturing system design. One of them is the assignment of buffer slots in between every machine of the production line in order to maximize the throughput of the whole line, which is known as the Buffer Allocation Problem (BAP). The BAP is a combinatorial problem that depends on the number of machines and the total number of slots to be distributed on the production line. In this paper, we are proposing a Petri Net (PN) Model to obtain the throughput in unreliable production lines, based on PN mathematical tools and the decomposition method. The results obtained by this methodology are similar to those presented in previous works, and the number of machines is not a hard restriction.

Keywords: buffer allocation problem, Petri Nets, throughput, production lines

Procedia PDF Downloads 307
339 Throughput of Point Coordination Function (PCF)

Authors: Faisel Eltuhami Alzaalik, Omar Imhemed Alramli, Ahmed Mohamed Elaieb

Abstract:

The IEEE 802.11 defines two modes of MAC, distributed coordination function (DCF) and point coordination function (PCF) mode. The first sub-layer of the MAC is the distributed coordination function (DCF). A contention algorithm is used via DCF to provide access to all traffic. The point coordination function (PCF) is the second sub-layer used to provide contention-free service. PCF is upper DCF and it uses features of DCF to establish guarantee access of its users. Some papers and researches that have been published in this technology were reviewed in this paper, as well as talking briefly about the distributed coordination function (DCF) technology. The simulation of the PCF function have been applied by using a simulation program called network simulator (NS2) and have been found out the throughput of a transmitter system by using this function.

Keywords: DCF, PCF, throughput, NS2

Procedia PDF Downloads 577
338 Performance of LTE Multicast Systems in the Presence of the Colored Noise Jamming

Authors: S. Malisuwan, J. Sivaraks, N. Madan, N. Suriyakrai

Abstract:

The ever going evolution of advanced wireless technologies makes it financially impossible for military operations to completely manufacture their own equipment. Therefore, Commercial-Off-The-Shelf (COTS) and Modified-Off-The-Shelf (MOTS) are being considered in military mission with low-cost modifications. In this paper, we focus on the LTE multicast systems for military communication systems under tactical environments with jamming condition. We examine the influence of the colored noise jamming on the performance of the LTE multicast systems in terms of the average throughput. The simulation results demonstrate the degradation of the average throughput for different dynamic ranges of the colored noise jamming versus average SNR.

Keywords: performance, LTE, multicast, jamming, throughput

Procedia PDF Downloads 417
337 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol

Authors: Inkyu Kim, SangMan Moon

Abstract:

This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.

Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application

Procedia PDF Downloads 392
336 The Operating Behaviour of Unbalanced Unpaced Merging Assembly Lines

Authors: S. Shaaban, T. McNamara, S. Hudson

Abstract:

This paper reports on the performance of deliberately unbalanced, reliable, non-automated and assembly lines that merge, whose workstations differ in terms of their mean operation times. Simulations are carried out on 5- and 8-station lines with 1, 2 and 4 buffer capacity units, % degrees of line imbalance of 2, 5 and 12, and 24 different patterns of means imbalance. Data on two performance measures, namely throughput and average buffer level were gathered, statistically analysed and compared to a merging balanced line counterpart. It was found that the best configurations are a balanced line arrangement and a monotone decreasing order for each of the parallel merging lines, with the first generally resulting in a lower throughput and the second leading to a lower average buffer level than those of a balanced line.

Keywords: average buffer level, merging lines, simulation, throughput, unbalanced

Procedia PDF Downloads 321
335 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 47
334 Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations

Authors: Arif Armagan Gozutok, Alper Kule, Burak Tos, Selman Demirel

Abstract:

Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations.

Keywords: HARQ, LEO, satellite constellation, throughput

Procedia PDF Downloads 145
333 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.

Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX

Procedia PDF Downloads 393
332 Improved Wi-Fi Backscatter System for Multi-to-Multi Communication

Authors: Chang-Bin Ha, Yong-Jun Kim, Dong-Hyun Ha, Hyoung-Kyu Song

Abstract:

The conventional Wi-Fi back scatter system can only process one-to-one communication between the Wi-Fi reader and the Wi-Fi tag. For improvement of throughput of the conventional system, this paper proposes the multi-to-multi communication system. In the proposed system, the interference by the multi-to-multi communication is effectively cancelled by the orthogonal multiple access based on the identification code of the tag. Although the overhead is generated by the procedure for the multi-to-multi communication, because the procedure is processed by the Wi-Fi protocol, the overhead is insignificant for the entire communication procedure. From the numerical results, it is confirmed that the proposed system has nearly proportional increased throughput in according to the number of the tag that simultaneously participates in communication.

Keywords: backscatter, multi-to-multi communication, orthogonality, Wi-Fi

Procedia PDF Downloads 510
331 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region

Authors: Musab Isah

Abstract:

This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.

Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool

Procedia PDF Downloads 62
330 Sheathless, Viscoelastic Circulating Tumor Cell Separation Using Closed-Loop Microfluidics

Authors: Hyunjung Lim, Jeonghun Nam, Hyuk Choi

Abstract:

High-throughput separation is an essential technique for cancer research and diagnosis. Here, we propose a viscoelastic microfluidic device for sheathless, high-throughput isolation of circulating tumor cells (CTCs) from white blood cells. Here, we demonstrate a viscoelastic method for separation and concentration of CTCs using closed-loop microfluidics. Our device is a rectangular straight channel with a low aspect ratio. Also, to achieve high-efficiency, high-throughput processing, we used a polymer solution with low viscosity. At the inlet, CTCs and white blood cells (WBCs) were randomly injected into the microchannel. Due to the viscoelasticity-induced lateral migration to the equilibrium positions, large CTCs could be collected from the side outlet while small WBCs were removed at the center outlet. By recirculating the collected CTCs from the side outlet back to the sample reservoir, continuous separation and concentration of CTCs could be achieved with high separation efficiency (~ 99%). We believe that our device has the potential to be applied in resource-limited clinical settings.

Keywords: circulating tumor cell, closed-loop microfluidics, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 153
329 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning

Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang

Abstract:

In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.

Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG

Procedia PDF Downloads 150
328 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN

Procedia PDF Downloads 425
327 Comparison of Interactive Performance of Clicking Tasks Using Cursor Control Devices under Different Feedback Modes

Authors: Jinshou Shi, Xiaozhou Zhou, Yingwei Zhou, Tuoyang Zhou, Ning Li, Chi Zhang, Zhanshuo Zhang, Ziang Chen

Abstract:

In order to select the optimal interaction method for common computer click tasks, the click experiment test adopts the ISO 9241-9 task paradigm, using four common operations: mouse, trackball, touch, and eye control under visual feedback, auditory feedback, and no feedback. Through data analysis of various parameters of movement time, throughput, and accuracy, it is found that the movement time of touch-control is the shortest, the operation accuracy and throughput are higher than others, and the overall operation performance is the best. In addition, the motion time of the click operation with auditory feedback is significantly lower than the other two feedback methods in each operation mode experiment. In terms of the size of the click target, it is found that when the target is too small (less than 14px), the click performance of all aspects is reduced, so it is proposed that the design of the interface button should not be less than 28px. In this article, we discussed in detail the advantages and disadvantages of the operation and feedback methods, and the results of the discussion of the click operation can be applied to the design of the buttons in the interactive interface.

Keywords: cursor control performance, feedback, human computer interaction, throughput

Procedia PDF Downloads 196
326 Evaluating the Success of an Intervention Course in a South African Engineering Programme

Authors: Alessandra Chiara Maraschin, Estelle Trengove

Abstract:

In South Africa, only 23% of engineering students attain their degrees in the minimum time of 4 years. This begs the question: Why is the 4-year throughput rate so low? Improving the throughput rate is crucial in assisting students to the shortest possible path to completion. The Electrical Engineering programme has a fixed curriculum and students must pass all courses in order to graduate. In South Africa, as is the case in several other countries, many students rely on external funding such as bursaries from companies in industry. If students fail a course, they often lose their bursaries, and most might not be able to fund their 'repeating year' fees. It is thus important to improve the throughput rate, since for many students, graduating from university is a way out of poverty for an entire family. In Electrical Engineering, it has been found that the Software Development I course (an introduction to C++ programming) is a significant hurdle course for students and has been found to have a low pass rate. It has been well-documented that students struggle with this type of course as it introduces a number of new threshold concepts that can be challenging to grasp in a short time frame. In an attempt to mitigate this situation, a part-time night-school for Software Development I was introduced in 2015 as an intervention measure. The course includes all the course material from the Software Development I module and allows students who failed the course in first semester a second chance by repeating the course through taking the night-school course. The purpose of this study is to determine whether the introduction of this intervention course could be considered a success. The success of the intervention is assessed in two ways. The study will first look at whether the night-school course contributed to improving the pass rate of the Software Development I course. Secondly, the study will examine whether the intervention contributed to improving the overall throughput from the 2nd year to the 3rd year of study at a South African University. Second year academic results for a sample of 1216 students have been collected from 2010-2017. Preliminary results show that the lowest pass rate for Software Development I was found to be in 2017 with a pass rate of 34.9%. Since the intervention course's inception, the pass rate for Software Development I has increased each year from 2015-2017 by 13.75%, 25.53% and 25.81% respectively. To conclude, the preliminary results show that the intervention course is a success in improving the pass rate of Software Development I.

Keywords: academic performance, electrical engineering, engineering education, intervention course, low pass rate, software development course, throughput

Procedia PDF Downloads 164
325 Platform Integration for High-Throughput Functional Screening Applications

Authors: Karolis Leonavičius, Dalius Kučiauskas, Dangiras Lukošius, Arnoldas Jasiūnas, Kostas Zdanys, Rokas Stanislovas, Emilis Gegevičius, Žana Kapustina, Juozas Nainys

Abstract:

Screening throughput is a common bottleneck in many research areas, including functional genomics, drug discovery, and directed evolution. High-throughput screening techniques can be classified into two main categories: (i) affinity-based screening and (ii) functional screening. The first one relies on binding assays that provide information about the affinity of a test molecule for a target binding site. Binding assays are relatively easy to establish; however, they reveal no functional activity. In contrast, functional assays show an effect triggered by the interaction of a ligand at a target binding site. Functional assays might be based on a broad range of readouts, such as cell proliferation, reporter gene expression, downstream signaling, and other effects that are a consequence of ligand binding. Screening of large cell or gene libraries based on direct activity rather than binding affinity is now a preferred strategy in many areas of research as functional assays more closely resemble the context where entities of interest are anticipated to act. Droplet sorting is the basis of high-throughput functional biological screening, yet its applicability is limited due to the technical complexity of integrating high-performance droplet analysis and manipulation systems. As a solution, the Droplet Genomics Styx platform enables custom droplet sorting workflows, which are necessary for the development of early-stage or complex biological therapeutics or industrially important biocatalysts. The poster will focus on the technical design considerations of Styx in the context of its application spectra.

Keywords: functional screening, droplet microfluidics, droplet sorting, dielectrophoresis

Procedia PDF Downloads 135
324 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 203
323 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing

Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi

Abstract:

Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.

Keywords: assembly line balancing, buffer sizing, Pareto solutions

Procedia PDF Downloads 490
322 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks

Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel

Abstract:

The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.

Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy

Procedia PDF Downloads 299
321 Unbalanced Mean-Time and Buffer Effects in Lines Suffering Breakdown

Authors: Sabry Shaaban, Tom McNamara, Sarah Hudson

Abstract:

This article studies the performance of unpaced serial production lines that are subject to breakdown and are imbalanced in terms of both of their processing time means (MTs) and buffer storage capacities (BCs). Simulation results show that the best pattern in terms of throughput is a balanced line with respect to average buffer level; the best configuration is a monotone decreasing MT order, together with an ascending BC arrangement. Statistical analysis shows that BC, patterns of MT and BC imbalance, line length and degree of imbalance all contribute significantly to performance. Results show that unbalanced lines cope well with unreliability.

Keywords: unreliable unpaced serial lines, simulation, unequal mean operation times, uneven buffer capacities, patterns of imbalance, throughput, average buffer level

Procedia PDF Downloads 473
320 Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism

Authors: Shubham Dwivedi, Raghavender Medishetti, Rita Rani, Aarti Sevilimedu, Pushkar Kulkarni, Yogeeswari Perumal

Abstract:

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism.

Keywords: autism, zebrafish, valproic acid, neurodevelopment, behavioral assay

Procedia PDF Downloads 161