Search results for: environmental features
10326 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.Keywords: climate, degradation, HVAC, neighborhood component analysis
Procedia PDF Downloads 43110325 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin
Authors: Vilem Paril, Dominika Tothova
Abstract:
This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches, to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.Keywords: cultural heritage, environmental economics, existence value, value theory
Procedia PDF Downloads 32110324 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: discriminative LMA features, features reduction, human motion recognition, random forest
Procedia PDF Downloads 19510323 Poli4SDG: An Application for Environmental Crises Management and Gender Support
Authors: Angelica S. Valeriani, Lorenzo Biasiolo
Abstract:
In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality
Procedia PDF Downloads 11210322 Impact of Variability in Delineation on PET Radiomics Features in Lung Tumors
Authors: Mahsa Falahatpour
Abstract:
Introduction: This study aims to explore how inter-observer variability in manual tumor segmentation impacts the reliability of radiomic features in non–small cell lung cancer (NSCLC). Methods: The study included twenty-three NSCLC tumors. Each patient had three tumor segmentations (VOL1, VOL2, VOL3) contoured on PET/CT scans by three radiation oncologists. Dice coefficients (DCS) were used to measure the segmentation variability. Radiomic features were extracted with 3D-slicer software, consisting of 66 features: first-order (n=15), second-order (GLCM, GLDM, GLRLM, and GLSZM) (n=33). The inter-observer variability of radiomic features was assessed using the intraclass correlation coefficient (ICC). An ICC > 0.8 indicates good stability. Results: The mean DSC of VOL1, VOL2, and VOL3 was 0.80 ± 0.04, 0.85 ± 0.03, and 0.76 ± 0.06, respectively. 92% of all extracted radiomic features were found to be stable (ICC > 0.8). The GLCM texture features had the highest stability (96%), followed by GLRLM features (90%) and GLSZM features (87%). The DSC was found to be highly correlated with the stability of radiomic features. Conclusion: The variability in inter-observer segmentation significantly impacts radiomics analysis, leading to a reduction in the number of appropriate radiomic features.Keywords: PET/CT, radiomics, radiotherapy, segmentation, NSCLC
Procedia PDF Downloads 4510321 Educating through Design: Eco-Architecture as a Form of Public Awareness
Authors: Carmela Cucuzzella, Jean-Pierre Chupin
Abstract:
Eco-architecture today is being assessed and judged increasingly on the basis of its environmental performance and its dedication to urgent stakes of sustainability. Architects have responded to environmental imperatives in novel ways since the 1960s. In the last two decades, however, different forms of eco-architecture practices have emerged that seem to be as dedicated to the issues of sustainability, as to their ability to 'communicate' their ecological features. The hypothesis is that some contemporary eco-architecture has been developing a characteristic 'explanatory discourse', of which it is possible to identify in buildings around the world. Some eco-architecture practices do not simply demonstrate their alignment with pressing ecological issues, rather, these buildings seem to be also driven by the urgent need to explain their ‘greenness’. The design aims specifically to teach visitors of the eco-qualities. These types of architectural practices are referred to in this paper as eco-didactic. The aim of this paper is to identify and assess this distinctive form of environmental architecture practice that aims to teach. These buildings constitute an entirely new form of design practice that places eco-messages squarely in the public realm. These eco-messages appear to have a variety of purposes: (i) to raise awareness of unsustainable quotidian habits, (ii) to become means of behavioral change, (iii) to publicly announce their responsibility through the designed eco-features, or (iv) to engage the patrons of the building into some form of sustainable interaction. To do this, a comprehensive review of Canadian eco-architecture is conducted since 1998. Their potential eco-didactic aspects are analysed through a lens of three vectors: (1) cognitive visitor experience: between the desire to inform and the poetics of form (are parts of the design dedicated to inform the visitors of the environmental aspects?); (2) formal architectural qualities: between the visibility and the invisibility of environmental features (are these eco-features clearly visible by the visitors?); and (3) communicative method for delivering eco-message: this transmission of knowledge is accomplished somewhere between consensus and dissensus as a method for disseminating the eco-message (do visitors question the eco-features or are they accepted by visitors as features that are environmental?). These architectural forms distinguish themselves in their crossing of disciplines, specifically, architecture, environmental design, and art. They also differ from other architectural practices in terms of how they aim to mobilize different publics within various urban landscapes The diversity of such buildings, from how and what they aim to communicate, to the audience they wish to engage, are all key parameters to better understand their means of knowledge transfer. Cases from the major cities across Canada are analysed, aiming to illustrate this increasing worldwide phenomenon.Keywords: eco-architecture, public awareness, community engagement, didacticism, communication
Procedia PDF Downloads 12510320 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 41610319 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 7610318 2D Point Clouds Features from Radar for Helicopter Classification
Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres
Abstract:
This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.Keywords: helicopter classification, point clouds features, radar, supervised classifiers
Procedia PDF Downloads 22710317 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences
Authors: T. Hari Prasath, P. Ithaya Rani
Abstract:
In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization
Procedia PDF Downloads 27810316 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 54310315 Using Reservoir Models for Monitoring Geothermal Surface Features
Authors: John P. O’Sullivan, Thomas M. P. Ratouis, Michael J. O’Sullivan
Abstract:
As the use of geothermal energy grows internationally more effort is required to monitor and protect areas with rare and important geothermal surface features. A number of approaches are presented for developing and calibrating numerical geothermal reservoir models that are capable of accurately representing geothermal surface features. The approaches are discussed in the context of cases studies of the Rotorua geothermal system and the Orakei-korako geothermal system, both of which contain important surface features. The results show that models are able to match the available field data accurately and hence can be used as valuable tools for predicting the future response of the systems to changes in use.Keywords: geothermal reservoir models, surface features, monitoring, TOUGH2
Procedia PDF Downloads 41410314 Agent-Base Modeling of IoT Applications by Using Software Product Line
Authors: Asad Abbas, Muhammad Fezan Afzal, Muhammad Latif Anjum, Muhammad Azmat
Abstract:
The Internet of Things (IoT) is used to link up real objects that use the internet to interact. IoT applications allow handling and operating the equipment in accordance with environmental needs, such as transportation and healthcare. IoT devices are linked together via a number of agents that act as a middleman for communications. The operation of a heat sensor differs indoors and outside because agent applications work with environmental variables. In this article, we suggest using Software Product Line (SPL) to model IoT agents and applications' features on an XML-based basis. The contextual diversity within the same domain of application can be handled, and the reusability of features is increased by XML-based feature modelling. For the purpose of managing contextual variability, we have embraced XML for modelling IoT applications, agents, and internet-connected devices.Keywords: IoT agents, IoT applications, software product line, feature model, XML
Procedia PDF Downloads 9410313 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.Keywords: chain code frequency, character recognition, feature extraction, features matching, segmentation
Procedia PDF Downloads 32010312 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 11510311 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 43210310 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 13610309 Using Blockchain Technology to Promote Sustainable Supply Chains: A Survey of Previous Studies
Authors: Saleh Abu Hashanah, Abirami Radhakrishnan, Dessa David
Abstract:
Sustainable practices in the supply chain have been an area of focus that require consideration of environmental, economic, and social sustainability practices. This paper aims to examine the use of blockchain as a disruptive technology to promote sustainable supply chains. Content analysis was used to analyze the uses of blockchain technology in sustainable supply chains. The results showed that blockchain technology features such as traceability, transparency, smart contracts, accountability, trust, immutability, anti-fraud, and decentralization promote sustainable supply chains. It is found that these features have impacted organizational efficiency in operations, transportation, and production, minimizing costs and reducing carbon emissions. In addition, blockchain technology has been found to elicit customer trust in the products.Keywords: blockchain technology, sustainability, supply chains, economic sustainability, environmental sustainability, social sustainability
Procedia PDF Downloads 10710308 Between Riots and Protests: A Structural Approach to Urban Environmental Uprisings in China
Authors: Zi Zhu
Abstract:
The last decade has witnessed increasing urban environmental uprisings in China, as thousands of citizens swarmed into streets to express their deep concerns about the environmental threat and public health through various collective actions. The prevalent western approaches to collective actions, which usually treat urban riots and social movements as distinct phenomenon, have plagued an adequate analysis of the urban environmental uprisings in China. The increasing urban environmental contention can neither be categorized into riots nor social movements, as they carry the features of both: at first sight, they are spontaneous, disorganized and disruptive with an absence of observable mobilization process; however, unlike riots in the west, these collective actions conveyed explicit demand in a mostly non-destructive way rather than a pure expression of frustration. This article proposes a different approach to urban environmental uprisings in China which concerns the diminishing boundaries between riots and social movements and points to the underlying structural causes to the unique forms of urban environmental contention. Taking the urban anti-PX protests as examples, this article analyzes the societal and political structural environment faced by the Chinese environmental protesters and its influence on the origin and development of their contention.Keywords: urban environmental uprisings, China, anti-PX protests, opportunity structure
Procedia PDF Downloads 28910307 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features
Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili
Abstract:
In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features
Procedia PDF Downloads 32110306 Exploring Chess Game AI Features Application
Authors: Bashayer Almalki, Mayar Bajrai, Dana Mirah, Kholood Alghamdi, Hala Sanyour
Abstract:
This research aims to investigate the features of an AI chess app that are most preferred by users. A questionnaire was used as the methodology to gather responses from a varied group of participants. The questionnaire consisted of several questions related to the features of the AI chess app. The responses were analyzed using descriptive statistics and factor analysis. The findings indicate that the most preferred features of an AI chess app are the ability to play against the computer, the option to adjust the difficulty level, and the availability of tutorials and puzzles. The results of this research could be useful for developers of AI chess apps to enhance the user experience and satisfaction.Keywords: chess, game, application, computics
Procedia PDF Downloads 6910305 Experiencing an Unknown City: Environmental Features as Pedestrian Wayfinding Clues through the City of Swansea, UK
Authors: Hussah Alotaishan
Abstract:
In today’s globally-driven modern cities diverse groups of new visitors face various challenges when attempting to find their desired location if culture and language are barriers. The most common way-showing tools such as directional and identificational signs are the most problematic and their usefulness can be limited or even non-existent. It is argued new methods should be implemented that could support or replace such conventional literacy and language dependent way-finding aids. It has been concluded in recent research studies that local urban features in complex pedestrian spaces are worthy of further study in order to reveal if they do function as way-showing clues. Some researchers propose a more comprehensive approach to the complex perception of buildings, façade design and surface patterns, while some have been questioning whether we necessarily need directional signs or can other methods deliver the same message but in a clearer manner for a wider range of users. This study aimed to test to what extent do existent environmental and urban features through the city center area of Swansea in the UK facilitate the way-finding process of a first time visitor. The three-hour experiment was set to attempt to find 11 visitor attractions ranging from recreational, historical, educational and religious locations. The challenge was attempting to find as many as possible when no prior geographical knowledge of their whereabouts was established. The only clues were 11 pictures representing each of the locations that had been acquired from the city of Swansea official website. An iPhone and a heart-rate tracker wristwatch were used to record the route was taken and stress levels, and take record photographs of destinations or decision-making points throughout the journey. This paper addresses: current limitations in understanding the ways that the physical environment can be intentionally deployed to facilitate pedestrians while finding their way around, without or with a reduction in language dependent signage; investigates visitor perceptions of their surroundings by indicating what urban elements manifested an impact on the way-finding process. The initial findings support the view that building facades and street features, such as width, could facilitate the decision-making process if strategically employed. However, more importantly, the anticipated features of a specific place construed from a promotional picture can also be misleading and create confusion that may lead to getting lost.Keywords: pedestrian way-finding, environmental features, urban way-showing, environmental affordance
Procedia PDF Downloads 17310304 Research on Perceptual Features of Couchsurfers on New Hospitality Tourism Platform Couchsurfing
Authors: Yuanxiang Miao
Abstract:
This paper aims to examine the perceptual features of couchsurfers on a new hospitality tourism platform, the free homestay website couchsurfing. As a local host, the author has accepted 61 couchsurfers in Kyoto, Japan, and attempted to figure out couchsurfers' characteristics on perception by hosting them. Moreover, the methodology of this research is mainly based on in-depth interviews, by talking with couchsurfers, observing their behaviors, doing questionnaires, etc. Five dominant perceptual features of couchsurfers were identified: (1) Trusting; (2) Meeting; (3) Sharing; (4) Reciprocity; (5) Worries. The value of this research lies in figuring out a deeper understanding of the perceptual features of couchsurfers, and the author indeed hosted and stayed with 61 couchsurfers from 30 countries and areas over one year. Lastly, the author offers practical suggestions for future research.Keywords: couchsurfing, depth interview, hospitality tourism, perceptual features
Procedia PDF Downloads 14510303 The Latent Model of Linguistic Features in Korean College Students’ L2 Argumentative Writings: Syntactic Complexity, Lexical Complexity, and Fluency
Authors: Jiyoung Bae, Gyoomi Kim
Abstract:
This study explores a range of linguistic features used in Korean college students’ argumentative writings for the purpose of developing a model that identifies variables which predict writing proficiencies. This study investigated the latent variable structure of L2 linguistic features, including syntactic complexity, the lexical complexity, and fluency. One hundred forty-six university students in Korea participated in this study. The results of the study’s confirmatory factor analysis (CFA) showed that indicators of linguistic features from this study-provided a foundation for re-categorizing indicators found in extant research on L2 Korean writers depending on each latent variable of linguistic features. The CFA models indicated one measurement model of L2 syntactic complexity and L2 learners’ writing proficiency; these two latent factors were correlated with each other. Based on the overall findings of the study, integrated linguistic features of L2 writings suggested some pedagogical implications in L2 writing instructions.Keywords: linguistic features, syntactic complexity, lexical complexity, fluency
Procedia PDF Downloads 17010302 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.Keywords: gradient boosting, XGBoost, LightGBM, CatBoost, home credit
Procedia PDF Downloads 17110301 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML
Procedia PDF Downloads 13710300 A Model of Critical Consideration of Environmental Education: Concepts, Contexts, and Competencies
Authors: Mohammad Anwar, Hamid Ullah Khan, Shah Waliullah
Abstract:
Recently, environmental education is an essential element in avoiding environmental degradation around the globe that needs new articles and policymakers’ emphasis. Hence, the present article examines the impact of environmental education on environmental knowledge, environmental behavior, and environmental attitudes in Indonesia. The present research also investigated the moderating role of government support in environmental education, environmental knowledge, environmental behavior, and environmental attitude in Indonesia. A questionnaire was used as the primary data collection method. The smart PLS was utilized to test the association among variables and the hypotheses of the study. The results revealed that environmental education had a significant and positive linkage with environmental knowledge, environmental behavior, and environmental attitude in Indonesia. The findings also exposed that government support significantly moderated environmental education, environmental knowledge, and environmental behavior in Indonesia. The findings of this research would provide help to the policymakers in establishing the policies related to environmental education and reducing environmental degradation.Keywords: environmental education, environmental knowledge, environmental behavior, environmental attitude, government support
Procedia PDF Downloads 9610299 Study of the Environment Problems of Flowers in the World
Authors: Esmaeil Khodadad
Abstract:
The environment is one of the hotbeds of global politics. It is only necessary to emphasize the human being on this word, and to take it as a serious political-social debate, so as to prevent the collapse of the harmony of the system of nature governing the earth, the landlord and its creatures. Earth, water and humans are three interconnected arms that should be kept in balance and harmony. The collapse of one of these arms disrupts the entire framework of the philosophy of life on earth. Environmental issues were found worldwide in the late 20th century and were given serious attention by experts. At the same time, international environmental issues have brought to the forefront the challenges of international relations. These ideas have introduced environmental issues and some of the main features of the causes and consequences of global environmental change, as well as ways to deal with this change Has been discussed. The objectives of this study are environmental issues in the world and in Iran, and it shows what factors contribute to the formation of spatial systems and its supporting systems, and finally what the goals should be about the ideal state of the future of the global environment and its issues. The information required for this research is a combination of documentary, descriptive-analytical and library methods.Keywords: environment, environmental issues, flower, oeacen
Procedia PDF Downloads 14210298 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 26510297 Task Distraction vs. Visual Enhancement: Which Is More Effective?
Authors: Huangmei Liu, Si Liu, Jia’nan Liu
Abstract:
The present experiment investigated and compared the effectiveness of two kinds of methods of attention control: Task distraction and visual enhancement. In the study, the effectiveness of task distractions to explicit features and of visual enhancement to implicit features of the same group of Chinese characters were compared based on their effect on the participants’ reaction time, subjective confidence rating, and verbal report. We found support that the visual enhancement on implicit features did overcome the contrary effect of training distraction and led to awareness of those implicit features, at least to some extent.Keywords: task distraction, visual enhancement, attention, awareness, learning
Procedia PDF Downloads 430